[1]
|
Liang, K., Zhao, C., Song, C., Zhao, L., Qiu, P., Wang, S., et al. (2022) In situ Biomimetic Mineralization of Bone-Like Hydroxyapatite in Hydrogel for the Acceleration of Bone Regeneration. ACS Applied Materials & Interfaces, 15, 292-308. https://doi.org/10.1021/acsami.2c16217
|
[2]
|
Zhou, B., Jiang, X., Zhou, X., Tan, W., Luo, H., Lei, S., et al. (2023) GelMA-Based Bioactive Hydrogel Scaffolds with Multiple Bone Defect Repair Functions: Therapeutic Strategies and Recent Advances. Biomaterials Research, 27, Article 86. https://doi.org/10.1186/s40824-023-00422-6
|
[3]
|
Zhang, X., Liu, W., Liu, J., Hu, Y. and Dai, H. (2021) Poly-ε-Caprolactone/Whitlockite Electrospun Bionic Membrane with an Osteogenic-Angiogenic Coupling Effect for Periosteal Regeneration. ACS Biomaterials Science & Engineering, 7, 3321-3331. https://doi.org/10.1021/acsbiomaterials.1c00426
|
[4]
|
Qian, F., Huang, Z., Liu, W., Liu, Y. and He, X. (2023) Functional β‐TCP/MnO2/PCL Artificial Periosteum Promoting Osteogenic Differentiation of BMSCs by Reducing Locally Reactive Oxygen Species Level. Journal of Biomedical Materials Research Part A, 111, 1678-1691. https://doi.org/10.1002/jbm.a.37576
|
[5]
|
Wang, J., Chen, G., Chen, Z.M., Wang, F.P. and Xia, B. (2022) Current Strategies in Biomaterial-Based Periosteum Scaffolds to Promote Bone Regeneration: A Review. Journal of Biomaterials Applications, 37, 1259-1270. https://doi.org/10.1177/08853282221135095
|
[6]
|
Li, Q., Liu, W., Hou, W., Wu, X., Wei, W., Liu, J., et al. (2023) Micropatterned Photothermal Double-Layer Periosteum with Angiogenesis-Neurogenesis Coupling Effect for Bone Regeneration. Materials Today Bio, 18, Article 100536. https://doi.org/10.1016/j.mtbio.2022.100536
|
[7]
|
Wu, L., Gu, Y., Liu, L., Tang, J., Mao, J., Xi, K., et al. (2020) Hierarchical Micro/Nanofibrous Membranes of Sustained Releasing VEGF for Periosteal Regeneration. Biomaterials, 227, Article 119555. https://doi.org/10.1016/j.biomaterials.2019.119555
|
[8]
|
Yang, Y., Rao, J., Liu, H., Dong, Z., Zhang, Z., Bei, H., et al. (2022) Biomimicking Design of Artificial Periosteum for Promoting Bone Healing. Journal of Orthopaedic Translation, 36, 18-32. https://doi.org/10.1016/j.jot.2022.05.013
|
[9]
|
Wu, J., Yao, M., Zhang, Y., Lin, Z., Zou, W., Li, J., et al. (2021) Biomimetic Three-Layered Membranes Comprising (Poly)-ε-Caprolactone, Collagen and Mineralized Collagen for Guided Bone Regeneration. Regenerative Biomaterials, 8, rbab065. https://doi.org/10.1093/rb/rbab065
|
[10]
|
Song, H., Puri, A., Lee, J., Park, H., Ra, D., Kim, G., et al. (2002) Spontaneous Bone Regeneration in Surgically Induced Bone Defects in Young Rabbits. Journal of Pediatric Orthopaedics B, 11, 343-349. https://doi.org/10.1097/01202412-200210000-00014
|
[11]
|
Liu, Z., Nan, H., Chiou, Y.S., Zhan, Z., Lobie, P.E. and Hu, C. (2022) Selective Formation of Osteogenic and Vasculogenic Tissues for Cartilage Regeneration. Advanced Healthcare Materials, 12, Article ID: 2202008. https://doi.org/10.1002/adhm.202202008
