双金属纳米合金的合成和应用的最新进展
Recent Advances in the Synthesis and Application of Bimetallic Nano-Alloys
DOI: 10.12677/app.2025.152010, PDF, HTML, XML,   
作者: 徐 杰, 韩明智, 曹立伟, 李 昂:北京工业大学物理与光电工程学院,北京
关键词: 双金属纳米合金合成应用Bimetallic Nano-Alloys Synthesis Applications
摘要: 纳米金属因其优异的电学光学磁学等性质,而在催化传感生物医疗等方面具有广泛应用,吸引了众多研究者的兴趣。近年来,开发了多种合成不同结构纳米合金的方法,包括化学分解,热分解,辐射分解等。本文综述了这些合成方法与纳米合金应用的最新进展,对合成具有可控结构,组成、尺寸和形貌的双金属纳米合金具有重要意义。
Abstract: Nanometals have attracted the interest of many researchers due to their excellent electrical, optical, magnetic and other properties, and their wide range of applications in catalysis, sensing, biomedicine and other areas. In recent years, a variety of methods have been developed to synthesize nano-alloys with different structures, including chemical decomposition, thermal decomposition, and radiolysis. This paper reviews the recent progress of these synthesis methods with nano-alloy applications, which are important for the synthesis of bimetallic nano-alloys with controllable structure, composition, size and morphology.
文章引用:徐杰, 韩明智, 曹立伟, 李昂. 双金属纳米合金的合成和应用的最新进展[J]. 应用物理, 2025, 15(2): 91-102. https://doi.org/10.12677/app.2025.152010

1. 引言

纳米金属由于尺寸效应和表面效应表现出不同于块体物质的物理化学性质,如优异的电学[1],光学[2],磁学[3]等性质,使得其具有广泛的应用,如催化[4],传感[5],生物医疗[6]等。纳米合金作为纳米金属领域研究的一部分,是指由两种或两种以上金属组成的纳米团簇物。在很多情况下,纳米合金由于协同作用,其特定的物理或化学性质相比于纳米单质会得到显著增强[7]-[9]。特别是在贵金属中掺杂部分过渡金属,不仅可以减少贵金属的消耗,还可以显著增强其特定性能。如Au纳米颗粒由于其在生物,催化方面的广泛应用,受到研究者们的广泛关注。但由于Au材料储量有限,且价格昂贵,这对减少Au的消耗而不降低其特定性能提出了要求。Li [10]等人证实了Au@Co双金属纳米晶对CO氧化反应的催化效率优于纯Au或Co纳米颗粒。近年来,双金属纳米合金引起了世界范围内研究人员越来越多的关注。

双金属纳米合金按其混合模式可以分为核壳型、异质型、混合型[11]。核壳型纳米合金是由一种原子的外壳包围另一种原子的内核组成,尽管外壳之间可能存在一定的混合。核壳结构在很多系统中都是常见的,如Au-Pd [12],Pt-Co [13],Au-Ag [14]等。异质型纳米合金是指两种金属原子单独形核和长大,且在生长过程中共享一个混合界面而形成的异质结构。一般可通过非均相种子介导生长方法合成异质结构的双金属纳米晶体,将外来原子添加到含有“种子”的生长液中。纳米晶种子提供了外来原子异相成核和生长的晶面。在二次生长过程中,通过控制动力学和热力学参数可以调控外来原子的生长模式,有效地避免外来原子的自成核和自生长,从而精确地制备出异质结纳米合金[15]。混合型纳米合金是指两种金属原子的均匀混合物,可以是有序的金属间化合物,也可以是无序的固溶体。混合型纳米合金可通过多种制备方法制得,如有研究者利用热分解法合成一系列的Bi-Pd金属间化合物[16],也有研究者利用水相合成法制得五重孪生结构的金铜合金纳米晶体[17]。在适当的条件下双金属纳米合金的结构还可以发生转变,如在电子束及一定温度条件下Ag@Ge核壳纳米颗粒可以转变为Ag-Ge异质结构[18]

与大块合金一样,纳米合金也可以有非常广泛的组合和成分。双金属纳米合金(AmBn)的尺寸[19] (m + n)和成分[20] (m/n)或多或少都可以控制。团簇结构和A-B分离或混合程度可能取决于生成团簇的方法和条件(团簇源类型、温度、压力等)。目前已开发出多种基于物理和化学的方法来合成尺寸和形状可控的纳米合金,如化学还原[21],热分解[22],和辐射分解[23]等方法。本文综述了纳米合金的合成方法和应用的最新进展,对合成具有可控结构,组成、尺寸和形貌的双金属纳米合金具有重要意义。

