炎症性肠病与肾脏疾病关系的研究进展
Research Progress on the Relationship between Inflammatory Bowel Disease and Kidney Diseases
DOI: 10.12677/acm.2025.151297, PDF, HTML, XML,   
作者: 罗 茜, 卢贝贝, 廖晓辉*:重庆医科大学附属第二医院肾内科,重庆
关键词: 炎症性肠病肠外表现肾脏病Inflammatory Bowel Disease Extraintestinal Manifestations Kidney Diseases
摘要: 炎症性肠病(IBD)是一组主要发生在胃肠道粘膜的慢性炎症性疾病,包括溃疡性结肠炎(UC)和克罗恩病(CD)。除了影响胃肠道,IBD还具有多种肠外表现(EIM),其中肾脏受累是常见的并发症之一。研究表明,IBD可导致多种肾脏疾病,包括肾小球肾炎、肾小管间质性肾炎、肾结石、肾细胞癌、淀粉样变性、急性肾损伤和慢性肾脏病等。本文就IBD与肾脏疾病之间的研究进展进行综述,探讨IBD对肾脏健康的影响及其潜在机制。
Abstract: Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders primarily affecting the gastrointestinal mucosa, including ulcerative colitis (UC) and Crohn’s disease (CD). In addition to gastrointestinal involvement, IBD is associated with various extraintestinal manifestations (EIM), with renal involvement being one of the common complications. Studies have shown that IBD can lead to multiple kidney diseases, including glomerulonephritis, interstitial nephritis, kidney stones, renal cell carcinoma, amyloidosis, acute kidney injury, and chronic kidney disease. This article reviews the research progress on the relationship between IBD and kidney diseases, exploring the impact of IBD on renal health and its potential mechanisms.
文章引用:罗茜, 卢贝贝, 廖晓辉. 炎症性肠病与肾脏疾病关系的研究进展[J]. 临床医学进展, 2025, 15(1): 2264-2269. https://doi.org/10.12677/acm.2025.151297

1. 引言

炎症性肠病(IBD)是一种慢性、免疫介导的胃肠道疾病,主要分为克罗恩病(CD)和溃疡性结肠炎(UC)。IBD具有不同的病程和并发症,严重情况下可导致残疾[1] [2]。除了对胃肠道的影响,IBD还可引发多种肠外表现(EIM),涉及肝胆道、肾脏、骨骼、眼睛、关节和皮肤等多个器官系统[1]。在肾脏方面,常见的表现包括肾小球肾炎、肾小管间质性肾炎、肾结石、肾细胞癌、淀粉样变性、急性肾损伤和慢性肾脏病等,这些病症可能与IBD的病理过程或其治疗直接或间接相关[3]

近年来肾脏病在全球的发病及死亡率逐年上升,已成为重要的公共卫生问题。慢性肾脏病(CKD)作为常见的肾脏疾病之一,影响着全球约10~13%的人口,其起病隐匿,许多患者在接受治疗时已发展至终末期肾病(ESRD),给社会带来了巨大的医疗、心理和经济负担[4] [5]。预计到2040年,CKD将成为全球第五大死亡原因。因此,早期发现和防治CKD的原发疾病,对延缓甚至阻止其进展至ESRD具有重要意义。鉴于IBD与肾脏健康的密切关系,深入探讨IBD与肾脏疾病进展的关系显得尤为重要。本文就IBD与肾脏疾病之间的研究进展进行综述,探讨其潜在机制及临床意义。

