[1]
|
王永炫, 李梅, 章振林, 等. 《原发性骨质疏松症诊疗指南(2022)》要点解读[J]. 协和医学杂志, 2023, 14(6): 1203-1207.
|
[2]
|
Lin, J., Zhu, J., Wang, Y., Zhang, N., Gober, H., Qiu, X., et al. (2017) Chinese Single Herbs and Active Ingredients for Postmenopausal Osteoporosis: From Preclinical Evidence to Action Mechanism. BioScience Trends, 11, 496-506. https://doi.org/10.5582/bst.2017.01216
|
[3]
|
Zhuo, Y., Li, M., Jiang, Q., Ke, H., Liang, Q., Zeng, L., et al. (2022) Evolving Roles of Natural Terpenoids from Traditional Chinese Medicine in the Treatment of Osteoporosis. Frontiers in Endocrinology, 13, Article 901545. https://doi.org/10.3389/fendo.2022.901545
|
[4]
|
Yang, N., Zhang, X., Li, L., Xu, T., Li, M., Zhao, Q., et al. (2022) Ginsenoside RC Promotes Bone Formation in Ovariectomy-Induced Osteoporosis in Vivo and Osteogenic Differentiation in Vitro. International Journal of Molecular Sciences, 23, Article 6187. https://doi.org/10.3390/ijms23116187
|
[5]
|
Chen, W., Jin, X., Wang, T., Bai, R., Shi, J., Jiang, Y., et al. (2022) Ginsenoside Rg1 Interferes with the Progression of Diabetic Osteoporosis by Promoting Type H Angiogenesis Modulating Vasculogenic and Osteogenic Coupling. Frontiers in Pharmacology, 13, Article 1010937. https://doi.org/10.3389/fphar.2022.1010937
|
[6]
|
Liu, Q., Zhou, J., Yang, Z., Xie, C., Huang, Y., Ling, L., et al. (2021) The Ginsenoside Exhibits Antiosteoporosis Effects in Ketogenic-Diet-Induced Osteoporosis via Rebalancing Bone Turnover. Frontiers in Pharmacology, 11, Article 593820. https://doi.org/10.3389/fphar.2020.593820
|
[7]
|
Lee, S., Park, S., Kim, J.H., Kim, N. and Lee, J. (2023) Ginsenoside Rg2 Inhibits Osteoclastogenesis by Downregulating the NFATC1, C-Fos, and MAPK Pathways. BMB Reports, 56, 551-556. https://doi.org/10.5483/bmbrep.2023-0100
|
[8]
|
Zhang, X., Huang, F., Chen, X., Wu, X. and Zhu, J. (2020) Ginsenoside Rg3 Attenuates Ovariectomy-Induced Osteoporosis via AMPK/mTOR Signaling Pathway. Drug Development Research, 81, 875-884. https://doi.org/10.1002/ddr.21705
|
[9]
|
Zhang, D., Du, J., Yu, M. and Suo, L. (2022) Ginsenoside RB1 Prevents Osteoporosis via the AHR/PRELP/NF-κB Signaling Axis. Phytomedicine, 104, Article 154205. https://doi.org/10.1016/j.phymed.2022.154205
|
[10]
|
Ding, L., Gao, Z., Wu, S., Chen, C., Liu, Y., Wang, M., et al. (2023) Ginsenoside Compound-K Attenuates OVX-Induced Osteoporosis via the Suppression of Rankl-Induced Osteoclastogenesis and Oxidative Stress. Natural Products and Bioprospecting, 13, Article No. 49. https://doi.org/10.1007/s13659-023-00405-z
|
[11]
|
Jiang, Z., Deng, L., Li, M., Alonge, E., Wang, Y. and Wang, Y. (2024) Ginsenoside Rg1 Modulates PI3K/AKT Pathway for Enhanced Osteogenesis via GPER. Phytomedicine, 124, Article 155284. https://doi.org/10.1016/j.phymed.2023.155284