2. 纳米合金的合成方法

2.1. 化学还原

化学还原法通常是在表面活性剂(如柠檬酸盐、烷基硫醇或硫醚)或聚合配体(如聚乙烯吡咯烷酮,PVP)存在的情况下,将溶解在适当溶剂中的金属盐还原而成胶体金属微粒[24]。因为它的简单性和在任何化学实验室中应用的可能性,这种方法成为最重要的合成方法之一。通过改变表面活性剂和聚合配体可以可控合成不同结构的纳米合金。如图1 [25]是利用柠檬酸三钠作为稳定剂存在下用硼氢化钠还原Ni和Ag离子所得的NiAg双金属核壳纳米颗粒的组成和形态,获得的纳米颗粒尺寸为11 nm左右,其活性大约是类似尺寸的纯银纳米颗粒的十倍,显示了镍–银基纳米颗粒催化特性的协同作用。有研究者发现利用Cu作为还原剂可以转化铂盐K2PtCl4,生成一种双金属铂–铜纳米颗粒,如图2 [26]所示合成的纳米粒子呈现出双金属成分,其最终结构中包含铜,大小在15至25 nm之间,分散良好,呈树突状。这种方法为生产双金属纳米结构提供了一种简便易行的参考,这些新型纳米材料的催化特性已在各种应用中得到探索,包括用作人工金属酶和降解染料等。

Figure 1. Distribution of elements in AgNiNPs, (a) HR-SEM image; (b) Ni distribution; (c) Ag distribution, and (d) Ni and Ag distribution [25]

1. AgNiNPs中元素的分布,(a) HR-SEM图像;(b) Ni分布;(c) Ag分布,以及(d) Ni,Ag分布[25]

Figure 2. (a) HRTEM image of PtCu1 at magnification; (b) representative lattice fringes at magnification, and (c) determination of planar spacing using plotted profiles [26]

2. (a) PtCu1较高放大倍率下的HRTEM图像;(b) 较高放大倍率下的代表性晶格条纹,以及(c)使用绘图剖面确定面间距离[26]

此外,有研究者通过在含有PVP的乙醛/四甘醇剂中还原Pt(acac)2和Ni(ac)2•4H2O而合成了NiPt核壳纳米颗粒[27]。如图3所示,合成的纳米颗粒平均尺寸5.3 nm,HAADF-STEM图像和相应的元素映射显示,Ni主要集中在NP的内部,而Pt主要分布在Ni成分的表面,表明形成了富镍核心和富Pt壳层纳米结构。图3(c)中经过像差校正的高分辨率HAADF-STEM显示了沿面心立方(FCC) (111)面的2.1 Å典型晶格边缘,铂具有压缩应变,进一步证实了铂晶格中存在镍。对典型的NiPt纳米合金进行的HAADF-STEM线扫描显示,NP边缘的铂强度较高,而NP核心的铂强度较低,这进一步表明NiPt纳米合金形成了核壳结构(图3(d))。壳的厚度约为1.0~1.2 nm,相当于约4~5个铂原子层。通过简单改变Pt(acac)2和Ni(ac)2-4H2O的比例并保持其他反应参数不变,还合成了不同Ni/Pt摩尔比的NiPt核壳NPs。随着镍摩尔比的增加,纳米合金的平均尺寸从4.2纳米略微增加到7.8 nm,而NPs的形状变化并不明显。合成纳米颗粒表现出增强的氧化还原电催化活性和结构稳定性,为合理地设计其他作为高效且经济的能量转换电催化剂的核壳纳米结构提供了一种简单策略。

Figure 3. (a) TEM image and histogram of its size distribution (inserted graph); (b) HAADF-STEM image and corresponding elemental mapping; (c) Aberration-corrected high-resolution HAADF-STEM image. The yellow highlighted area shows the lattice spacing of Ni1.1Pt (111); (d) EDS line scan [27]

3. (a) TEM图像及其尺寸分布直方图(插入的图表);(b) HAADF-STEM图像和相应的元素映射;(c) 像差校正的高分辨率HAADF-STEM图像。黄色高亮区域显示Ni1.1Pt (111)的晶格间距;(d) EDS线扫描[27]

2.2. 热分解

热分解指的是包含两种或两种以上金属的前驱体在加热时分解为单质金属或合金,前驱体可以是含金属化合物或多金属配合物的混合物[28]。有机金属化合物的热分解是获得高单分散纳米晶的经典途径。热分解的前驱体一般分为双金属单源前驱体或阴离子双金属羰基团簇。早在2011年就有研究者利用双金属单源前驱体[M(NH3)4] [Co(C2O4)2(H2O)2]·2H2O (M = Pd, Pt)在200~600℃的氦气或氢气气氛中热分解一次性合成了CoPd和CoPt磁性纳米合金[29]。而基于阴离子双金属羰基团簇热分解所形成的纳米合金,其组成反映了前驱体的组成,如图4(a)所示为[NEt4] [FeCo3(CO)12]热分解形成的FeCo3纳米合金,图4(b)为相同条件下(反应物浓度,反应温度,反应时间) [NMe4]2 [FeNi5(CO)13]热分解形成的FeNi4,这表明合成的纳米颗粒的化学和物理性质是由团簇的组成决定的,而不是由其他反应条件决定的,可以看出纳米颗粒都是球形,平均直径因金属成分而异。改变合成条件,例如配体浓度和配体类型,对所获得纳米颗粒的大小、形状或组成没有显着影响。这可能是由于簇核中已经存在的金属–金属键的稳定性,这些键促进了形成纳米颗粒中的两种元素之间新金属–金属键的发展,获得的合金纳米颗粒是单分散的[30]

