[1]
|
Upadhyay, L., Dhanapandian, S., Suthakaran, S., Yadav, B., Kar, K.K. and Kumar, D. (2025) Enhancement of Supercapacitor Efficiency by Fe3+ Doping in Hydrothermally Synthesized Nio Nanoparticles. Physica B: Condensed Matter, 696, Article ID: 416608. https://doi.org/10.1016/j.physb.2024.416608
|
[2]
|
Lin, H., Song, X., Chai, O.J.H., Yao, Q., Yang, H. and Xie, J. (2024) Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. Advanced Materials, 36, Article ID: 2401002. https://doi.org/10.1002/adma.202401002
|
[3]
|
Shen, J., Wang, B., Zhang, Z., Wang, B., Liu, L., Cai, L., et al. (2024) Chemical Surface Modification for the Preparation of MgO Cladding to Enhance Magnetic Properties of Fe-Si-Nb-B-Cu Nanocrystalline Soft Magnetic Composites. Journal of Alloys and Compounds, 986, Article ID: 174111. https://doi.org/10.1016/j.jallcom.2024.174111
|
[4]
|
Wang, D., Jung, H.D., Liu, S., Chen, J., Yang, H., He, Q., et al. (2024) Revealing the Structural Evolution of CuAg Composites during Electrochemical Carbon Monoxide Reduction. Nature Communications, 15, Article No. 4692. https://doi.org/10.1038/s41467-024-49158-4
|
[5]
|
Li, R., Deng, X. and Xia, L. (2020) Non-Enzymatic Sensor for Determination of Glucose Based on PtNi Nanoparticles Decorated Graphene. Scientific Reports, 10, Article No. 16788. https://doi.org/10.1038/s41598-020-73567-2
|
[6]
|
McNamara, K. and Tofail, S.A.M. (2016) Nanoparticles in biomedical applications. Advances in Physics: X, 2, 54-88. https://doi.org/10.1080/23746149.2016.1254570
|
[7]
|
Pramadewandaru, R.K., Lee, Y.W. and Hong, J.W. (2023) Synergistic Effect of Bimetallic Pd-Pt Nanocrystals for Highly Efficient Methanol Oxidation Electrocatalysts. RSC Advances, 13, 27046-27053. https://doi.org/10.1039/d3ra04837c
|
[8]
|
Roy Chowdhury, S., Ghosh, S. and Bhattachrya, S.K. (2017) Enhanced and Synergistic Catalysis of One-Pot Synthesized Palladium-Nickel Alloy Nanoparticles for Anodic Oxidation of Methanol in Alkali. Electrochimica Acta, 250, 124-134. https://doi.org/10.1016/j.electacta.2017.08.050
|
[9]
|
Boeva, O., Kudinova, E., Vorakso, I., Zhavoronkova, K. and Antonov, A. (2022) Bimetallic Gold-Copper Nanoparticles in the Catalytic Reaction of Deuterium-Hydrogen Exchange: A Synergistic Effect. International Journal of Hydrogen Energy, 47, 4759-4765. https://doi.org/10.1016/j.ijhydene.2021.11.078
|
[10]
|
Wang, D. and Li, Y. (2010) One-pot Protocol for Au-Based Hybrid Magnetic Nanostructures via a Noble-Metal-Induced Reduction Process. Journal of the American Chemical Society, 132, 6280-6281. https://doi.org/10.1021/ja100845v
|
[11]
|
Ashraf, S., Liu, Y., Wei, H., Shen, R., Zhang, H., Wu, X., et al. (2023) Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. Small, 19, Article ID: 2303031. https://doi.org/10.1002/smll.202303031
|
[12]
|
Chen, D., Li, C., Liu, H., Ye, F. and Yang, J. (2015) Core-Shell Au@Pd Nanoparticles with Enhanced Catalytic Activity for Oxygen Reduction Reaction via Core-Shell Au@ag/pd Constructions. Scientific Reports, 5, Article No. 11949. https://doi.org/10.1038/srep11949
|
[13]
|
Khelfane, H., Andreazza-Vignolle, C., Ramos, A.Y., Penuelas, J., Sauvage, T. and Andreazza, P. (2022) Out-of-Equilibrium Supported Pt-Co Core-Shell Nanoparticles Stabilized by Kinetic Trapping at Room Temperature. The European Physical Journal Applied Physics, 97, Article No. 56. https://doi.org/10.1051/epjap/2022220027
|
[14]
|
