[1]
|
彭显月, 梁国标. 自噬在肾缺血再灌注损伤中作用机制的研究进展[J]. 医学研究杂志, 2020, 49(7): 9-11, 16.
|
[2]
|
Shiva, N., Sharma, N., Kulkarni, Y.A., Mulay, S.R. and Gaikwad, A.B. (2020) Renal Ischemia/Reperfusion Injury: An Insight on in vitro and in vivo Models. Life Sciences, 256, Article 117860. https://doi.org/10.1016/j.lfs.2020.117860
|
[3]
|
Pefanis, A., Ierino, F.L., Murphy, J.M. and Cowan, P.J. (2019) Regulated Necrosis in Kidney Ischemia-Reperfusion Injury. Kidney International, 96, 291-301. https://doi.org/10.1016/j.kint.2019.02.009
|
[4]
|
Decuypere, J., Ceulemans, L.J., Agostinis, P., Monbaliu, D., Naesens, M., Pirenne, J., et al. (2015) Autophagy and the Kidney: Implications for Ischemia-Reperfusion Injury and Therapy. American Journal of Kidney Diseases, 66, 699-709. https://doi.org/10.1053/j.ajkd.2015.05.021
|
[5]
|
王天宇, 周江桥. 线粒体自噬在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2018, 9(3): 239-241.
|
[6]
|
Kalogeris, T., Baines, C.P., Krenz, M. and Korthuis, R.J. (2012) Cell Biology of Ischemia/reperfusion Injury. International Review of Cell and Molecular Biology, 298, 229-317. https://doi.org/10.1016/b978-0-12-394309-5.00006-7
|
[7]
|
李昕, 王芷宁, 付璐, 等. 缺血-再灌注氧化损伤机制及其对不同器官功能的影响[J]. 中国比较医学杂志, 2022, 32(7): 149-154.
|
[8]
|
汝少国, 朱增光, 崔鹏飞. 细胞自噬与应激反应[J]. 中国海洋大学学报(自然科学版), 2022, 52(7): 1-13.
|
[9]
|
Fu, Z., Wang, Z., Xu, L., Chen, X., Li, X., Liao, W., et al. (2020) HIF-1α-BNIP3-Mediated Mitophagy in Tubular Cells Protects against Renal Ischemia/Reperfusion Injury. Redox Biology, 36, Article 101671. https://doi.org/10.1016/j.redox.2020.101671
|
[10]
|
Jiang, Z., Kuo, Y. and Arkin, M.R. (2023) Autophagy Receptor-Inspired Antibody-Fusion Proteins for Targeted Intracellular Degradation. Journal of the American Chemical Society, 145, 23939-23947. https://doi.org/10.1021/jacs.3c05199
|
[11]
|
Wang, Z., Li, Z., Feng, D., Zu, G., Li, Y., Zhao, Y., et al. (2019) Autophagy Induction Ameliorates Inflammatory Responses in Intestinal Ischemia-Reperfusion through Inhibiting NLRP3 Inflammasome Activation. Shock, 52, 387-395. https://doi.org/10.1097/shk.0000000000001259
|
[12]
|
曹真睿, 贺桂琼, 龙志敏. 自噬与NLRP3炎症小体激活间的相互作用[J]. 中国生物化学与分子生物学报, 2019, 35(6): 599-605.
|
[13]
|
吴艳萍, 王阳, 李雅丽, 等. 氧化应激与自噬[J]. 动物营养学报, 2016, 28(9): 2673-2680.
|
[14]
|
齐元麟, 陈富华, 任正肖, 等. 动脉平滑肌细胞的钙池操纵钙通道对细胞自噬的调节[J]. 中国药理学通报, 2016, 32(10): 1416-1421.
|
[15]
|
张文静, 崔丽艳, 张捷. 自噬与缺血再灌注损伤[J]. 检验医学, 2014, 29(2): 182-185.
|
[16]
|
陈林波, 马凯丽, 陈佺, 等. 线粒体自噬的分子机制[J]. 中国科学(生命科学), 2019, 49(9): 1045-1053.
|
[17]
|
陈华玲, 马晓鹂, 袁圣亮. 自噬与炎症的关系研究进展[J]. 山东医药, 2016, 56(23): 100-102.
|
[18]
|
Greene, C.J., Nguyen, J.A., Cheung, S.M., Arnold, C.R., Balce, D.R., Wang, Y.T., et al. (2022) Macrophages Disseminate Pathogen Associated Molecular Patterns through the Direct Extracellular Release of the Soluble Content of Their Phagolysosomes. Nature Communications, 13, Article No. 3072. https://doi.org/10.1038/s41467-022-30654-4
|
[19]
|
吴玲玲, 于化鹏, 陈丽嫦, 等. 炎症小体与自噬相互调控关系研究进展[J]. 国际呼吸杂志, 2018, 38(13): 1011-1015.
|
[20]
|
雷小楠, 杜春, 梁学海, 等. 论线粒体与缺血再灌注损伤的联系及肾移植中的研究进展[J]. 临床医学进展, 2023, 13(8): 13221-13228.
|
[21]
|
Kma, L. and Baruah, T.J. (2021) The Interplay of ROS and the PI3K/AKT Pathway in Autophagy Regulation. Biotechnology and Applied Biochemistry, 69, 248-264. https://doi.org/10.1002/bab.2104
|
[22]
|
阮培森, 郑耀, 董卓亚, 等. AMPK信号通道调节自噬和线粒体稳态的研究进展[J]. 中华危重病急救医学, 2024, 36(4): 425-429.
|