Figure 4. typical TEM images and size distributions of (a) FeCo3 and (b) FeNi4 nanoparticles synthesized by thermal decomposition of [NEt4] [FeCo3(CO)12] and [NMe4]2 [FeNi5(CO)13], respectively, with a scale bar of 100 nm in the figure [30]

4. 分别通过热分解[NEt4] [FeCo3(CO)12]和[NMe4]2 [FeNi5(CO)13]合成的(a) FeCo3 and (b) FeNi4纳米颗粒的典型TEM图像和尺寸分布,图中标尺100 nm [30]

Figure 5. (a) XRD pattern of Rh-Pt solid solution obtained after sintering under helium; (b) XRD pattern of Rh-Pt solid solution obtained after sintering under oxygen [31]

5. (a) 氦气下烧结后所得Rh-Pt固溶体的XRD图;(b) 氧气下烧结后所得Rh-Pt固溶体的XRD图[31]

Figure 6. (A) TEM image of the porous NixPt1-x alloy formation process (scale bar: 100 nm); (B) Schematic representation of the formation of porous NixPt1-x alloy particles by an aerosol-assisted process; (a) aerosol droplets of precursors produced by an atomization process; (b) thermal decomposition to form nucleated NixPt1-x nanoclusters; (c) particle growth and aggregation to form nanocrystals; (d) pyrolytic reduction to form porous NixPt1-x alloy nanoparticles, and (e) final porous NixPt1-x alloy particles; (C) (a) HR-TEM and (b) STEM images of porous NixPt1-x alloy; (c) Elemental mapping: all elements, Ni, Pt, and C (scale bar: 100 nm) [32]

6. (A) 多孔NixPt1-x合金形成过程的 TEM 图像(比例尺:100 nm);(B) 通过气溶胶辅助工艺形成多孔NixPt1-x合金颗粒的示意图;(a) 通过雾化工艺产生的前驱体气溶胶液滴;(b) 热分解形成成核的NixPt1-x纳米团簇;(c) 颗粒生长聚集形成纳米晶体;(d) 热解还原形成多孔NixPt1-x合金纳米颗粒;(e) 最终的多孔NixPt1-x合金颗粒;(C) (a) 多孔NixPt1-x合金的HR-TEM和(b) STEM 图像;(c) 元素图谱:所有元素、镍、铂和C (比例尺:100 nm) [32]

分解前驱体时所选择的气氛会对生成的双金属颗粒的尺寸产生很大影响。如图5所示为同一种前驱体分别在(a)氦气和(b)氧气下热分解后的所形成产物的XRD图谱。在氦气中分解得到的粉末X射线衍射图样为铑铂固溶体纳米颗粒的宽反射。反射的宽度表明金属颗粒的尺寸较小(计算的相干散射区域为2~3 nm)。而在O2中分解得到的固溶体产物的XRD图谱显示窄反射,对应于25~35 nm的颗粒。虽然尺寸差异较大,但所得产物成分比一样,这表明分解前驱体时所选择的气氛对所得产物成分比没有影响[31]

热分解可用于形成特殊多孔结构的纳米合金。如图6所示为多孔NixPt1-x纳米合金的形成过程,TEM图像和相应的示意图揭示了气溶胶装置中不同加热区获得的多孔NixPt1-x合金颗粒的结构和形态演变。首先,气溶胶前驱体在雾化后浓缩(图6(A)图6(B)-(a)),并通过热分解形成成核的NixPt1-x纳米团簇(图6(A)图6(B)-(b)),形成的NixPt1-x核聚集形成凝固的NixPt1-x合金纳米晶体(图6(A)图6(B)-(c))。随后,这些纳米晶体被热降解的有机分子(CO、CHO、CO或H2)还原成金属合金,并相互连接形成纳米粒子–碳复合材料(图6(A)图6(B)-(d))。最后,NixPt1-x合金–碳复合材料继续生长,并形成了簇状多孔网络(图6(A)图6(B)-(e))。颗粒中形成的碳框架在氮气环境中通过烧结过程(550℃,30分钟)进一步碳化实现的。图6(C)分别显示了通过HR-TEM和STEM-EDS获得的NixPt1-x合金的高分辨图像和能谱。图6(C)-(a)中的HR-TEM图像显示,在部分石墨化的碳框架(箭头所示)中形成了由初级多晶纳米晶体(点状圆圈)组成的多孔颗粒,其直径约为3~5 nm。能谱(方案1(C)-(c)也表明元素(铂、镍和碳)在整个多孔球体中均匀分布,证实了多孔NixPt1-x合金–碳复合材料的形成[32]。这种热分解制得的多孔结构纳米合金可被用于燃料电池,H2储存、气体传感器等多个领域。