|
[12]
|
Gupta, S., Teotia, A.K., Qayoom, I., Shiekh, P.A., Andrabi, S.M. and Kumar, A. (2021) Periosteum-Mimicking Tissue-Engineered Composite for Treating Periosteum Damage in Critical-Sized Bone Defects. Biomacromolecules, 22, 3237-3250. https://doi.org/10.1021/acs.biomac.1c00319
|
[13]
|
Zhang, J., Huang, Y., Wang, Y., Xu, J., Huang, T. and Luo, X. (2023) Construction of Biomimetic Cell-Sheet-Engineered Periosteum with a Double Cell Sheet to Repair Calvarial Defects of Rats. Journal of Orthopaedic Translation, 38, 1-11. https://doi.org/10.1016/j.jot.2022.09.005
|
[14]
|
Ma, Z., Guo, K., Chen, L., Chen, X., Zou, D. and Yang, C. (2023) Role of Periosteum in Alveolar Bone Regeneration Comparing with Collagen Membrane in a Buccal Dehiscence Model of Dogs. Scientific Reports, 13, Article No. 2505. https://doi.org/10.1038/s41598-023-28779-7
|
[15]
|
Yang, Y., Xu, T., Zhang, Q., Piao, Y., Bei, H.P. and Zhao, X. (2021) Biomimetic, Stiff, and Adhesive Periosteum with Osteogenic-Angiogenic Coupling Effect for Bone Regeneration. Small, 17, Article ID: 2006598. https://doi.org/10.1002/smll.202006598
|
[16]
|
Liu, H., Shi, Y., Zhu, Y., Wu, P., Deng, Z., Dong, Q., et al. (2023) Bioinspired Piezoelectric Periosteum to Augment Bone Regeneration via Synergistic Immunomodulation and Osteogenesis. ACS Applied Materials & Interfaces, 15, 12273-12293. https://doi.org/10.1021/acsami.2c19767
|
[17]
|
Zhang, W., Wang, N., Yang, M., Sun, T., Zhang, J., Zhao, Y., et al. (2022) Periosteum and Development of the Tissue-Engineered Periosteum for Guided Bone Regeneration. Journal of Orthopaedic Translation, 33, 41-54. https://doi.org/10.1016/j.jot.2022.01.002
|
[18]
|
Li, J., He, D., Hu, L., Li, S., Zhang, C., Yin, X., et al. (2023) Decellularized Periosteum Promotes Guided Bone Regeneration via Manipulation of Macrophage Polarization. Biotechnology Journal, 18, Article ID: 2300094. https://doi.org/10.1002/biot.202300094
|
[19]
|
Chen, K., Lin, X., Zhang, Q., Ni, J., Li, J., Xiao, J., et al. (2015) Decellularized Periosteum as a Potential Biologic Scaffold for Bone Tissue Engineering. Acta Biomaterialia, 19, 46-55. https://doi.org/10.1016/j.actbio.2015.02.020
|
[20]
|
Zhu, G., Zhou, Y., Xu, Y., Wang, L., Han, M., Xi, K., et al. (2023) Functionalized Acellular Periosteum Guides Stem Cell Homing to Promote Bone Defect Repair. Journal of Biomaterials Science, Polymer Edition, 34, 2000-2020. https://doi.org/10.1080/09205063.2023.2204779
|
[21]
|
Li, S., Deng, R., Forouzanfar, T., Wu, G., Quan, D. and Zhou, M. (2022) Decellularized Periosteum-Derived Hydrogels Promote the Proliferation, Migration and Osteogenic Differentiation of Human Umbilical Cord Mesenchymal Stem Cells. Gels, 8, Article 294. https://doi.org/10.3390/gels8050294
|
[22]
|
