[1]
|
王雁, 赵堪兴. 波前像差与临床视觉矫正[M]. 北京: 人民卫生出版社, 2011.
|
[2]
|
Chalita, M. (2004) Wavefront Analysis in Post-Lasik Eyes and Its Correlation with Visual Symptoms, Refraction, and Topography. Ophthalmology, 111, 447-453. https://doi.org/10.1016/j.ophtha.2003.06.022
|
[3]
|
孙平, 马晓蓉, 王秀敏, 等. 波前像差引导的LASIK术治疗近视的临床观察[J]. 实用临床医药杂志, 2010, 14(13): 136-137.
|
[4]
|
刘苏冰, 王丽娅, 聂晓丽, 等. 波前像差引导的准分子激光原位角膜磨镶术后视觉质量评价[J]. 华中科技大学学报(医学版), 2009, 38(2): 269-272.
|
[5]
|
Thibos, L.N. (2000) Principles of Hartmann-Snack Aberrometry. Journal of Refractive Surgery, 16, S563-S565. https://doi.org/10.3928/1081-597x-20000901-14
|
[6]
|
刘明娜, 史伟云, 高华等. FS-LASIK与SMILE术后角膜高阶像差变化比较[J]. 中华实验眼科杂志, 2023, 41(8): 755-762.
|
[7]
|
Moreno-Barriuso, E., Lloves, J.M., Marcos, S., et al. (2001) Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-Induced Changes Measured with Laser Ray Tracing. Investigative Ophthalmology & Visual Science, 42, 1396-1403.
|
[8]
|
Feng, Z., Wang, Q., Du, C., Yang, F. and Li, X. (2021) High-Order Aberration Changes after Femtosecond LASIK Surgery in Patients with High Myopia. Annals of Palliative Medicine, 10, 7689-7696. https://doi.org/10.21037/apm-21-1677
|
[9]
|
Mrochen, M., Kaemmerer, M. and Seiler, T. (2001) Clinical Results of Wavefront-Guided Laser in Situ Keratomileusis 3 Months after Surgery. Journal of Cataract and Refractive Surgery, 27, 201-207. https://doi.org/10.1016/s0886-3350(00)00827-0
|
[10]
|
Machat, J.J. (2002) The Reduction of Spherical Aberration with Wavefront Guided LASIK Using the Wavelight Allegretto Wave Excimer Laser. Investigative Ophthalmology & Visual Science, 43, 4153.
|
[11]
|
李婧媛, 李淑琴, 万婧. 波前像差引导FS-LASIK治疗近视合并不同程度散光的临床疗效研究[J]. 海南医学, 2023, 34(20): 2954-2958.
|
[12]
|
王雁, 徐路路. 进一步提高屈光手术患者的视觉质量[J]. 眼科, 2014, 23(3): 145-148.
|
[13]
|
袁牧之, 林颖, 张霞, 等. 波前像差引导的LASIK手术与传统LASIK手术的疗效对比研究[J]. 海南医学院学报, 2013, 19(11): 1589-1591.
|
[14]
|
Al-Zeraid, F.M. and Osuagwu, U.L. (2016) Induced Higher-Order Aberrations after Laser in Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism. BMC Ophthalmology, 16, Article No. 29.
|
[15]
|
崔敏, 周奇志. 波前像差引导的飞秒激光LASIK手术矫正高度近视的效果[J]. 国际眼科杂志, 2013, 13(11): 2287-2289.
|
[16]
|
李羽, 汪思瑶, 郭玉娟, 等. 飞秒激光LASIK术后视觉质量的研究进展[J]. 医药论坛杂志, 2023, 44(24): 108-112+129.
|
[17]
|
Durán, J.A., Gutiérrez, E., Atienza, R. and Piñero, D.P. (2017) Vector Analysis of Astigmatic Changes and Optical Quality Outcomes after Wavefront-Guided Laser in Situ Keratomileusis Using a High-Resolution Aberrometer. Journal of Cataract and Refractive Surgery, 43, 1515-1522. https://doi.org/10.1016/j.jcrs.2017.08.020
|
[18]
|
周传清, 任秋实. 人眼波面象差与超视力的研究与应用[J]. 激光与光电子学进展, 2007(4): 26-34.