2.3. 辐射分解

辐射分解法是指紫外线,γ射线,X射线等辐射源照射溶剂,通过电离辐射使分子解离,产生强还原物质,还原溶解在溶剂中的大部分金属阳离子,从而生成纳米颗粒[33]。在对两种金属的水溶液进行辐射分解时,惰性金属优先被还原,但核壳或合金纳米颗粒的形成取决于辐射分解率、两种金属的相对浓度、离子间电子转移率以及与金属离子配位的配位体的性质等[23]。溶液辐解是一种有效还原金属离子以生成单金属和双金属过渡金属簇的方法,已被广泛用于合成Ag-Au [34]、Pt-Ag [35]、Pd-Au [36]、Pt-Au [37]、Ru-Pt [38]等纳米合金。辐射分解法产物结构与溶剂性质密切相关。如图7所示为在六方介相中放射性合成的Au@Pd核壳结构,而在同样的条件下,在溶液中合成的是Pd-Au合金固溶体,在性能上,发现在六方介相中形成的核壳纳米结构表现出较好的电催化活性和高稳定性[36]。辐射分解法这种产物结构与溶剂性质的相关性,使得在应用中合成特定结构纳米颗粒成为可能。

Figure 7. High-resolution TEM images (a and b) and EDS analysis (a1-a3) of Pd-Au nanostructures formed in a hexagonal mesophase showing a number of pure Au particles (a1) and bimetallic nanostructures with Au-rich cores (a2) and outer shells formed by Pd (a3) (* Au peaks, ● Pd peaks and ▼ Br peaks). Figure 3b is an enlarged view of the selected region in Figure 3a showing the Pd-rich outer shell of the Pd-Au particles and their FFT patterns [36]

7. 在六方介相中形成的钯金纳米结构的高分辨率TEM图像(a和b)和EDS分析(a1-a3)显示了一些纯金颗粒(a1)和双金属纳米结构,其中核心富含金(a2),外壳由钯(a3)形成(* Au峰、● Pd峰和▼ Br峰)。图b是图a中所选区域的放大图,显示了Pd-Au粒子富含Pd的外壳及其FFT图样[36]

3. 纳米合金的主要应用

3.1. 催化应用

金属的特性(包括催化活性)可以通过合金化(即形成双金属固体)来改变和微调,小金属颗粒和金属簇也是如此,目前纳米合金在催化领域正吸引着大量关注[39]-[41]。在催化领域,不同相邻原子的相互影响可导致与单金属团簇不同(通常更好)的催化行为,即观察到“协同效应”。最近,Barrabés N [42]等人制备了三种不同光学活性的CoAu纳米合金,将纳米合金负载在CeO2后,研究了其在CO氧化中的催化性能,如图8所示。在较低的温度范围内,所有催化剂都表现出相同的趋势,但在175℃以上则出现了明显的差异。CoAu Acetone和DCM催化剂的活性较高,且随温度升高而增加,而CoAu Acetonitrile和Au催化剂的活性则在200℃时达到顶峰。

Figure 8. catalytic activity of nanocluster catalysts in CO oxidation [42]

8. 纳米团簇催化剂在CO氧化中的催化活性[42]

3.2. 传感应用

双金属纳米晶体,尤其是贵金属的改性和掺杂已被证明是降低传感器工作温度、增强灵敏度和提高传感器选择性的最有效方法之一[43]-[45]。如在将SnO2制作为传感器时,若使用RuCu合金纳米粒子修饰,可使得其气体灵敏度大幅提高,同时还具有一定的防潮性能和稳定性[46]。此外有研究者在室温下以胶体形式合成了不同尺寸和合金成分的多晶钯金合金NPs。研究了合成的PdAu合金纳米颗粒与氢气的相互作用,发现在金浓度为40%时,预期的滞后现象得到了抑制,这对于提高基于钯纳米颗粒的氢传感器精确度具有重要意义[47]

3.3. 生物医学应用

双金属纳米材料在生物医学应用方面也大有可为[48]-[50]。由于生物系统非常复杂,因此对生物材料的选择非常严格。所采用的材料不仅要具有生物活性和生物相容性,还要在使用后易于清除,不会产生其他有害影响。考虑到这几点,单金属纳米颗粒通常是不够的。相对而言,具有多功能特性的双金属纳米颗粒更适合生物医学应用。纳米颗粒最常用于抗菌过程、癌症治疗、成像、诊断和药物输送等。如钯–铂双金属纳米颗粒可与用于结核病检测的纸基分析设备(dnPAD)相结合,用于检测结核分枝杆菌[51]。此外,具有高原子序数(Z)元素Ru的双金属纳米酶(铜改性钌纳米颗粒,RuCu NPs)作为一种新型放射增敏剂[52],具有超敏感的过氧化物酶样活性和过氧化氢酶样活性,为放疗致敏提供了理想的解决方案。

