|
[1]
|
Jin, Z., Chau, M.D. and Bao, Z. (2005) Sema3D, Sema3F, and Sema5A Are Expressed in Overlapping and Distinct Patterns in Chick Embryonic Heart. Developmental Dynamics, 235, 163-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Xiang, R., Hensel, C.H., Garcia, D.K., Carlson, H.C., Kok, K., Daly, M.C., et al. (1996) Isolation of the Human Semaphorin III/F Gene (SEMA3F) at Chromosome 3p21, a Region Deleted in Lung Cancer. Genomics, 32, 39-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Demyanenko, G.P., Mohan, V., Zhang, X., Brennaman, L.H., Dharbal, K.E.S., Tran, T.S., et al. (2014) Neural Cell Adhesion Molecule NrCAM Regulates Semaphorin 3F-Induced Dendritic Spine Remodeling. The Journal of Neuroscience, 34, 11274-11287. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Duncan, B.W., Mohan, V., Wade, S.D., Truong, Y., Kampov-Polevoi, A., Temple, B.R., et al. (2021) Semaphorin3F Drives Dendritic Spine Pruning through Rho-Gtpase Signaling. Molecular Neurobiology, 58, 3817-3834. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mohan, V., Wyatt, E.V., Gotthard, I., Phend, K.D., Diestel, S., Duncan, B.W., et al. (2018) Neurocan Inhibits Semaphorin 3F Induced Dendritic Spine Remodeling through NrCAM in Cortical Neurons. Frontiers in Cellular Neuroscience, 12, Article 346. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Curreli, S., Wong, B.S., Latinovic, O., Konstantopoulos, K. and Stamatos, N.M. (2016) Class 3 Semaphorins Induce F-Actin Reorganization in Human Dendritic Cells: Role in Cell Migration. Journal of Leukocyte Biology, 100, 1323-1334. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yamada, R.X., Matsuki, N. and Ikegaya, Y. (2006) Soluble Guanylyl Cyclase Inhibitor Prevents Sema3F-Induced Collapse of Axonal and Dendritic Growth Cones of Dentate Granule Cells. Biological and Pharmaceutical Bulletin, 29, 796-798. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bertoldi, M.L., Zalosnik, M.I., Fabio, M.C., Aja, S., Roth, G.A., Ronnett, G.V., et al. (2019) Mecp2 Deficiency Disrupts Kainate-Induced Presynaptic Plasticity in the Mossy Fiber Projections in the Hippocampus. Frontiers in Cellular Neuroscience, 13, Article 286. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, G., Qu, X., Zhang, J., Zhao, W. and Wang, H. (2012) Sema3F Downregulates p53 Expression Leading to Axonal Growth Cone Collapse in Primary Hippocampal Neurons. International Journal of Clinical and Experimental Pathology, 5, 634-641.
|
|
[10]
|
Ng, T., Hor, C.H.H., Chew, B., Zhao, J., Zhong, Z., Ryu, J.R., et al. (2016) Neuropilin 2 Signaling Is Involved in Cell Positioning of Adult-Born Neurons through Glycogen Synthase Kinase-3β (GSK3β). Journal of Biological Chemistry, 291, 25088-25095. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, Q., Chiu, S., Koropouli, E., Hong, I., Mitchell, S., Easwaran, T.P., et al. (2017) Neuropilin-2/plexina3 Receptors Associate with Glua1 and Mediate Sema3f-Dependent Homeostatic Scaling in Cortical Neurons. Neuron, 96, 1084-1098.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Roffers-Agarwal, J. and Gammill, L.S. (2009) Neuropilin Receptors Guide Distinct Phases of Sensory and Motor Neuronal Segmentation. Development, 136, 1879-1888. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
York, J.R., Yuan, T., Lakiza, O. and McCauley, D.W. (2018) An Ancestral Role for Semaphorin3f-Neuropilin Signaling in Patterning Neural Crest within the New Vertebrate Head. Development, 145, Article 164780. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yamauchi, K., Mizushima, S., Tamada, A., Yamamoto, N., Takashima, S. and Murakami, F. (2009) FGF8 Signaling Regulates Growth of Midbrain Dopaminergic Axons by Inducing Semaphorin3F. The Journal of Neuroscience, 29, 4044-4055. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Matsuda, I., Fukaya, M., Nakao, H., Nakao, K., Matsumoto, H., Mori, K., et al. (2010) Development of the Somatosensory Cortex, the Cerebellum, and the Main Olfactory System in Semaphorin3F Knockout Mice. Neuroscience Research, 66, 321-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Helmbrecht, M.S., Soellner, H., Castiblanco-Urbina, M.A., Winzeck, S., Sundermeier, J., Theis, F.J., et al. (2015) A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring. PLOS ONE, 10, e0123643. