[1]
|
Langen, U.H., Ayloo, S. and Gu, C. (2019) Development and Cell Biology of the Blood-Brain Barrier. Annual Review of Cell and Developmental Biology, 35, 591-613. https://doi.org/10.1146/annurev-cellbio-100617-062608
|
[2]
|
Kadry, H., Noorani, B. and Cucullo, L. (2020) A Blood-Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids and Barriers of the CNS, 17, Article No. 69. https://doi.org/10.1186/s12987-020-00230-3
|
[3]
|
Liebner, S., Dijkhuizen, R.M., Reiss, Y., Plate, K.H., Agalliu, D. and Constantin, G. (2018) Functional Morphology of the Blood-Brain Barrier in Health and Disease. Acta Neuropathologica, 135, 311-336. https://doi.org/10.1007/s00401-018-1815-1
|
[4]
|
Iadecola, C. (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron, 96, 17-42. https://doi.org/10.1016/j.neuron.2017.07.030
|
[5]
|
Knox, E.G., Aburto, M.R., Clarke, G., Cryan, J.F. and O’Driscoll, C.M. (2022) The Blood-Brain Barrier in Aging and Neurodegeneration. Molecular Psychiatry, 27, 2659-2673. https://doi.org/10.1038/s41380-022-01511-z
|
[6]
|
Li, Y., Zhu, Z., Huang, T., Zhou, Y., Wang, X., Yang, L., et al. (2018) The Peripheral Immune Response after Stroke—A Double Edge Sword for Blood‐Brain Barrier Integrity. CNS Neuroscience & Therapeutics, 24, 1115-1128. https://doi.org/10.1111/cns.13081
|
[7]
|
Hannink, M. and Donoghue, D.J. (1989) Structure and Function of Platelet-Derived Growth Factor (PDGF) and Related Proteins. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 989, 1-10. https://doi.org/10.1016/0304-419x(89)90031-0
|
[8]
|
Funa, K. and Sasahara, M. (2013) The Roles of PDGF in Development and during Neurogenesis in the Normal and Diseased Nervous System. Journal of Neuroimmune Pharmacology, 9, 168-181. https://doi.org/10.1007/s11481-013-9479-z
|
[9]
|
Kazlauskas, A. (2017) PDGFs and Their Receptors. Gene, 614, 1-7. https://doi.org/10.1016/j.gene.2017.03.003
|
[10]
|
Sil, S., Periyasamy, P., Thangaraj, A., Chivero, E.T. and Buch, S. (2018) PDGF/PDGFR Axis in the Neural Systems. Molecular Aspects of Medicine, 62, 63-74. https://doi.org/10.1016/j.mam.2018.01.006
|
[11]
|
Papadopoulos, N. and Lennartsson, J. (2018) The PDGF/PDGFR Pathway as a Drug Target. Molecular Aspects of Medicine, 62, 75-88. https://doi.org/10.1016/j.mam.2017.11.007
|
[12]
|
Zhang, S.X.L., Gozal, D., Sachleben, L.R., Rane, M., Klein, J.B. and Gozal, E. (2003) Hypoxia Induces an Autocrine‐paracrine Survival Pathway via Platelet‐derived Growth Factor (PDGF)-B/PDGF‐β Receptor/phosphatidylinositol 3‐Kinase/Akt Signaling in RN46A Neuronal Cells. The FASEB Journal, 17, 1709-1711. https://doi.org/10.1096/fj.02-1111fje
|
[13]
|
Tripathi, A., Parikh, Z.S., Vora, P., Frost, E.E. and Pillai, P.P. (2016) pERK1/2 Peripheral Recruitment and Filopodia Protrusion Augment Oligodendrocyte Progenitor Cell Migration: Combined Effects of PDGF-A and Fibronectin. Cellular and Molecular Neurobiology, 37, 183-194. https://doi.org/10.1007/s10571-016-0359-y
|
[14]
|
Đặng, T.C., Ishii, Y., Nguyen, V.D., Yamamoto, S., Hamashima, T., Okuno, N., et al. (2019) Powerful Homeostatic Control of Oligodendroglial Lineage by PDGFRα in Adult Brain. Cell Reports, 27, 1073-1089.e5. https://doi.org/10.1016/j.celrep.2019.03.084
|
[15]
|
Lindahl, P., Johansson, B.R., Levéen, P. and Betsholtz, C. (1997) Pericyte Loss and Microaneurysm Formation in PDGF-B-Deficient Mice. Science, 277, 242-245. https://doi.org/10.1126/science.277.5323.242