2. 炎症性肠病与肾脏疾病

2.1. IgA肾病(IgA Nephropathy, IgAN)

免疫球蛋白A肾病(IgAN)是全球最常见的肾小球肾炎,也是导致慢性肾脏病(CKD)和肾功能衰竭的主要原因之一[6] [7]。IgAN在IBD患者的肾活检中最为常见。一项对患有急性和慢性肾病的IBD患者进行的研究显示,24%的肾活检结果为IgAN [8]。此外,日本的一项大规模流行病学研究也证实了IBD与IgAN高风险之间的潜在关联[9]。Rehnberg等人的研究发现,IgAN合并IBD的患者进展ESRD的风险显著增加[10]。尽管IBD与IgAN之间的确切机制尚不完全清楚,肠–肾轴假说可能揭示了二者的病理关系。研究认为,肠道免疫、微生物群和饮食之间的相互作用失调可能导致致病性Gd-IgA1的产生,而Gd-IgA1在IgAN的发病中起重要作用[11]。因此,通过特定治疗干预调节肠道微生物组,可能减少致病性IgA的产生,防止有害免疫复合物的形成,有利于改变疾病进程。美国食品和药物管理局(FDA)宣布Nefecon (皮质类固醇布地奈德的靶向释放制剂)可作为减少原发IgAN患者蛋白尿的治疗方法[12]-[14]。此外,其他新兴的治疗方法,如BAFF/APRIL抑制剂、双重阻滞剂(针对血管紧张素受体和内皮素受体)、IL-17抑制剂以及粪便微生物群移植[15],在减少炎症和维持肾功能方面展现出显著潜力。

2.2. 急性肾损伤(AKI)

在IBD中AKI的发生虽然较为少见,但却可能给患者带来非常显著的影响。根据一项使用英国生物样本库的数据研究,在调整了人口统计学、生物学、社会经济和自评健康变量后,IBD患者的AKI风险仍显著高于非IBD患者(OR: 1.70; 95% CI 1.37~1.79) [16]。一项覆盖瑞典20%~25%的人群的研究也证实IBD参与者患AKI风险较高(OR: 1.97; 95% CI 1.70~2.29) [17]。此外,美国的一项大型研究显示,IBD住院患者的AKI患病率高于胶原血管疾病患者及一般住院人群[18],这可能是因为IBD住院患者中AKI的危险因素众多,包括低血容量相关的肾小管损伤、脓毒症和手术。观察性研究表明,经历结肠切除术的IBD患者患AKI和肾衰竭的风险增加,尤其是那些接受全结肠切除术和需要(延长)造口的人[19]。此外,肾小管间质性肾炎(TIN)是AKI的常见原因[20]。一些治疗IBD的药物,如5-氨基水杨酸盐(5-ASA)、环孢素A (CsA)和抗肿瘤坏死因子α (TNF-α)抑制剂,长期使用可能会导致TIN,并促进AKI的发生。

2.3. 肾结石

肾结石主要由草酸钙或尿酸形成,是IBD中最常见的肾脏受累形式。IBD患者终生患肾结石的风险约为18~20% [21]。丹麦的一项国家级队列研究显示,IBD患者尿石症的发病风险增加了2倍,尤其是在CD患者中[22]。最近的一项孟德尔随机化分析进一步证明,CD显著增加尿石症的风险,而UC则未显示出相同的效果[23]。IBD患者体内草酸盐结石的形成增加,可能与草酸盐吸收增加、结肠对草酸盐的通透性增强以及草酸盐降解细菌的去定植有关[3] [16] [24]。此外,IBD患者常见腹泻,这导致脱水和碳酸氢盐丢失,从而使尿液浓缩并呈酸性,进一步促进尿酸结石的形成[25]

2.4. 肾细胞癌

先前的流行病学研究已确定IBD与多种癌症风险增加之间的密切关联[26]。最近对9项队列研究的荟萃分析显示,IBD患者,尤其CD患者,患肾癌的风险显著升高;相比之下,UC患者的风险并未显著增加[27]。此外,Derikx等人的研究发现,IBD患者的免疫抑制治疗可能增加多种实体恶性肿瘤的风险,包括肾细胞癌[28]。具有复杂表型的IBD患者在更年轻和早期的疾病阶段被诊断为肾细胞癌的风险也增加[28]。同时,有研究指出,肾衰竭患者患肾细胞癌的风险也显著升高[29] [30],因此,IBD通过CKD途径增加肾细胞癌的风险的可能性值得关注。