4. 结论与展望

双金属纳米合金领域一直是世界范围内研究人员非常感兴趣的研究领域。本文综述了双金属纳米合金的一些典型且常用的制备方法,包括化学还原、热分解、辐射分解等。通过这些方法可以很容易地合成具有可控结构(壳核型、异质结构、金属间化合物或合金)、组成、尺寸和形貌的双金属纳米合金。

尽管双金属纳米合金的合成已经取得了很大的进展,但仍然存在一些科学问题,严重阻碍了这一有前途的领域的进一步发展,引起了科学家们的不懈兴趣。其中最具挑战性的问题之一是对双金属纳米晶成核和生长机理的一般理解。在实际合成中,由于合成过程中两种金属原子的运动和聚集难以检测,研究者更多关注的是实验结果,而忽视了纳米晶的成核和生长机理。然而,了解反应参数与NCs最终结构和性能之间的关系,挖掘成核和生长的机制原理,实际上是非常重要的,这可以使合成更加高效,有助于实现设计双金属NCs而不仅仅是制备NCs的目标。

另一方面,为了满足双金属纳米晶在应用中的需求,纳米晶的低成本批量生产是十分必要的。遗憾的是,尽管目前大多数方法在制备高质量和良好单分散性的双金属纳米晶方面具有强大的能力,但它们要么需要昂贵的试剂和复杂的程序,要么在实验室中只提供亚克级的样品量。因此进一步开发低成本,大批量生成纳米颗粒的方法极具研究价值。