Chen, Y., Lu, Z., Cao, Y., Sun, M. and Dong, J. (2022) Polarization and Incident Angle-Dependent Plasmonic Coupling of Au@Ag Nanoalloys. Chinese Journal of Physics, 78, 132-140. https://doi.org/10.1016/j.cjph.2022.05.009
|
[15]
|
Lim, B., Kobayashi, H., Yu, T., Wang, J., Kim, M.J., Li, Z., et al. (2010) Synthesis of Pd-Au Bimetallic Nanocrystals via Controlled Overgrowth. Journal of the American Chemical Society, 132, 2506-2507. https://doi.org/10.1021/ja909787h
|
[16]
|
Guo, W., Li, G., Bai, C., Liu, Q., Chen, F. and Chen, R. (2024) General Synthesis and Atomic Arrangement Identification of Ordered Bi-Pd Intermetallics with Tunable Electrocatalytic CO2 Reduction Selectivity. Nature Communications, 15, Article No. 1573. https://doi.org/10.1038/s41467-024-46072-7
|
[17]
|
He, R., Wang, Y., Wang, X., Wang, Z., Liu, G., Zhou, W., et al. (2014) Facile Synthesis of Pentacle Gold-Copper Alloy Nanocrystals and Their Plasmonic and Catalytic Properties. Nature Communications, 5, Article No. 4327. https://doi.org/10.1038/ncomms5327
|
[18]
|
Qi, X., Bustillo, K.C. and Kauzlarich, S.M. (2023) Atomic-Scale in Situ Observation of Electron Beam and Heat Induced Crystallization of Ge Nanoparticles and Transformation of Ag@Ge Core-Shell Nanocrystals. The Journal of Chemical Physics, 158, Article ID: 164704. https://doi.org/10.1063/5.0144742
|
[19]
|
Chung, P., Yang, A., Zhou, C., Oh, J., Homer, M., Lizandara-Pueyo, C., et al. (2024) Aqueous-phase Synthesis of Pt and PGM-Based Nanocrystals with a Controllable Size. Crystal Growth & Design, 24, 10413-10422. https://doi.org/10.1021/acs.cgd.4c01416
|
[20]
|
Ma, W., Zhang, G., Zhang, P. and Fu, Z. (2022) Ag-Pd Bimetallic Hollow Nanostructures with Tunable Compositions and Structures for the Reduction of 4-Nitrophenol. Journal of Alloys and Compounds, 925, Article ID: 166689. https://doi.org/10.1016/j.jallcom.2022.166689
|
[21]
|
Zhang, Q., Kusada, K. and Kitagawa, H. (2021) Phase Control of Noble Monometallic and Alloy Nanomaterials by Chemical Reduction Methods. ChemPlusChem, 86, 504-519. https://doi.org/10.1002/cplu.202000782
|
[22]
|
Shubin, Y., Plyusnin, P., Sharafutdinov, M., Makotchenko, E. and Korenev, S. (2017) Successful Synthesis and Thermal Stability of Immiscible Metal Au-Rh, Au-Ir Andau-Ir-Rh Nanoalloys. Nanotechnology, 28, Article ID: 205302. https://doi.org/10.1088/1361-6528/aa6bc9
|
[23]
|
Grand, J., Ferreira, S.R., de Waele, V., Mintova, S. and Nenoff, T.M. (2018) Nanoparticle Alloy Formation by Radiolysis. The Journal of Physical Chemistry C, 122, 12573-12588. https://doi.org/10.1021/acs.jpcc.8b01878
|
[24]
|
Moreira Da Silva, C., Amara, H., Fossard, F., Girard, A., Loiseau, A. and Huc, V. (2022) Colloidal Synthesis of Nanoparticles: From Bimetallic to High Entropy Alloys. Nanoscale, 14, 9832-9841. https://doi.org/10.1039/d2nr02478k
|
[25]
|
Wojtaszek, K., Cebula, F., Rutkowski, B., Wytrwal, M., Csapó, E. and Wojnicki, M. (2023) Synthesis and Catalytic Study of NiAg Bimetallic Core-Shell Nanoparticles. Materials, 16, Article 659. https://doi.org/10.3390/ma16020659
|
[26]
|
Fernández-Lodeiro, A., Lodeiro, J.F., Losada-Garcia, N., Nuti, S., Capelo-Martinez, J.L., Palomo, J.M., et al. (2023) Copper(I) as a Reducing Agent for the Synthesis of Bimetallic PtCu Catalytic Nanoparticles. Nanoscale Advances, 5, 4415-4423. https://doi.org/10.1039/d3na00158j
|
[27]
|