Rapp, S.J., Jones, D.C., Gerety, P. and Taylor, J.A. (2012) Repairing Critical-Sized Rat Calvarial Defects with Progenitor Cell-Seeded Acellular Periosteum: A Novel Biomimetic Scaffold. Surgery, 152, 595-605.E1. https://doi.org/10.1016/j.surg.2012.07.019
|
[23]
|
Manon, J., Evrard, R., Fievé, L., Bouzin, C., Magnin, D., Xhema, D., et al. (2023) A New Osteogenic Membrane to Enhance Bone Healing: At the Crossroads between the Periosteum, the Induced Membrane, and the Diamond Concept. Bioengineering, 10, Article 143. https://doi.org/10.3390/bioengineering10020143
|
[24]
|
Liu, Y., Ming, L., Luo, H., Liu, W., Zhang, Y., Liu, H., et al. (2013) Integration of a Calcined Bovine Bone and BMSC-Sheet 3D Scaffold and the Promotion of Bone Regeneration in Large Defects. Biomaterials, 34, 9998-10006. https://doi.org/10.1016/j.biomaterials.2013.09.040
|
[25]
|
Qi, Y., Niu, L., Zhao, T., Shi, Z., Di, T., Feng, G., et al. (2015) Combining Mesenchymal Stem Cell Sheets with Platelet-Rich Plasma Gel/Calcium Phosphate Particles: A Novel Strategy to Promote Bone Regeneration. Stem Cell Research & Therapy, 6, Article No. 256. https://doi.org/10.1186/s13287-015-0256-1
|
[26]
|
Xie, Q., Wang, Z., Huang, Y., Bi, X., Zhou, H., Lin, M., et al. (2015) Characterization of Human Ethmoid Sinus Mucosa Derived Mesenchymal Stem Cells (hESMSCs) and the Application of hESMSCs Cell Sheets in Bone Regeneration. Biomaterials, 66, 67-82. https://doi.org/10.1016/j.biomaterials.2015.07.013
|
[27]
|
Fu, T., Chen, W., Wang, Y., Chang, C., Lin, T. and Wong, C. (2023) Biomimetic Vascularized Adipose-Derived Mesenchymal Stem Cells Bone-Periosteum Graft Enhances Angiogenesis and Osteogenesis in a Male Rabbit Spine Fusion Model. Bone & Joint Research, 12, 722-733. https://doi.org/10.1302/2046-3758.1212.bjr-2023-0013.r1
|
[28]
|
Liu, C., Lou, Y., Sun, Z., Ma, H., Sun, M., Li, S., et al. (2023) 4D Printing of Personalized‐tunable Biomimetic Periosteum with Anisotropic Microstructure for Accelerated Vascularization and Bone Healing. Advanced Healthcare Materials, 12, Article ID: 2202868. https://doi.org/10.1002/adhm.202202868
|
[29]
|
Yu, Y., Wang, Y., Zhang, W., Wang, H., Li, J., Pan, L., et al. (2020) Biomimetic Periosteum-Bone Substitute Composed of Preosteoblast-Derived Matrix and Hydrogel for Large Segmental Bone Defect Repair. Acta Biomaterialia, 113, 317-327. https://doi.org/10.1016/j.actbio.2020.06.030
|
[30]
|
Nan, J., Liu, W., Zhang, K., Sun, Y., Hu, Y. and Lei, P. (2022) Tantalum and Magnesium Nanoparticles Enhance the Biomimetic Properties and Osteo-Angiogenic Effects of PCL Membranes. Frontiers in Bioengineering and Biotechnology, 10, Article 1038250. https://doi.org/10.3389/fbioe.2022.1038250
|
[31]
|
Su, Y., Ye, B., Zeng, L., Xiong, Z., Sun, T., Chen, K., et al. (2022) Small Intestinal Submucosa Biomimetic Periosteum Promotes Bone Regeneration. Membranes, 12, Article 719. https://doi.org/10.3390/membranes12070719
|
[32]
|