参考文献

[1] Upadhyay, L., Dhanapandian, S., Suthakaran, S., Yadav, B., Kar, K.K. and Kumar, D. (2025) Enhancement of Supercapacitor Efficiency by Fe3+ Doping in Hydrothermally Synthesized Nio Nanoparticles. Physica B: Condensed Matter, 696, Article ID: 416608.
https://doi.org/10.1016/j.physb.2024.416608
[2] Lin, H., Song, X., Chai, O.J.H., Yao, Q., Yang, H. and Xie, J. (2024) Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. Advanced Materials, 36, Article ID: 2401002.
https://doi.org/10.1002/adma.202401002
[3] Shen, J., Wang, B., Zhang, Z., Wang, B., Liu, L., Cai, L., et al. (2024) Chemical Surface Modification for the Preparation of MgO Cladding to Enhance Magnetic Properties of Fe-Si-Nb-B-Cu Nanocrystalline Soft Magnetic Composites. Journal of Alloys and Compounds, 986, Article ID: 174111.
https://doi.org/10.1016/j.jallcom.2024.174111
[4] Wang, D., Jung, H.D., Liu, S., Chen, J., Yang, H., He, Q., et al. (2024) Revealing the Structural Evolution of CuAg Composites during Electrochemical Carbon Monoxide Reduction. Nature Communications, 15, Article No. 4692.
https://doi.org/10.1038/s41467-024-49158-4
[5] Li, R., Deng, X. and Xia, L. (2020) Non-Enzymatic Sensor for Determination of Glucose Based on PtNi Nanoparticles Decorated Graphene. Scientific Reports, 10, Article No. 16788.
https://doi.org/10.1038/s41598-020-73567-2
[6] McNamara, K. and Tofail, S.A.M. (2016) Nanoparticles in biomedical applications. Advances in Physics: X, 2, 54-88.
https://doi.org/10.1080/23746149.2016.1254570
[7] Pramadewandaru, R.K., Lee, Y.W. and Hong, J.W. (2023) Synergistic Effect of Bimetallic Pd-Pt Nanocrystals for Highly Efficient Methanol Oxidation Electrocatalysts. RSC Advances, 13, 27046-27053.
https://doi.org/10.1039/d3ra04837c
[8] Roy Chowdhury, S., Ghosh, S. and Bhattachrya, S.K. (2017) Enhanced and Synergistic Catalysis of One-Pot Synthesized Palladium-Nickel Alloy Nanoparticles for Anodic Oxidation of Methanol in Alkali. Electrochimica Acta, 250, 124-134.
https://doi.org/10.1016/j.electacta.2017.08.050
[9] Boeva, O., Kudinova, E., Vorakso, I., Zhavoronkova, K. and Antonov, A. (2022) Bimetallic Gold-Copper Nanoparticles in the Catalytic Reaction of Deuterium-Hydrogen Exchange: A Synergistic Effect. International Journal of Hydrogen Energy, 47, 4759-4765.
https://doi.org/10.1016/j.ijhydene.2021.11.078
[10] Wang, D. and Li, Y. (2010) One-pot Protocol for Au-Based Hybrid Magnetic Nanostructures via a Noble-Metal-Induced Reduction Process. Journal of the American Chemical Society, 132, 6280-6281.
https://doi.org/10.1021/ja100845v
[11] Ashraf, S., Liu, Y., Wei, H., Shen, R., Zhang, H., Wu, X., et al. (2023) Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. Small, 19, Article ID: 2303031.
https://doi.org/10.1002/smll.202303031
[12] Chen, D., Li, C., Liu, H., Ye, F. and Yang, J. (2015) Core-Shell Au@Pd Nanoparticles with Enhanced Catalytic Activity for Oxygen Reduction Reaction via Core-Shell Au@ag/pd Constructions. Scientific Reports, 5, Article No. 11949.
https://doi.org/10.1038/srep11949
[13] Khelfane, H., Andreazza-Vignolle, C., Ramos, A.Y., Penuelas, J., Sauvage, T. and Andreazza, P. (2022) Out-of-Equilibrium Supported Pt-Co Core-Shell Nanoparticles Stabilized by Kinetic Trapping at Room Temperature. The European Physical Journal Applied Physics, 97, Article No. 56.
https://doi.org/10.1051/epjap/2022220027
[14] Chen, Y., Lu, Z., Cao, Y., Sun, M. and Dong, J. (2022) Polarization and Incident Angle-Dependent Plasmonic Coupling of Au@Ag Nanoalloys. Chinese Journal of Physics, 78, 132-140.
https://doi.org/10.1016/j.cjph.2022.05.009
[15] Lim, B., Kobayashi, H., Yu, T., Wang, J., Kim, M.J., Li, Z., et al. (2010) Synthesis of Pd-Au Bimetallic Nanocrystals via Controlled Overgrowth. Journal of the American Chemical Society, 132, 2506-2507.
https://doi.org/10.1021/ja909787h
[16] Guo, W., Li, G., Bai, C., Liu, Q., Chen, F. and Chen, R. (2024) General Synthesis and Atomic Arrangement Identification of Ordered Bi-Pd Intermetallics with Tunable Electrocatalytic CO2 Reduction Selectivity. Nature Communications, 15, Article No. 1573.
https://doi.org/10.1038/s41467-024-46072-7
[17] He, R., Wang, Y., Wang, X., Wang, Z., Liu, G., Zhou, W., et al. (2014) Facile Synthesis of Pentacle Gold-Copper Alloy Nanocrystals and Their Plasmonic and Catalytic Properties. Nature Communications, 5, Article No. 4327.
https://doi.org/10.1038/ncomms5327