|
[16]
|
Hellström, M., Kalén, M., Lindahl, P., Abramsson, A. and Betsholtz, C. (1999) Role of PDGF-B and PDGFR-β in Recruitment of Vascular Smooth Muscle Cells and Pericytes during Embryonic Blood Vessel Formation in the Mouse. Development, 126, 3047-3055. https://doi.org/10.1242/dev.126.14.3047
|
[17]
|
Daneman, R., Zhou, L., Kebede, A.A. and Barres, B.A. (2010) Pericytes Are Required for Blood-Brain Barrier Integrity during Embryogenesis. Nature, 468, 562-566. https://doi.org/10.1038/nature09513
|
[18]
|
Lindblom, P., Gerhardt, H., Liebner, S., Abramsson, A., Enge, M., Hellström, M., et al. (2003) Endothelial PDGF-B Retention Is Required for Proper Investment of Pericytes in the Microvessel Wall. Genes & Development, 17, 1835-1840. https://doi.org/10.1101/gad.266803
|
[19]
|
Smyth, L.C.D., Highet, B., Jansson, D., Wu, J., Rustenhoven, J., Aalderink, M., et al. (2022) Characterisation of PDGF-BB: PDGFRβ Signalling Pathways in Human Brain Pericytes: Evidence of Disruption in Alzheimer’s Disease. Communications Biology, 5, Article No. 235. https://doi.org/10.1038/s42003-022-03180-8
|
[20]
|
Nikolakopoulou, A.M., Zhao, Z., Montagne, A. and Zlokovic, B.V. (2017) Regional Early and Progressive Loss of Brain Pericytes but Not Vascular Smooth Muscle Cells in Adult Mice with Disrupted Platelet-Derived Growth Factor Receptor-Β Signaling. PLOS ONE, 12, e0176225. https://doi.org/10.1371/journal.pone.0176225
|
[21]
|
Shen, J., Ishii, Y., Xu, G., Dang, T.C., Hamashima, T., Matsushima, T., et al. (2011) PDGFR-β as a Positive Regulator of Tissue Repair in a Mouse Model of Focal Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 32, 353-367. https://doi.org/10.1038/jcbfm.2011.136
|
[22]
|
Vazquez-Liebanas, E., Nahar, K., Bertuzzi, G., Keller, A., Betsholtz, C. and Mäe, M.A. (2021) Adult-Induced Genetic Ablation Distinguishes PDGFB Roles in Blood-Brain Barrier Maintenance and Development. Journal of Cerebral Blood Flow & Metabolism, 42, 264-279. https://doi.org/10.1177/0271678x211056395
|
[23]
|
Li, X. and Eriksson, U. (2003) Novel PDGF Family Members: PDGF-C and PDGF-D. Cytokine & Growth Factor Reviews, 14, 91-98. https://doi.org/10.1016/s1359-6101(02)00090-4
|
[24]
|
Fang, L., Yan, Y., Komuves, L.G., Yonkovich, S., Sullivan, C.M., Stringer, B., et al. (2004) PDGF C Is a Selective α Platelet-Derived Growth Factor Receptor Agonist That Is Highly Expressed in Platelet Α Granules and Vascular Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 787-792. https://doi.org/10.1161/01.atv.0000120785.82268.8b
|
[25]
|
Tang, Z., Arjunan, P., Lee, C., Li, Y., Kumar, A., Hou, X., et al. (2010) Survival Effect of PDGF-CC Rescues Neurons from Apoptosis in Both Brain and Retina by Regulating GSK3β Phosphorylation. Journal of Experimental Medicine, 207, 867-880. https://doi.org/10.1084/jem.20091704
|
[26]
|
Fredriksson, L., Li, H., Fieber, C., Li, X. and Eriksson, U. (2004) Tissue Plasminogen Activator Is a Potent Activator of PDGF-CC. The EMBO Journal, 23, 3793-3802. https://doi.org/10.1038/sj.emboj.7600397
|
[27]
|
Lee, C., Zhang, F., Tang, Z., Liu, Y. and Li, X. (2013) PDGF-C: A New Performer in the Neurovascular Interplay. Trends in Molecular Medicine, 19, 474-486. https://doi.org/10.1016/j.molmed.2013.04.006
|
[28]
|