|
[12]
|
Song, M., Jia, F., Cao, Z., Zhang, H., Liu, M. and Gao, L. (2020) Ginsenoside Rg3 Attenuates Aluminum-Induced Osteoporosis through Regulation of Oxidative Stress and Bone Metabolism in Rats. Biological Trace Element Research, 198, 557-566. https://doi.org/10.1007/s12011-020-02089-9
|
[13]
|
Zhang, X., Chen, K., Wei, B., Liu, X., Lei, Z. and Bai, X. (2016) Ginsenosides Rg3 Attenuates Glucocorticoid-Induced Osteoporosis through Regulating BMP-2/BMPR1A/Runx2 Signaling Pathway. Chemico-Biological Interactions, 256, 188-197. https://doi.org/10.1016/j.cbi.2016.07.003
|
[14]
|
He, J., Li, X., Wang, Z., Bennett, S., Chen, K., Xiao, Z., et al. (2019) Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Frontiers in Pharmacology, 10, Article 1344. https://doi.org/10.3389/fphar.2019.01344
|
[15]
|
Guo, Y., Li, Y., Xue, L., Severino, R.P., Gao, S., Niu, J., et al. (2014) Salvia Miltiorrhiza: An Ancient Chinese Herbal Medicine as a Source for Anti-Osteoporotic Drugs. Journal of Ethnopharmacology, 155, 1401-1416. https://doi.org/10.1016/j.jep.2014.07.058
|
[16]
|
Yang, W., Han, J., Gong, S., Zhao, J., Yu, T. and Ma, J. (2022) Cryptotanshinone Suppressed Postmenopausal Osteoporosis by Preventing Rankl-Mediated Osteoclastogenesis against Kidney Injury. Evidence-Based Complementary and Alternative Medicine, 2022, 1-8. https://doi.org/10.1155/2022/2821984
|
[17]
|
Ekeuku, S.O., Pang, K. and Chin, K. (2021) The Skeletal Effects of Tanshinones: A Review. Molecules, 26, Article 2319. https://doi.org/10.3390/molecules26082319
|
[18]
|
Wang, S., Yuan, Y., Lin, Q., Zhou, H., Tang, B., Liu, Y., et al. (2022) Antiosteoporosis Effect of Tanshinol in Osteoporosis Animal Models: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article 937538. https://doi.org/10.3389/fphar.2022.937538
|
[19]
|
Rong, K., Chen, P., Lang, Y., Zhang, Y., Wang, Z., Wen, F., et al. (2022) Morinda Officinalis Polysaccharide Attenuates Osteoporosis in Rats Underwent Bilateral Ovariectomy by Suppressing the PGC-1α/PPARγ Pathway. Journal of Orthopaedic Surgery, 30, Article 10225536221130824. https://doi.org/10.1177/10225536221130824
|
[20]
|
Liu, M., Wang, C., Zhang, H., Guo, H., Kang, L., Li, H., et al. (2024) A Systematic Review on Polysaccharides from Morinda Officinalis How: Advances in the Preparation, Structural Characterization and Pharmacological Activities. Journal of Ethnopharmacology, 328, Article 118090. https://doi.org/10.1016/j.jep.2024.118090
|
[21]
|
Huang, S., Cao, Q., Cao, Y., Yang, Y., Xu, T., Yue, K., et al. (2021) Morinda Officinalis Polysaccharides Improve Meat Quality by Reducing Oxidative Damage in Chickens Suffering from Tibial Dyschondroplasia. Food Chemistry, 344, Article 128688. https://doi.org/10.1016/j.foodchem.2020.128688
