多尺度系数的椭圆最优控制问题的多重调和样条方法
Rough Polyharmonic Splines Method forOptimal Control Problem Governed by Elliptic Systems with Rough Coefficient
摘要: 多重调和样条方法(RPS)是为解决具有多尺度系数问题的一种变分方法。RPS方法不依赖于遍历性或尺度分离的概念,而是依赖于解空间的紧致性。本文将RPS方法应用到具有多尺度系数的椭圆型最优控制问题,空间离散采用RPS基底,得到多尺度最优控制问题的误差估计。
Abstract: Rough polyharmonic splines (RPS) is a variational method which has recently been developed for linear divergence-form operators with arbitrary rough coefficients. RPS method does not rely on concepts of ergodicity or scale-separation, but on compactness properties of the solution space. This paper is applies the RPS method to elliptic optimal control problems with multi-scale coefficients, using the RPS basis for spatial discretization to obtain the error estimates of the multi-scale optimal control problem.
文章引用:曾焦燕. 多尺度系数的椭圆最优控制问题的多重调和样条方法[J]. 理论数学, 2024, 14(12): 56-64. https://doi.org/10.12677/PM.2024.1412406

参考文献

[1] Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich, S. (2009) Optimization with PDE Constraints. Springer-Verlag.
[2] Lions, J. (1971) Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag.
[3] Owhadi, H., Zhang, L. and Berlyand, L. (2014) Polyharmonic Homogenization, Rough Polyharmonic Splines and Sparse Super-localization. ESAIM: Mathematical Modelling and Numerical Analysis, 48, 517-552.
https://doi.org/10.1051/m2an/2013118
[4] Liu, W. and Yan, N. (2008) Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41. Science Press.
[5] Ciarlet, P.G. (2002) The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9780898719208