[18] Qi, X., Bustillo, K.C. and Kauzlarich, S.M. (2023) Atomic-Scale in Situ Observation of Electron Beam and Heat Induced Crystallization of Ge Nanoparticles and Transformation of Ag@Ge Core-Shell Nanocrystals. The Journal of Chemical Physics, 158, Article ID: 164704.
https://doi.org/10.1063/5.0144742
[19] Chung, P., Yang, A., Zhou, C., Oh, J., Homer, M., Lizandara-Pueyo, C., et al. (2024) Aqueous-phase Synthesis of Pt and PGM-Based Nanocrystals with a Controllable Size. Crystal Growth & Design, 24, 10413-10422.
https://doi.org/10.1021/acs.cgd.4c01416
[20] Ma, W., Zhang, G., Zhang, P. and Fu, Z. (2022) Ag-Pd Bimetallic Hollow Nanostructures with Tunable Compositions and Structures for the Reduction of 4-Nitrophenol. Journal of Alloys and Compounds, 925, Article ID: 166689.
https://doi.org/10.1016/j.jallcom.2022.166689
[21] Zhang, Q., Kusada, K. and Kitagawa, H. (2021) Phase Control of Noble Monometallic and Alloy Nanomaterials by Chemical Reduction Methods. ChemPlusChem, 86, 504-519.
https://doi.org/10.1002/cplu.202000782
[22] Shubin, Y., Plyusnin, P., Sharafutdinov, M., Makotchenko, E. and Korenev, S. (2017) Successful Synthesis and Thermal Stability of Immiscible Metal Au-Rh, Au-Ir Andau-Ir-Rh Nanoalloys. Nanotechnology, 28, Article ID: 205302.
https://doi.org/10.1088/1361-6528/aa6bc9
[23] Grand, J., Ferreira, S.R., de Waele, V., Mintova, S. and Nenoff, T.M. (2018) Nanoparticle Alloy Formation by Radiolysis. The Journal of Physical Chemistry C, 122, 12573-12588.
https://doi.org/10.1021/acs.jpcc.8b01878
[24] Moreira Da Silva, C., Amara, H., Fossard, F., Girard, A., Loiseau, A. and Huc, V. (2022) Colloidal Synthesis of Nanoparticles: From Bimetallic to High Entropy Alloys. Nanoscale, 14, 9832-9841.
https://doi.org/10.1039/d2nr02478k
[25] Wojtaszek, K., Cebula, F., Rutkowski, B., Wytrwal, M., Csapó, E. and Wojnicki, M. (2023) Synthesis and Catalytic Study of NiAg Bimetallic Core-Shell Nanoparticles. Materials, 16, Article 659.
https://doi.org/10.3390/ma16020659
[26] Fernández-Lodeiro, A., Lodeiro, J.F., Losada-Garcia, N., Nuti, S., Capelo-Martinez, J.L., Palomo, J.M., et al. (2023) Copper(I) as a Reducing Agent for the Synthesis of Bimetallic PtCu Catalytic Nanoparticles. Nanoscale Advances, 5, 4415-4423.
https://doi.org/10.1039/d3na00158j
[27] Cong, Y., Wang, H., Meng, F., Dou, D., Meng, X., Zhao, Q., et al. (2022) One-Pot Synthesis of NiPt Core-Shell Nanoparticles toward Efficient Oxygen Reduction Reaction. Journal of Solid State Electrochemistry, 26, 1381-1388.
https://doi.org/10.1007/s10008-022-05175-1
[28] Plyusnin, P.E., Shubin, Y.V. and Korenev, S.V. (2022) Synthesis, Structure, and Thermal Properties of Double Complex Salts as Precursors of Nanoalloys of Immiscible Metals. Journal of Structural Chemistry, 63, 353-377.
https://doi.org/10.1134/s0022476622030040
[29] Zadesenets, A., Filatov, E., Plyusnin, P., Baidina, I., Dalezky, V., Shubin, Y., et al. (2011) Bimetallic Single-Source Precursors [M(NH3)4][Co(C2O4)2(H2O)2]∙2H2O (M = Pd, Pt) for the One Run Synthesis of CoPd and CoPt Magnetic Nanoalloys. Polyhedron, 30, 1305-1312.
https://doi.org/10.1016/j.poly.2011.02.012
[30] Robinson, I., Zacchini, S., Tung, L.D., Maenosono, S. and Thanh, N.T.K. (2009) Synthesis and Characterization of Magnetic Nanoalloys from Bimetallic Carbonyl Clusters. Chemistry of Materials, 21, 3021-3026.
https://doi.org/10.1021/cm9008442
[31] Vasilchenko, D., Topchiyan, P., Baidina, I., Korolkov, I., Filatov, E., Zvereva, V., et al. (2020) Double Complex Salts Containing [Pt(NO3)6]2 Anion and Rh(III) Complex Cations: Synthesis, Structure and Utilisation for Preparing (Rh-Pt)/CeO2 Catalysts. Journal of Molecular Structure, 1211, Article ID: 128108.
https://doi.org/10.1016/j.molstruc.2020.128108
[32] Sohn, H., Xiao, Q., Seubsai, A., Ye, Y., Lee, J., Han, H., et al. (2019) Thermally Robust Porous Bimetallic (NixPt1–x) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions. ACS Applied Materials & Interfaces, 11, 21435-21444.
https://doi.org/10.1021/acsami.8b21661
[33] Čubová, K. and Čuba, V. (2019) Synthesis of Inorganic Nanoparticles by Ionizing Radiation—A Review. Radiation Physics and Chemistry, 158, 153-164.
https://doi.org/10.1016/j.radphyschem.2019.02.022
[34] Zhang, J., Worley, J., Dénommée, S., Kingston, C., Jakubek, Z.J., Deslandes, Y., et al. (2003) Synthesis of Metal Alloy Nanoparticles in Solution by Laser Irradiation of a Metal Powder Suspension. The Journal of Physical Chemistry B, 107, 6920-6923.
https://doi.org/10.1021/jp027269k
[35] Lahiri, D., Chattopadhyay, S., Bunker, B.A., et al. (2008) EXAFS Studies of Bimetallic Ag-Pt and Ag-Pd Nanorods. Physica Scripta, 2005, Article 776.