|
[22]
|
Zhang, D., Fan, L., Yang, N., Li, Z., Sun, Z., Jiang, S., et al. (2022) Discovering the Main “Reinforce Kidney to Strengthening Yang” Active Components of Salt Morinda Officinalis Based on the Spectrum-Effect Relationship Combined with Chemometric Methods. Journal of Pharmaceutical and Biomedical Analysis, 207, Article 114422. https://doi.org/10.1016/j.jpba.2021.114422
|
[23]
|
Wu, P., Chen, W., Huang, H., Tang, W. and Liang, J. (2022) Morinda Officinalis Polysaccharide Regulates Rat Bone Mesenchymal Stem Cell Osteogenic-Adipogenic Differentiation in Osteoporosis by Upregulating miR-21 and Activating the PI3K/AKT Pathway. The Kaohsiung Journal of Medical Sciences, 38, 675-685. https://doi.org/10.1002/kjm2.12544
|
[24]
|
Wu, Y., Chen, D. and Li, L. (2024) Morinda Officinalis Polysaccharide Promotes the Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Microrna-210-3p/scavenger Receptor Class a Member 3. Journal of Investigative Medicine, 72, 370-382. https://doi.org/10.1177/10815589241229693
|
[25]
|
Zhang, D., Zhang, S., Jiang, K., Li, T. and Yan, C. (2020) Bioassay-Guided Isolation and Evaluation of Anti-Osteoporotic Polysaccharides from Morinda Officinalis. Journal of Ethnopharmacology, 261, Article 113113. https://doi.org/10.1016/j.jep.2020.113113
|
[26]
|
Jiang, K., Huang, D., Zhang, D., Wang, X., Cao, H., Zhang, Q., et al. (2018) Investigation of Inulins from the Roots of Morinda Officinalis for Potential Therapeutic Application as Anti-Osteoporosis Agent. International Journal of Biological Macromolecules, 120, 170-179. https://doi.org/10.1016/j.ijbiomac.2018.08.082
|
[27]
|
Yan, C., Huang, D., Shen, X., Qin, N., Jiang, K., Zhang, D., et al. (2019) Identification and Characterization of a Polysaccharide from the Roots of Morinda Officinalis, as an Inducer of Bone Formation by Up-Regulation of Target Gene Expression. International Journal of Biological Macromolecules, 133, 446-456. https://doi.org/10.1016/j.ijbiomac.2019.04.084
|
[28]
|
Fang, X.H., Zhou, G.E. and Lin, N. (2023) Total Flavonoids from Rhizoma Drynariae (Gusuibu) Alleviates Diabetic Osteoporosis by Activating BMP2/Smad Signaling Pathway. Combinatorial Chemistry & High Throughput Screening, 26, 2401-2409. https://doi.org/10.2174/1386207326666230223165730
|
[29]
|
谌顺清, 梁伟, 张雪妹, 等. 骨碎补化学成分和药理作用研究进展[J]. 中国中药杂志, 2021, 46(11): 2737-2745.
|
[30]
|
陈玄, 陈娟, 谢丽华, 等. 骨碎补-续断药对对成骨/破骨代谢的双向调控作用及其对Hif1ɑ基因的影响[J]. 中国骨质疏松杂志, 2023, 29(1): 64-69.
|
[31]
|
上官文姬, 张跃辉, 岳江, 等. 柚皮苷通过HIF-1α/VEGF信号促进H型血管抗骨质疏松的研究[J]. 中国骨质疏松杂志, 2022, 28(12): 1755-1759.
|
[32]
|
Ge, X. and Zhou, G. (2021) Protective Effects of Naringin on Glucocorticoid-Induced Osteoporosis through Regulating the PI3K/AKT/mTOR Signaling Pathway. American Journal of Translational Research, 13, 6330-6341.