2.5. 慢性肾脏病(CKD)

最近的系统评价和大型数据库研究表明,IBD患者患CKD的风险显著增加。随着时间的推移,高达5~15%的成年IBD患者可能发展为CKD [21]。Yang等人的研究也发现,超过10%的IBD患者在诊断后10年内会发展为CKD [17]。一项前瞻性的研究显示,与无IBD患者相比,IBD患者发生CKD的风险高出57% [16]。此外,一项针对近18,000例IBD患者的回顾性研究发现,在调整常见CKD危险因素后,IBD与CKD 3~5期的发展相关,且年轻患者的风险比最高[31]。因此,IBD被认为是CKD进展的危险因素。然而,当考虑IBD的亚型时,结果存在不一致。一项基于欧洲人群的研究发现CD和UC会增加CKD的风险,这增强了我们对IBD亚型对CKD不同影响的理解[4]

2.6. 继发性淀粉样变性 (AA)

继发性淀粉样变性(AA)是IBD的一种罕见但重要的并发症,与IBD的严重程度之间存在很强的相关性,其特征是血清淀粉样蛋白A的蛋白水解片段作为急性期反应蛋白在细胞外沉积[32]。IBD患者的肾淀粉样变性通常在肾病综合征的情况下出现蛋白尿,最终导致进行性肾功能损害和终末期肾病的显著并发症,甚至导致死亡[17]。AA的诊断最常通过受累器官的组织活检进行,通常是肾活检[24]。目前肾淀粉样变性的根治性疗法尚不可用,但控制该疾病的一种方法是联合使用TNF-α抑制剂和秋水仙碱[24]

3. IBD患者肾功能下降的作用机制

肠道和肾脏之间存在双向调节,称为肠–肾轴,这一理论由Meijers教授于2011年提出,反映了肠道微生物群和肾脏生理之间的双向关系[33]。一方面,慢性肾衰竭导致肠道生态失调,增加肠道源性尿毒毒素水平;另一方面,当这些毒素在循环中时,它会通过炎症和氧化应激损伤加剧肾脏损伤。目前研究显示IBD可能通过多种机制导致肾功能的下降。首先,IBD患者的肠道微生物群失调和宿主免疫系统激活会破坏肠道屏障,使细菌产物进入血液,进而引发慢性炎症和自身免疫反应,导致肾小球和肾小管损伤[34] [35]。肾小球损伤和肾小管炎症可引起蛋白尿和肾小球滤过率降低,最终导致CKD的发生[17]。其次,IBD患者因肠道持续炎症和反复肠切除术,可能经历急性或慢性循环容量损失,导致电解质异常,从而引发急性和慢性肾功能丧失[36]。此外,IBD引起的高草酸尿症通过激活肾素–血管紧张素系统(RAS)和诱导活性氧(ROS),造成肾小管损伤和炎症,最终引发间质纤维化和CKD [16]。最后,IBD的保守治疗通常涉及药物组合,包括ASA、类固醇、抗生素、免疫抑制剂和生物制剂。药物性肾损伤是IBD临床实践中普遍存在的问题[37]。水杨酸盐对肾内前列腺素合成的抑制会破坏肾内血流调节和线粒体氧化磷酸化,可能导致局部缺氧。此外,高肾内水杨酸水平会抑制磷酸戊糖分流,减少肾脏谷胱甘肽并使肾脏容易受到氧化损伤[17]。环孢素(CsA)可通过引起传入小动脉的显着血管收缩,导致肾血流量和GFR降低,诱导急性肾功能不全,通常在停止CsA治疗后5至7天内肾功能可以得到改善[38]。TNF-α抑制剂,特别是英夫利昔单抗和阿达木单抗,被证明在肾功能损害方面具有潜在作用[39]。TNF-α抑制剂给药期间发生肾脏并发症的一种可能机制涉及抗TNF-α抗体与肾小球脏层上皮细胞中存在的TNF-α的相互作用[40]。其他引起肾功能下降的因素还包括继发性淀粉样变性[32] [41]、复发性结石[21] [22]和IgA肾病等。