[36] Ksar, F., Ramos, L., Keita, B., Nadjo, L., Beaunier, P. and Remita, H. (2009) Bimetallic Palladium-Gold Nanostructures: Application in Ethanol Oxidation. Chemistry of Materials, 21, 3677-3683.
https://doi.org/10.1021/cm901364w
[37] Remita, H., Lampre, I., Mostafavi, M., Balanzat, E. and Bouffard, S. (2005) Comparative Study of Metal Clusters Induced in Aqueous Solutions by γ-Rays, Electron or C6+ Ion Beam Irradiation. Radiation Physics and Chemistry, 72, 575-586.
https://doi.org/10.1016/j.radphyschem.2004.03.042
[38] Kageyama, S., Seino, S., Nakagawa, T., Nitani, H., Ueno, K., Daimon, H., et al. (2011) Formation of PtRu Alloy Nanoparticle Catalyst by Radiolytic Process Assisted by Addition of Dl-Tartaric Acid and Its Enhanced Methanol Oxidation Activity. Journal of Nanoparticle Research, 13, 5275-5287.
https://doi.org/10.1007/s11051-011-0513-x
[39] Li, H., Pi, X., Ni ,W., et al. (2024) Current Status and Progress of PtCo Alloy Electrocatalysts in Fuel Cell Oxygen Reduction Reaction Catalysis. Rare Metal Materials and Engineering, 53, 2987-3000.
[40] Duan, J., Zhao, Y., Zhai, Z., Chen, S. and Zhang, B. (2024) Decoration of Pt-Ni Alloy on Molten Salt Etched Halloysite Nanotubes for Enhanced Catalytic Reduction of 4-Nitrophenol. Separations, 11, Article 305.
https://doi.org/10.3390/separations11110305
[41] Zhang, T., Zheng, P., Gao, J., Han, Z., Gu, F., Xu, W., et al. (2024) Self-Dispersed Bimetallic Niru Nanoparticles on CeO2 for CO2 Methanation. Chemical Engineering Journal, 481, Article ID: 148548.
https://doi.org/10.1016/j.cej.2024.148548
[42] Barrabés, N., Ostolaza, J., Reindl, S., Mähr, M., Schrenk, F., Drexler, H., et al. (2023) Doped Metal Clusters as Bimetallic Auco Nanocatalysts: Insights into Structural Dynamics and Correlation with Catalytic Activity by in Situ Spectroscopy. Faraday Discussions, 242, 94-105.
https://doi.org/10.1039/d2fd00120a
[43] Van Tran, T., Kim, D., Duc Le, T., Oh, G., Shin, G. and Yu, Y. (2024) Alloy Core Composition Effect of Pd-Augr-alloy@ZnO Core-Shell Nanoparticles on Hydrogen Gas Sensing Performance. Chemical Engineering Journal, 483, Article ID: 149050.
https://doi.org/10.1016/j.cej.2024.149050
[44] Zeng, J., Yang, Y., Lei, X., Deng, J., Hu, N. and Yang, J. (2024) Tuning Co/Ni Ratio in Co-Ni Bimetallic Hybrid for Electrochemical Detection of Glucose. Chemosensors, 12, Article 38.
https://doi.org/10.3390/chemosensors12030038
[45] Wang, S., Xiong, Y., Wang, X., Liu, W., Tian, J., Wu, N., et al. (2022) Surface-wrinkled Sno2 Hollow Microspheres Decorated with Auag Bimetallic Nanoparticles for Triethylamine Detection. Powder Technology, 404, 117457.
https://doi.org/10.1016/j.powtec.2022.117457
[46] Wang, C., Bai, J., Wang, H., Li, Y., Li, Y., Liu, F., et al. (2022) Enhanced N-Pentanol Sensing Performance by RuCu Alloy Nanoparticles Decorated Sno2 Nanoclusters. Sensors and Actuators B: Chemical, 351, Article ID: 130900.
https://doi.org/10.1016/j.snb.2021.130900
[47] Lerch, S., Stolaś, A., Darmadi, I., Wen, X., Strach, M., Langhammer, C., et al. (2021) Robust Colloidal Synthesis of Palladium-Gold Alloy Nanoparticles for Hydrogen Sensing. ACS Applied Materials & Interfaces, 13, 45758-45767.
https://doi.org/10.1021/acsami.1c15315
[48] Rubio-Ruiz, B., Pérez-López, A.M., Uson, L., Ortega-Liebana, M.C., Valero, T., Arruebo, M., et al. (2023) In Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys: Overcoming Intracellular Deactivation. Nano Letters, 23, 804-811.
https://doi.org/10.1021/acs.nanolett.2c03593
[49] Amendola, V. (2024) Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2024. SPIE—International Society for Optics and Photonics.
[50] de Faria, C.M.G., Bissoli, M., Vago, R., Spinelli, A.E. and Amendola, V. (2023) Cytotoxicity of PeG-Coated Gold and Gold-Iron Alloy Nanoparticles: ROS or Ferroptosis? Nanomaterials, 13, Article 3044.
https://doi.org/10.3390/nano13233044
[51] Tung, C., Tsai, T., Chiu, P., Viter, R., Ramanavičius, A., Yu, C., et al. (2024) Diagnosis of Mycobacterium tuberculosis Using Palladium-Platinum Bimetallic Nanoparticles Combined with Paper-Based Analytical Devices. Nanoscale, 16, 5988-5998.
https://doi.org/10.1039/d3nr05508f
[52] Hu, B., Xiao, X., Chen, P., Qian, J., Yuan, G., Ye, Y., et al. (2022) Enhancing Anti-Tumor Effect of Ultrasensitive Bimetallic RuCu Nanoparticles as Radiosensitizers with Dual Enzyme-Like Activities. Biomaterials, 290, Article ID: 121811.
https://doi.org/10.1016/j.biomaterials.2022.121811