Su, E.J., Fredriksson, L., Geyer, M., Folestad, E., Cale, J., Andrae, J., et al. (2008) Activation of PDGF-CC by Tissue Plasminogen Activator Impairs Blood-Brain Barrier Integrity during Ischemic Stroke. Nature Medicine, 14, 731-737. https://doi.org/10.1038/nm1787
|
[29]
|
Folestad, E., Kunath, A. and Wågsäter, D. (2018) PDGF-C and PDGF-D Signaling in Vascular Diseases and Animal Models. Molecular Aspects of Medicine, 62, 1-11. https://doi.org/10.1016/j.mam.2018.01.005
|
[30]
|
Lee, C. and Li, X. (2018) Platelet-derived Growth Factor-C and-D in the Cardiovascular System and Diseases. Molecular Aspects of Medicine, 62, 12-21. https://doi.org/10.1016/j.mam.2017.09.005
|
[31]
|
Liu, C., Zhao, W., Meng, W., Zhao, T., Chen, Y., Ahokas, R.A., et al. (2014) Platelet-Derived Growth Factor Blockade on Cardiac Remodeling Following Infarction. Molecular and Cellular Biochemistry, 397, 295-304. https://doi.org/10.1007/s11010-014-2197-x
|
[32]
|
Feigin, V.L., Brainin, M., Norrving, B., Martins, S., Sacco, R.L., Hacke, W., et al. (2022) World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. International Journal of Stroke, 17, 18-29. https://doi.org/10.1177/17474930211065917
|
[33]
|
Abdullahi, W., Tripathi, D. and Ronaldson, P.T. (2018) Blood-Brain Barrier Dysfunction in Ischemic Stroke: Targeting Tight Junctions and Transporters for Vascular Protection. American Journal of Physiology-Cell Physiology, 315, C343-C356. https://doi.org/10.1152/ajpcell.00095.2018
|
[34]
|
Jiang, X., Andjelkovic, A.V., Zhu, L., Yang, T., Bennett, M.V.L., Chen, J., et al. (2018) Blood-Brain Barrier Dysfunction and Recovery after Ischemic Stroke. Progress in Neurobiology, 163, 144-171. https://doi.org/10.1016/j.pneurobio.2017.10.001
|
[35]
|
Krupinski, J., Issa, R., Bujny, T., Slevin, M., Kumar, P., Kumar, S., et al. (1997) A Putative Role for Platelet-Derived Growth Factor in Angiogenesis and Neuroprotection after Ischemic Stroke in Humans. Stroke, 28, 564-573. https://doi.org/10.1161/01.str.28.3.564
|
[36]
|
Su, E.J., Cao, C., Fredriksson, L., Nilsson, I., Stefanitsch, C., Stevenson, T.K., et al. (2017) Microglial-Mediated PDGF-CC Activation Increases Cerebrovascular Permeability during Ischemic Stroke. Acta Neuropathologica, 134, 585-604. https://doi.org/10.1007/s00401-017-1749-z
|
[37]
|
Nguyen, Q.L., Okuno, N., Hamashima, T., Dang, S.T., Fujikawa, M., Ishii, Y., et al. (2020) Vascular PDGFR-α Protects against BBB Dysfunction after Stroke in Mice. Angiogenesis, 24, 35-46. https://doi.org/10.1007/s10456-020-09742-w
|
[38]
|
He, Q., Ma, Y., Fang, C., Deng, Z., Wang, F., Qu, Y., et al. (2023) Remote Ischemic Conditioning Attenuates Blood-Brain Barrier Disruption after Recombinant Tissue Plasminogen Activator Treatment via Reducing PDGF-CC. Pharmacological Research, 187, Article ID: 106641. https://doi.org/10.1016/j.phrs.2022.106641
|
[39]
|
Ma, Q., Huang, B., Khatibi, N., Rolland, W., Suzuki, H., Zhang, J.H., et al. (2011) PDGFR‐α Inhibition Preserves Blood‐brain Barrier after Intracerebral Hemorrhage. Annals of Neurology, 70, 920-931. https://doi.org/10.1002/ana.22549
|
[40]
|
Shibahara, T., Ago, T., Nakamura, K., Tachibana, M., Yoshikawa, Y., Komori, M., et al. (2020) Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. eNeuro, 7, ENEURO.0474-19.2020. https://doi.org/10.1523/eneuro.0474-19.2020
|
[41]
|