4. 炎症性肠病患者的肾功能监测

目前尚无针对炎症性肠病(IBD)患者肾功能监测的既定指南。根据炎症性肠病肾功能监测(MONITORED)共识,建议IBD患者定期进行尿液分析和肾功能检查。这些监测应在IBD诊断时、引入新疗法前进行,并每年筛查肠外表现(EIM)及评估治疗耐受性。具体而言,在美沙拉嗪治疗开始后3个月应评估肾功能,随后每6个月评估一次;而对于接受生物制剂的患者,每年监测一次被认为足够[42]。虽然IBD患者不常进行肾活检,但对于肾功能不全、蛋白尿或血尿的患者,特别是在没有其他合并症或去除肾毒性药物后肾功能仍不改善的情况下,应考虑进行肾活检[24] [43]

5. 总结与展望

肾脏病的全球患病率逐年上升,给社会带来了显著的医疗、心理和经济负担。研究显示,IBD患者患肾脏疾病,尤其是CKD的风险显著增加。这一关联凸显了定期监测IBD患者肾功能的重要性,以便及早诊断和预防相关并发症。尽管目前证据仍有限,未来需要更多的研究深入探讨IBD与肾脏病之间的关系,以期为临床实践提供更明确的指导。

NOTES

*通讯作者。

参考文献

[1] Pagani, K., Lukac, D., Bhukhan, A. and McGee, J.S. (2022) Cutaneous Manifestations of Inflammatory Bowel Disease: A Basic Overview. American Journal of Clinical Dermatology, 23, 481-497.
https://doi.org/10.1007/s40257-022-00689-w
[2] Park, S.H. and Park, S.H. (2022) Personalized Medicine in Inflammatory Bowel Disease: Perspectives on Asia. Journal of Gastroenterology and Hepatology, 37, 1434-1445.
https://doi.org/10.1111/jgh.15919
[3] Pardi, D.S., Tremaine, W.J., Sandborn, W.J. and McCarthy, J.T. (1998) Renal and Urologic Complications of Inflammatory Bowel Disease. American Journal of Gastroenterology, 93, 504-514.
https://doi.org/10.1111/j.1572-0241.1998.156_b.x
[4] Liu, T., Wu, Y., Cao, X., Yang, K., Tong, Y., Zhang, F., et al. (2024) Association between Sarcopenia and New-Onset Chronic Kidney Disease among Middle-Aged and Elder Adults: Findings from the China Health and Retirement Longitudinal Study. BMC Geriatrics, 24, Article No. 134.
https://doi.org/10.1186/s12877-024-04691-1
[5] Plonsky-Toder, M., Magen, D. and Pollack, S. (2023) Innate Immunity and CKD: Is There a Significant Association? Cells, 12, Article 2714.
https://doi.org/10.3390/cells12232714
[6] Pattrapornpisut, P., Avila-Casado, C. and Reich, H.N. (2021) IgA Nephropathy: Core Curriculum 2021. American Journal of Kidney Diseases, 78, 429-441.
https://doi.org/10.1053/j.ajkd.2021.01.024
[7] Rodrigues, J.C., Haas, M. and Reich, H.N. (2017) IgA Nephropathy. Clinical Journal of the American Society of Nephrology, 12, 677-686.
https://doi.org/10.2215/cjn.07420716
[8] Ambruzs, J.M., Walker, P.D. and Larsen, C.P. (2014) The Histopathologic Spectrum of Kidney Biopsies in Patients with Inflammatory Bowel Disease. Clinical Journal of the American Society of Nephrology, 9, 265-270.
https://doi.org/10.2215/cjn.04660513
[9] Nakayama, T., Kaneko, H., Okada, A., Suzuki, Y., Fujiu, K., Takeda, N., et al. (2024) Association of Inflammatory Bowel Disease with Incident IgA Nephropathy. Clinical Journal of the American Society of Nephrology, 19, 704-711.
https://doi.org/10.2215/cjn.0000000000000457
[10] Rehnberg, J., Symreng, A., Ludvigsson, J.F. and Emilsson, L. (2020) Inflammatory Bowel Disease Is More Common in Patients with IgA Nephropathy and Predicts Progression of ESKD: A Swedish Population-Based Cohort Study. Journal of the American Society of Nephrology, 32, 411-423.