Cong, Y., Wang, H., Meng, F., Dou, D., Meng, X., Zhao, Q., et al. (2022) One-Pot Synthesis of NiPt Core-Shell Nanoparticles toward Efficient Oxygen Reduction Reaction. Journal of Solid State Electrochemistry, 26, 1381-1388. https://doi.org/10.1007/s10008-022-05175-1
|
[28]
|
Plyusnin, P.E., Shubin, Y.V. and Korenev, S.V. (2022) Synthesis, Structure, and Thermal Properties of Double Complex Salts as Precursors of Nanoalloys of Immiscible Metals. Journal of Structural Chemistry, 63, 353-377. https://doi.org/10.1134/s0022476622030040
|
[29]
|
Zadesenets, A., Filatov, E., Plyusnin, P., Baidina, I., Dalezky, V., Shubin, Y., et al. (2011) Bimetallic Single-Source Precursors [M(NH3)4][Co(C2O4)2(H2O)2]∙2H2O (M = Pd, Pt) for the One Run Synthesis of CoPd and CoPt Magnetic Nanoalloys. Polyhedron, 30, 1305-1312. https://doi.org/10.1016/j.poly.2011.02.012
|
[30]
|
Robinson, I., Zacchini, S., Tung, L.D., Maenosono, S. and Thanh, N.T.K. (2009) Synthesis and Characterization of Magnetic Nanoalloys from Bimetallic Carbonyl Clusters. Chemistry of Materials, 21, 3021-3026. https://doi.org/10.1021/cm9008442
|
[31]
|
Vasilchenko, D., Topchiyan, P., Baidina, I., Korolkov, I., Filatov, E., Zvereva, V., et al. (2020) Double Complex Salts Containing [Pt(NO3)6]2− Anion and Rh(III) Complex Cations: Synthesis, Structure and Utilisation for Preparing (Rh-Pt)/CeO2 Catalysts. Journal of Molecular Structure, 1211, Article ID: 128108. https://doi.org/10.1016/j.molstruc.2020.128108
|
[32]
|
Sohn, H., Xiao, Q., Seubsai, A., Ye, Y., Lee, J., Han, H., et al. (2019) Thermally Robust Porous Bimetallic (NixPt1–x) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions. ACS Applied Materials & Interfaces, 11, 21435-21444. https://doi.org/10.1021/acsami.8b21661
|
[33]
|
Čubová, K. and Čuba, V. (2019) Synthesis of Inorganic Nanoparticles by Ionizing Radiation—A Review. Radiation Physics and Chemistry, 158, 153-164. https://doi.org/10.1016/j.radphyschem.2019.02.022
|
[34]
|
Zhang, J., Worley, J., Dénommée, S., Kingston, C., Jakubek, Z.J., Deslandes, Y., et al. (2003) Synthesis of Metal Alloy Nanoparticles in Solution by Laser Irradiation of a Metal Powder Suspension. The Journal of Physical Chemistry B, 107, 6920-6923. https://doi.org/10.1021/jp027269k
|
[35]
|
Lahiri, D., Chattopadhyay, S., Bunker, B.A., et al. (2008) EXAFS Studies of Bimetallic Ag-Pt and Ag-Pd Nanorods. Physica Scripta, 2005, Article 776.
|
[36]
|
Ksar, F., Ramos, L., Keita, B., Nadjo, L., Beaunier, P. and Remita, H. (2009) Bimetallic Palladium-Gold Nanostructures: Application in Ethanol Oxidation. Chemistry of Materials, 21, 3677-3683. https://doi.org/10.1021/cm901364w
|
[37]
|
Remita, H., Lampre, I., Mostafavi, M., Balanzat, E. and Bouffard, S. (2005) Comparative Study of Metal Clusters Induced in Aqueous Solutions by γ-Rays, Electron or C6+ Ion Beam Irradiation. Radiation Physics and Chemistry, 72, 575-586. https://doi.org/10.1016/j.radphyschem.2004.03.042
|
[38]
|
Kageyama, S., Seino, S., Nakagawa, T., Nitani, H., Ueno, K., Daimon, H., et al. (2011) Formation of PtRu Alloy Nanoparticle Catalyst by Radiolytic Process Assisted by Addition of Dl-Tartaric Acid and Its Enhanced Methanol Oxidation Activity. Journal of Nanoparticle Research, 13, 5275-5287. https://doi.org/10.1007/s11051-011-0513-x
|
[39]
|
Li, H., Pi, X., Ni ,W., et al. (2024) Current Status and Progress of PtCo Alloy Electrocatalysts in Fuel Cell Oxygen Reduction Reaction Catalysis. Rare Metal Materials and Engineering, 53, 2987-3000.