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sahay, A., Molliver, M.E., Ginty, D.D. and Kolodkin, A.L. (2003) Semaphorin 3F Is Critical for Development of Limbic System Circuitry and Is Required in Neurons for Selective CNS Axon Guidance Events. The Journal of Neuroscience, 23, 6671-6680. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cloutier, J., Sahay, A., Chang, E.C., Tessier-Lavigne, M., Dulac, C., Kolodkin, A.L., et al. (2004) Differential Requirements for Semaphorin3F and Slit-1 in Axonal Targeting, Fasciculation, and Segregation of Olfactory Sensory Neuron Projections. The Journal of Neuroscience, 24, 9087-9096. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Takeuchi, H., Inokuchi, K., Aoki, M., Suto, F., Tsuboi, A., Matsuda, I., et al. (2010) Sequential Arrival and Graded Secretion of Sema3F by Olfactory Neuron Axons Specify Map Topography at the Bulb. Cell, 141, 1056-1067. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Low, L.K., Liu, X., Faulkner, R.L., Coble, J. and Cheng, H. (2008) Plexin Signaling Selectively Regulates the Stereotyped Pruning of Corticospinal Axons from Visual Cortex. Proceedings of the National Academy of Sciences, 105, 8136-8141. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Vilbig, R., Cosmano, J., Giger, R. and Rochlin, M.W. (2004) Distinct Roles for Sema3a, Sema3f, and an Unidentified Trophic Factor in Controlling the Advance of Geniculate Axons to Gustatory Lingual Epithelium. Journal of Neurocytology, 33, 591-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Scott, M.K., Yue, J., Biesemeier, D.J., Lee, J.W. and Fekete, D.M. (2019) Expression of Class III Semaphorins and Their Receptors in the Developing Chicken (Gallus Gallus) Inner Ear. Journal of Comparative Neurology, 527, 1196-1209. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sijaona, A., Luukko, K., Kvinnsland, I.H. and Kettunen, P. (2011) Expression Patterns of Sema3f, Plexina4,-A3, Neuropilin1 and-2 in the Postnatal Mouse Molar Suggest Roles in Tooth Innervation and Organogenesis. Acta Odontologica Scandinavica, 70, 140-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mohan, V., Sullivan, C.S., Guo, J., Wade, S.D., Majumder, S., Agarwal, A., et al. (2018) Temporal Regulation of Dendritic Spines through Nrcam-Semaphorin3f Receptor Signaling in Developing Cortical Pyramidal Neurons. Cerebral Cortex, 29, 963-977. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ziak, J., Weissova, R., Jeřábková, K., Janikova, M., Maimon, R., Petrasek, T., et al. (2020) CRMP 2 Mediates Sema3F-dependent Axon Pruning and Dendritic Spine Remodeling. EMBO Reports, 21, e48512. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Degano, A.L., Pasterkamp, R.J. and Ronnett, G.V. (2009) Mecp2 Deficiency Disrupts Axonal Guidance, Fasciculation, and Targeting by Altering Semaphorin3F Function. Molecular and Cellular Neuroscience, 42, 243-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gant, J.C., Thibault, O., Blalock, E.M., Yang, J., Bachstetter, A., Kotick, J., et al. (2009) Decreased Number of Interneurons and Increased Seizures in Neuropilin 2 Deficient Mice: Implications for Autism and Epilepsy. Epilepsia, 50, 629-645. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Aigrot, M., Barthelemy, C., Moyon, S., Dufayet-Chaffaud, G., Izagirre-Urizar, L., Gillet-Legrand, B., et al. (2022) Genetically Modified Macrophages Accelerate Myelin Repair. EMBO Molecular Medicine, 14, e14759. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Matsuda, I., Shoji, H., Yamasaki, N., Miyakawa, T. and Aiba, A. (2016) Comprehensive Behavioral Phenotyping of a New Semaphorin 3 F Mutant Mouse. Molecular Brain, 9, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Schwenty-Lara, J., Nehl, D. and Borchers, A. (2019) The Histone Methyltransferase KMT2D, Mutated in Kabuki Syndrome Patients, Is Required for Neural Crest Cell Formation and Migration. Human Molecular Genetics, 29, 305-319. [Google Scholar] [CrossRef] [PubMed]
|