https://doi.org/10.1681/asn.2020060848
[11] Joher, N., Gosset, C., Guerrot, D., Pillebout, E., Hummel, A., Boffa, J., et al. (2021) Immunoglobulin a Nephropathy in Association with Inflammatory Bowel Diseases: Results from a National Study and Systematic Literature Review. Nephrology Dialysis Transplantation, 37, 531-539.
https://doi.org/10.1093/ndt/gfaa378
[12] Barratt, J., Kristensen, J., Pedersen, C. and Jerling, M. (2024) Insights on Nefecon®, a Targeted-Release Formulation of Budesonide and Its Selective Immunomodulatory Effects in Patients with Iga Nephropathy. Drug Design, Development and Therapy, 18, 3415-3428.
https://doi.org/10.2147/dddt.s383138
[13] Floege, J. (2024) IgA-Nephropathie. Die Urologie, 63, 103-111.
https://doi.org/10.1007/s00120-023-02268-1
[14] Lafayette, R., Kristensen, J., Stone, A., Floege, J., Tesař, V., Trimarchi, H., et al. (2023) Efficacy and Safety of a Targeted-Release Formulation of Budesonide in Patients with Primary IgA Nephropathy (NefigArd): 2-Year Results from a Randomised Phase 3 Trial. The Lancet, 402, 859-870.
https://doi.org/10.1016/s0140-6736(23)01554-4
[15] Bian, J., Liebert, A., Bicknell, B., Chen, X., Huang, C. and Pollock, C.A. (2022) Faecal Microbiota Transplantation and Chronic Kidney Disease. Nutrients, 14, Article 2528.
https://doi.org/10.3390/nu14122528
[16] Liu, M., Zhang, Y., Ye, Z., Yang, S., Zhou, C., He, P., et al. (2023) Inflammatory Bowel Disease with Chronic Kidney Disease and Acute Kidney Injury. American Journal of Preventive Medicine, 65, 1103-1112.
https://doi.org/10.1016/j.amepre.2023.08.008
[17] Singh, A., Khanna, T., Mahendru, D., Kahlon, J., Kumar, V., Sohal, A., et al. (2024) Insights into Renal and Urological Complications of Inflammatory Bowel Disease. World Journal of Nephrology, 13, Article 96574.
https://doi.org/10.5527/wjn.v13.i3.96574
[18] Saha, M.K., Hogan, S.L., Falk, R.J., Barnes, E.L., Hu, Y., Kshirsagar, A.V., et al. (2024) Acute Kidney Injury in Inflammatory Bowel Disease Patients: A Nationwide Comparative Analysis. Kidney Medicine, 6, Article 100836.
https://doi.org/10.1016/j.xkme.2024.100836
[19] Yang, Y., Ludvigsson, J.F., Forss, A., Faucon, A., Faye, A.S., Olén, O., et al. (2024) Risk of Kidney Failure in Patients with Inflammatory Bowel Disease Undergoing Colectomy: A Nationwide Cohort Study. Clinical Gastroenterology and Hepatology, 22, 2291-2298.E17.
https://doi.org/10.1016/j.cgh.2024.05.010
[20] Joyce, E., Glasner, P., Ranganathan, S. and Swiatecka-Urban, A. (2016) Tubulointerstitial Nephritis: Diagnosis, Treatment, and Monitoring. Pediatric Nephrology, 32, 577-587.
https://doi.org/10.1007/s00467-016-3394-5
[21] van Hoeve, K. and Hoffman, I. (2022) Renal Manifestations in Inflammatory Bowel Disease: A Systematic Review. Journal of Gastroenterology, 57, 619-629.