|
[40]
|
Duan, J., Zhao, Y., Zhai, Z., Chen, S. and Zhang, B. (2024) Decoration of Pt-Ni Alloy on Molten Salt Etched Halloysite Nanotubes for Enhanced Catalytic Reduction of 4-Nitrophenol. Separations, 11, Article 305. https://doi.org/10.3390/separations11110305
|
[41]
|
Zhang, T., Zheng, P., Gao, J., Han, Z., Gu, F., Xu, W., et al. (2024) Self-Dispersed Bimetallic Niru Nanoparticles on CeO2 for CO2 Methanation. Chemical Engineering Journal, 481, Article ID: 148548. https://doi.org/10.1016/j.cej.2024.148548
|
[42]
|
Barrabés, N., Ostolaza, J., Reindl, S., Mähr, M., Schrenk, F., Drexler, H., et al. (2023) Doped Metal Clusters as Bimetallic Auco Nanocatalysts: Insights into Structural Dynamics and Correlation with Catalytic Activity by in Situ Spectroscopy. Faraday Discussions, 242, 94-105. https://doi.org/10.1039/d2fd00120a
|
[43]
|
Van Tran, T., Kim, D., Duc Le, T., Oh, G., Shin, G. and Yu, Y. (2024) Alloy Core Composition Effect of Pd-Augr-alloy@ZnO Core-Shell Nanoparticles on Hydrogen Gas Sensing Performance. Chemical Engineering Journal, 483, Article ID: 149050. https://doi.org/10.1016/j.cej.2024.149050
|
[44]
|
Zeng, J., Yang, Y., Lei, X., Deng, J., Hu, N. and Yang, J. (2024) Tuning Co/Ni Ratio in Co-Ni Bimetallic Hybrid for Electrochemical Detection of Glucose. Chemosensors, 12, Article 38. https://doi.org/10.3390/chemosensors12030038
|
[45]
|
Wang, S., Xiong, Y., Wang, X., Liu, W., Tian, J., Wu, N., et al. (2022) Surface-wrinkled Sno2 Hollow Microspheres Decorated with Auag Bimetallic Nanoparticles for Triethylamine Detection. Powder Technology, 404, 117457. https://doi.org/10.1016/j.powtec.2022.117457
|
[46]
|
Wang, C., Bai, J., Wang, H., Li, Y., Li, Y., Liu, F., et al. (2022) Enhanced N-Pentanol Sensing Performance by RuCu Alloy Nanoparticles Decorated Sno2 Nanoclusters. Sensors and Actuators B: Chemical, 351, Article ID: 130900. https://doi.org/10.1016/j.snb.2021.130900
|
[47]
|
Lerch, S., Stolaś, A., Darmadi, I., Wen, X., Strach, M., Langhammer, C., et al. (2021) Robust Colloidal Synthesis of Palladium-Gold Alloy Nanoparticles for Hydrogen Sensing. ACS Applied Materials & Interfaces, 13, 45758-45767. https://doi.org/10.1021/acsami.1c15315
|
[48]
|
Rubio-Ruiz, B., Pérez-López, A.M., Uson, L., Ortega-Liebana, M.C., Valero, T., Arruebo, M., et al. (2023) In Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys: Overcoming Intracellular Deactivation. Nano Letters, 23, 804-811. https://doi.org/10.1021/acs.nanolett.2c03593
|
[49]
|
Amendola, V. (2024) Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2024. SPIE—International Society for Optics and Photonics.
|
[50]
|
de Faria, C.M.G., Bissoli, M., Vago, R., Spinelli, A.E. and Amendola, V. (2023) Cytotoxicity of PeG-Coated Gold and Gold-Iron Alloy Nanoparticles: ROS or Ferroptosis? Nanomaterials, 13, Article 3044. https://doi.org/10.3390/nano13233044
|
[51]
|
Tung, C., Tsai, T., Chiu, P., Viter, R., Ramanavičius, A., Yu, C., et al. (2024) Diagnosis of Mycobacterium tuberculosis Using Palladium-Platinum Bimetallic Nanoparticles Combined with Paper-Based Analytical Devices. Nanoscale, 16, 5988-5998. https://doi.org/10.1039/d3nr05508f
|
[52]
|
Hu, B., Xiao, X., Chen, P., Qian, J., Yuan, G., Ye, Y., et al. (2022) Enhancing Anti-Tumor Effect of Ultrasensitive Bimetallic RuCu Nanoparticles as Radiosensitizers with Dual Enzyme-Like Activities. Biomaterials, 290, Article ID: 121811. https://doi.org/10.1016/j.biomaterials.2022.121811
|