Sun, H., Shang, Y., Guo, J., Maihemuti, A., Shen, S., Shi, Y., et al. (2023) Artificial Periosteum with Oriented Surface Nanotopography and High Tissue Adherent Property. ACS Applied Materials & Interfaces, 15, 45549-45560. https://doi.org/10.1021/acsami.3c07561
|
[33]
|
Yang, Z., Yang, Z., Ding, L., Zhang, P., Liu, C., Chen, D., et al. (2022) Self-Adhesive Hydrogel Biomimetic Periosteum to Promote Critical-Size Bone Defect Repair via Synergistic Osteogenesis and Angiogenesis. ACS Applied Materials & Interfaces, 14, 36395-36410. https://doi.org/10.1021/acsami.2c08400
|
[34]
|
Shakeri, H., Haghbin Nazarpak, M., Imani, R. and Tayebi, L. (2023) Poly (l-Lactic Acid)-Based Modified Nanofibrous Membrane with Dual Drug Release Capability for GBR Application. International Journal of Biological Macromolecules, 231, Article 123201. https://doi.org/10.1016/j.ijbiomac.2023.123201
|
[35]
|
Halperin‐Sternfeld, M., Pokhojaev, A., Ghosh, M., Rachmiel, D., Kannan, R., Grinberg, I., et al. (2022) Immunomodulatory Fibrous Hyaluronic Acid‐Fmoc‐Diphenylalanine‐Based Hydrogel Induces Bone Regeneration. Journal of Clinical Periodontology, 50, 200-219. https://doi.org/10.1111/jcpe.13725
|
[36]
|
Sun, H., Dong, J., Wang, Y., Shen, S., Shi, Y., Zhang, L., et al. (2021) Polydopamine-Coated Poly(l-Lactide) Nanofibers with Controlled Release of VEGF and BMP-2 as a Regenerative Periosteum. ACS Biomaterials Science & Engineering, 7, 4883-4897. https://doi.org/10.1021/acsbiomaterials.1c00246
|
[37]
|
He, X., Liu, W., Liu, Y., Zhang, K., Sun, Y., Lei, P., et al. (2022) Nano Artificial Periosteum PLGA/MgO/Quercetin Accelerates Repair of Bone Defects through Promoting Osteogenic-Angiogenic Coupling Effect via Wnt/β-Catenin Pathway. Materials Today Bio, 16, Article 100348. https://doi.org/10.1016/j.mtbio.2022.100348
|
[38]
|
Wan, Q., Jiao, K., Ma, Y., Gao, B., Mu, Z., Wang, Y., et al. (2022) Smart, Biomimetic Periosteum Created from the Cerium (III, IV) Oxide-Mineralized Eggshell Membrane. ACS Applied Materials & Interfaces, 14, 14103-14119. https://doi.org/10.1021/acsami.2c02079
|
[39]
|
Liu, P., Qiu, T., Liu, J., Long, X., Wang, X., Nie, H., et al. (2023) Mechanically Enhanced and Osteobioactive Synthetic Periosteum via Development of Poly(ε-Caprolactone)/Microtantalum Composite. Colloids and Surfaces B: Biointerfaces, 231, Article 113537. https://doi.org/10.1016/j.colsurfb.2023.113537
|
[40]
|
Sun, Y., Liu, T., Hu, H., Xiong, Z., Zhang, K., He, X., et al. (2022) Differential Effect of Tantalum Nanoparticles versus Tantalum Micron Particles on Immune Regulation. Materials Today Bio, 16, Article 100340. https://doi.org/10.1016/j.mtbio.2022.100340
|
[41]
|
Liu, W., Zhang, K., Nan, J., Lei, P., Sun, Y. and Hu, Y. (2023) Nano Artificial Periosteum PCL/Ta/ZnO Accelerates Repair of Periosteum via Antibacterial, Promoting Vascularization and Osteogenesis. Biomaterials Advances, 154, Article 213624. https://doi.org/10.1016/j.bioadv.2023.213624
|