https://doi.org/10.1007/s00535-022-01903-6
[22] Dimke, H., Winther-Jensen, M., Allin, K.H., Lund, L. and Jess, T. (2021) Risk of Urolithiasis in Patients with Inflammatory Bowel Disease: A Nationwide Danish Cohort Study 1977-2018. Clinical Gastroenterology and Hepatology, 19, 2532-2540.E2.
https://doi.org/10.1016/j.cgh.2020.09.049
[23] Wu, H., Liu, P., Gong, S., Liu, X., Hill, M.A., Liu, Z., et al. (2023) Inflammatory Bowel Disease Increases the Levels of Albuminuria and the Risk of Urolithiasis: A Two-Sample Mendelian Randomization Study. European Journal of Medical Research, 28, Article No. 167.
https://doi.org/10.1186/s40001-023-01128-0
[24] Ambruzs, J.M. and Larsen, C.P. (2018) Renal Manifestations of Inflammatory Bowel Disease. Rheumatic Disease Clinics of North America, 44, 699-714.
https://doi.org/10.1016/j.rdc.2018.06.007
[25] Nazzal, L., Puri, S. and Goldfarb, D.S. (2015) Enteric Hyperoxaluria: An Important Cause of End-Stage Kidney Disease. Nephrology Dialysis Transplantation, 31, 375-382.
https://doi.org/10.1093/ndt/gfv005
[26] Bernstein, C.N., Blanchard, J.F., Kliewer, E. and Wajda, A. (2001) Cancer Risk in Patients with Inflammatory Bowel Disease: A Population-Based Study. Cancer, 91, 854-862.
https://doi.org/10.1002/1097-0142(20010215)91:4<854::aid-cncr1073>3.0.co;2-z
[27] Feng, D., Bai, Y., Liu, S., Yang, Y., Han, P. and Wei, W. (2021) Risk of Renal Cancer in Patients with Inflammatory Bowel Disease: A Pooled Analysis of Population-Based Studies. Urologic Oncology: Seminars and Original Investigations, 39, 93-99.
https://doi.org/10.1016/j.urolonc.2020.10.078
[28] Derikx, L.A.A.P., Nissen, L.H.C., Drenth, J.P.H., van Herpen, C.M., Kievit, W., Verhoeven, R.H.A., et al. (2015) Better Survival of Renal Cell Carcinoma in Patients with Inflammatory Bowel Disease. Oncotarget, 6, 38336-38347.
https://doi.org/10.18632/oncotarget.5186
[29] Hall, E.C., Segev, D.L. and Engels, E.A. (2013) Racial/Ethnic Differences in Cancer Risk after Kidney Transplantation. American Journal of Transplantation, 13, 714-720.
https://doi.org/10.1111/ajt.12066
[30] Maisonneuve, P., Agodoa, L., Gellert, R., Stewart, J.H., Buccianti, G., Lowenfels, A.B., et al. (1999) Cancer in Patients on Dialysis for End-Stage Renal Disease: An International Collaborative Study. The Lancet, 354, 93-99.
https://doi.org/10.1016/s0140-6736(99)06154-1
[31] Vajravelu, R.K., Copelovitch, L., Osterman, M.T., Scott, F.I., Mamtani, R., Lewis, J.D., et al. (2020) Inflammatory Bowel Diseases Are Associated with an Increased Risk for Chronic Kidney Disease, Which Decreases with Age. Clinical Gastroenterology and Hepatology, 18, 2262-2268.
https://doi.org/10.1016/j.cgh.2019.10.043