Shen, J., Xu, G., Zhu, R., Yuan, J., Ishii, Y., Hamashima, T., et al. (2018) PDGFR-β Restores Blood-Brain Barrier Functions in a Mouse Model of Focal Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 39, 1501-1515. https://doi.org/10.1177/0271678x18769515
|
[42]
|
Nakamura, K., Arimura, K., Nishimura, A., Tachibana, M., Yoshikawa, Y., Makihara, N., et al. (2016) Possible Involvement of Basic FGF in the Upregulation of PDGFRβ in Pericytes after Ischemic Stroke. Brain Research, 1630, 98-108. https://doi.org/10.1016/j.brainres.2015.11.003
|
[43]
|
Antoniou, G., Lee, A.T.J., Huang, P.H. and Jones, R.L. (2018) Olaratumab in Soft Tissue Sarcoma—Current Status and Future Perspectives. European Journal of Cancer, 92, 33-39. https://doi.org/10.1016/j.ejca.2017.12.026
|
[44]
|
Rieckmann, P. (2008) Imatinib Buys Time for Brain after Stroke. Nature Medicine, 14, 712-713. https://doi.org/10.1038/nm0708-712
|
[45]
|
Wahlgren, N., Thorén, M., Höjeberg, B., Käll, T., Laska, A., Sjöstrand, C., et al. (2016) Randomized Assessment of Imatinib in Patients with Acute Ischaemic Stroke Treated with Intravenous Thrombolysis. Journal of Internal Medicine, 281, 273-283. https://doi.org/10.1111/joim.12576
|
[46]
|
Gagalo, I., Rusiecka, I. and Kocic, I. (2015) Tyrosine Kinase Inhibitor as a New Therapy for Ischemic Stroke and Other Neurologic Diseases: Is There Any Hope for a Better Outcome? Current Neuropharmacology, 13, 836-844. https://doi.org/10.2174/1570159x13666150518235504
|
[47]
|
Adzemovic, M., Zeitelhofer, M., Eriksson, U., Olsson, T. and Nilsson, I. (2013) Imatinib Ameliorates Neuroinflammation in a Rat Model of Multiple Sclerosis by Enhancing Blood-Brain Barrier Integrity and by Modulating the Peripheral Immune Response. PLOS ONE, 8, e56586. https://doi.org/10.1371/journal.pone.0056586
|
[48]
|
Paul, G., Zachrisson, O., Varrone, A., Almqvist, P., Jerling, M., Lind, G., et al. (2015) Safety and Tolerability of Intracerebroventricular PDGF-BB in Parkinson’s Disease Patients. Journal of Clinical Investigation, 125, 1339-1346. https://doi.org/10.1172/jci79635
|
[49]
|
Han, L. and Jiang, C. (2021) Evolution of Blood–brain Barrier in Brain Diseases and Related Systemic Nanoscale Brain-Targeting Drug Delivery Strategies. Acta Pharmaceutica Sinica B, 11, 2306-2325. https://doi.org/10.1016/j.apsb.2020.11.023
|
[50]
|
Haney, M.J., Klyachko, N.L., Zhao, Y., Gupta, R., Plotnikova, E.G., He, Z., et al. (2015) Exosomes as Drug Delivery Vehicles for Parkinson’s Disease Therapy. Journal of Controlled Release, 207, 18-30. https://doi.org/10.1016/j.jconrel.2015.03.033
|
[51]
|
Tian, T., Zhang, H., He, C., Fan, S., Zhu, Y., Qi, C., et al. (2018) Surface Functionalized Exosomes as Targeted Drug Delivery Vehicles for Cerebral Ischemia Therapy. Biomaterials, 150, 137-149. https://doi.org/10.1016/j.biomaterials.2017.10.012
|
[52]
|
Rajput, A., Varshney, A., Bajaj, R. and Pokharkar, V. (2022) Exosomes as New Generation Vehicles for Drug Delivery: Biomedical Applications and Future Perspectives. Molecules, 27, Article 7289. https://doi.org/10.3390/molecules27217289
|
[53]
|
Blesa, J., Pineda-Pardo, J.A., Inoue, K., Gasca-Salas, C., Balzano, T., Del Rey, N.L., et al. (2023) BBB Opening with Focused Ultrasound in Nonhuman Primates and Parkinson’s Disease Patients: Targeted AAV Vector Delivery and PET Imaging. Science Advances, 9, eadf4888. https://doi.org/10.1126/sciadv.adf4888
|