|
[33]
|
Hu, Y., Mu, P., Ma, X., Shi, J., Zhong, Z. and Huang, L. (2021) Rhizoma Drynariae Total Flavonoids Combined with Calcium Carbonate Ameliorates Bone Loss in Experimentally Induced Osteoporosis in Rats via the Regulation of Wnt3a/β-Catenin Pathway. Journal of Orthopaedic Surgery and Research, 16, Article No. 702. https://doi.org/10.1186/s13018-021-02842-3
|
[34]
|
Sun, W., Li, M., Zhang, Y., Huang, Y., Zhan, Q., Ren, Y., et al. (2021) Total Flavonoids of Rhizoma Drynariae Ameliorates Bone Formation and Mineralization in Bmp-Smad Signaling Pathway Induced Large Tibial Defect Rats. Biomedicine & Pharmacotherapy, 138, 111480. https://doi.org/10.1016/j.biopha.2021.111480
|
[35]
|
Shen, Z., Dong, W., Chen, Z., Chen, G., Zhang, Y., Li, Z., et al. (2022) Total Flavonoids of Rhizoma Drynariae Enhances Cd31hiemcnhi Vessel Formation and Subsequent Bone Regeneration in Rat Models of Distraction Osteogenesis by Activating PDGF‑BB/VEGF/RUNX2/OSX Signaling Axis. International Journal of Molecular Medicine, 50, Article No. 112. https://doi.org/10.3892/ijmm.2022.5167
|
[36]
|
Lv, W., Yu, M., Kong, P. and Yan, B. (2021) Total Flavonoids of rhizoma Drynariae Ameliorate Steroid‑induced Avascular Necrosis of the Femoral Head via the PI3K/AKT Pathway. Molecular Medicine Reports, 23, Article No. 345. https://doi.org/10.3892/mmr.2021.11984
|
[37]
|
Wei, X., Xu, A., Shen, H. and Xie, Y. (2017) Qianggu Capsule for the Treatment of Primary Osteoporosis: Evidence from a Chinese Patent Medicine. BMC Complementary and Alternative Medicine, 17, Article No. 108. https://doi.org/10.1186/s12906-017-1617-3
|
[38]
|
Zhang, Y., Jiang, J., Shen, H., Chai, Y., Wei, X. and Xie, Y. (2017) Total Flavonoids from Rhizoma Drynariae (Gusuibu) for Treating Osteoporotic Fractures: Implication in Clinical Practice. Drug Design, Development and Therapy, 11, 1881-1890. https://doi.org/10.2147/dddt.s139804
|
[39]
|
Mu, P., Hu, Y., Ma, X., Shi, J., Zhong, Z. and Huang, L. (2021) Total Flavonoids of Rhizoma Drynariae Combined with Calcium Attenuate Osteoporosis by Reducing Reactive Oxygen Species Generation. Experimental and Therapeutic Medicine, 21, Article No. 618. https://doi.org/10.3892/etm.2021.10050
|
[40]
|
Dietz, B.M., Hajirahimkhan, A., Dunlap, T.L. and Bolton, J.L. (2016) Botanicals and Their Bioactive Phytochemicals for Women’s Health. Pharmacological Reviews, 68, 1026-1073. https://doi.org/10.1124/pr.115.010843
|
[41]
|
Ma, H., He, X., Yang, Y., Li, M., Hao, D. and Jia, Z. (2011) The Genus Epimedium: An Ethnopharmacological and Phytochemical Review. Journal of Ethnopharmacology, 134, 519-541. https://doi.org/10.1016/j.jep.2011.01.001
|
[42]
|
Gao, L. and Zhang, S. (2022) Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals, 15, Article 397. https://doi.org/10.3390/ph15040397
|
[43]
|
李莉, 王嘉瑞, 王晶, 等. 淫羊藿的主要化学成分、药理作用研究进展及质量标志物的预测分析[J]. 中华中医药学刊, 2023, 41(11): 143-151.
|
[44]
|
Zheng, H., He, B., Wu, T., Cai, J. and Wei, J. (2020) Extraction, Purification and Anti-Osteoporotic Activity of a Polysaccharide from Epimedium Brevicornum Maxim. in Vitro. International Journal of Biological Macromolecules, 156, 1135-1145. https://doi.org/10.1016/j.ijbiomac.2019.11.145
|
[45]
|
Wang, L., Li, Y., Guo, Y., Ma, R., Fu, M., Niu, J., et al. (2015) Herba Epimedii: An Ancient Chinese Herbal Medicine in the Prevention and Treatment of Osteoporosis. Current Pharmaceutical Design, 22, 328-349. https://doi.org/10.2174/1381612822666151112145907
|
[46]
|
Shi, S., Wang, F., Huang, Y., Chen, B., Pei, C., Huang, D., et al. (2022) Epimedium for Osteoporosis Based on Western and Eastern Medicine: An Updated Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article 782096. https://doi.org/10.3389/fphar.2022.782096
|