[32] Sattianayagam, P.T., Gillmore, J.D., Pinney, J.H., Gibbs, S.D.J., Wechalekar, A.D., Gilbertson, J.A., et al. (2013) Inflammatory Bowel Disease and Systemic AA Amyloidosis. Digestive Diseases and Sciences, 58, 1689-1697.
https://doi.org/10.1007/s10620-012-2549-x
[33] Meijers, B.K.I. and Evenepoel, P. (2011) The Gut-Kidney Axis: Indoxyl Sulfate, P-Cresyl Sulfate and CKD Progression. Nephrology Dialysis Transplantation, 26, 759-761.
https://doi.org/10.1093/ndt/gfq818
[34] Kriz, W. and Lehir, M. (2005) Pathways to Nephron Loss Starting from Glomerular Diseases—Insights from Animal Models. Kidney International, 67, 404-419.
https://doi.org/10.1111/j.1523-1755.2005.67097.x
[35] Ranganathan, P., Jayakumar, C., Santhakumar, M. and Ramesh, G. (2013) Netrin-1 Regulates Colon-Kidney Cross Talk through Suppression of IL-6 Function in a Mouse Model of DSS-Colitis. American Journal of Physiology-Renal Physiology, 304, F1187-F1197.
https://doi.org/10.1152/ajprenal.00702.2012
[36] Kellum, J.A., Romagnani, P., Ashuntantang, G., Ronco, C., Zarbock, A. and Anders, H. (2021) Acute Kidney Injury. Nature Reviews Disease Primers, 7, Article No. 52.
https://doi.org/10.1038/s41572-021-00284-z
[37] Schetz, M., Dasta, J., Goldstein, S. and Golper, T. (2005) Drug-Induced Acute Kidney Injury. Current Opinion in Critical Care, 11, 555-565.
https://doi.org/10.1097/01.ccx.0000184300.68383.95
[38] Bennett, W.M. (1995) The Nephrotoxicity of Immunosuppressive Drugs. Clinical Nephrology, 43, S3-S7.
[39] Oikonomou, K.A., Kapsoritakis, A.N., Stefanidis, I. and Potamianos, S.P. (2011) Drug-Induced Nephrotoxicity in Inflammatory Bowel Disease. Nephron Clinical Practice, 119, c89-c96.
https://doi.org/10.1159/000326682
[40] Den Broeder, A.A., Assmann, K.J., Van Riel, P.L., et al. (2003) Nephrotic Syndrome as a Complication of Anti-TN Falpha in a Patient with Rheumatoid Arthritis. The Netherlands Journal of Medicine, 61, 137-141.
[41] Tosca Cuquerella, J., Bosca-Watts, M.M., Anton Ausejo, R., Tejedor Alonso, S., Mora De Miguel, F. and Minguez Perez, M. (2016) Amyloidosis in Inflammatory Bowel Disease: A Systematic Review of Epidemiology, Clinical Features, and Treatment. Journal of Crohns and Colitis, 10, 1245-1253.
https://doi.org/10.1093/ecco-jcc/jjw080
[42] Guillo, L., Delanaye, P., Flamant, M., Figueres, L., Karam, S., Lemoine, S., et al. (2022) Kidney Function Monitoring in Inflammatory Bowel Disease: The MONITORED Consensus. Digestive and Liver Disease, 54, 309-315.
https://doi.org/10.1016/j.dld.2021.11.008
[43] Zhao, L., Ren, G., Fan, R., Feng, X., Liu, Z., Cheng, Z., et al. (2021) Spectrum and Prognosis of Renal Histopathological Lesions in Patients with Inflammatory Bowel Disease: A Cross-Sectional Study from a Single Center in China. Clinical and Experimental Medicine, 22, 629-635.
https://doi.org/10.1007/s10238-021-00766-0