|
[19]
|
Mäntyjärvi, M. and Laitinen, T. (2001) Normal Values for the Pelli-Robson Contrast Sensitivity Test. Journal of Cataract and Refractive Surgery, 27, 261-266. https://doi.org/10.1016/s0886-3350(00)00562-9
|
[20]
|
Margolis, M.K., Coyne, K., Kennedy-Martin, T., Baker, T., Schein, O. and Revicki, D.A. (2002) Vision-Specific Instruments for the Assessment of Health-Related Quality of Life and Visual Functioning. PharmacoEconomics, 20, 791-812. https://doi.org/10.2165/00019053-200220120-00001
|
[21]
|
Kim, H. and Joo, C. (2005) Visual Quality after Wavefront-Guided LASIK for Myopia. Journal of Korean Medical Science, 20, 860-865. https://doi.org/10.3346/jkms.2005.20.5.860
|
[22]
|
Waring, G.O. and Rocha, K.M. (2018) Characterization of the Dysfunctional Lens Syndrome and a Review of the Literature. Current Ophthalmology Reports, 6, 249-255. https://doi.org/10.1007/s40135-018-0190-3
|
[23]
|
俞晓宇, 丁锡霞, 李璋亮, 等. 年龄相关性白内障患者视觉质量与其晶状体区域密度的相关性[J]. 国际眼科杂志, 2017, 17(1): 6-10.
|
[24]
|
Kawamorita, T. and Uozato, H. (2005) Modulation Transfer Function and Pupil Size in Multifocal and Monofocal Intraocular Lenses in Vitro. Journal of Cataract and Refractive Surgery, 31, 2379-2385. https://doi.org/10.1016/j.jcrs.2005.10.024
|
[25]
|
Charman, W.N. (2005) Wavefront Technology: Past, Present and Future. Contact Lens and Anterior Eye, 28, 75-92. https://doi.org/10.1016/j.clae.2005.02.003
|
[26]
|
Ottevaere, H. and Thienpont, H. (2005) Optical Microlenses. In: Guenther, R.D., Eds., Encyclopedia of Modern Optics, Elsevier, 21-43. https://doi.org/10.1016/b0-12-369395-0/00923-4
|
[27]
|
田海燕, 王彬, 霍建新. LASIK术后高阶像差对视觉质量影响的研究进展[J]. 现代生物医学展, 2014, 14(17): 3393-3395.
|
[28]
|
Chiang, B. and Manche, E.E. (2023) Comparison of Subjective Visual Experiences and Ocular Symptoms after Wavefront-Guided and Wavefront-Optimized LASIK in a Prospective Fellow Eye Study. American Journal of Ophthalmology, 251, 165-172. https://doi.org/10.1016/j.ajo.2023.02.018
|
[29]
|
Zhang, K., Fang, X., Zhang, Y. and Chao, M. (2020) Comparison of Q-Value-Guided Laser-Assisted in Situ Keratomileusis and Standard Laser in Situ Keratomileusis for Myopia. Medicine, 99, e21563. https://doi.org/10.1097/md.0000000000021563
|
[30]
|
Pasquali, T. and Krueger, R. (2012) Topography-Guided Laser Refractive Surgery. Current Opinion in Ophthalmology, 23, 264-268. https://doi.org/10.1097/icu.0b013e328354adf0
|
[31]
|
Binder, P.S. and Charlton, K.H. (1992) Surgical Procedures Performed after Refractive Surgery. Journal of Refractive Surgery, 8, 61-74. https://doi.org/10.3928/1081-597x-19920101-14
|
[32]
|
Szczotka-Flynn, L.B., Maguire, M.G., Ying, G., Lin, M.C., Bunya, V.Y., Dana, R., et al. (2019) Impact of Dry Eye on Visual Acuity and Contrast Sensitivity: Dry Eye Assessment and Management Study. Optometry and Vision Science, 96, 387-396. https://doi.org/10.1097/opx.0000000000001387
|
[33]
|
Netto, M.V., Mohan, R.R., Ambr??sio, R., Hutcheon, A.E.K., Zieske, J.D. and Wilson, S.E. (2005) Wound Healing in the Cornea: A Review of Refractive Surgery Complications and New Prospects for Therapy. Cornea, 24, 509-522. https://doi.org/10.1097/01.ico.0000151544.23360.17
|
[34]
|
Chen, Q., Li, M., Yuan, Y., Me, R., Yu, Y., Shi, G., et al. (2017) Effects of Tear Film Lipid Layer Thickness and Blinking Pattern on Tear Film Instability after Corneal Refractive Surgery. Cornea, 36, 810-815. https://doi.org/10.1097/ico.0000000000001207
|
[35]
|
Ang, M., Gatinel, D., Reinstein, D.Z., Mertens, E., Alió del Barrio, J.L. and Alió, J.L. (2020) Refractive Surgery beyond 2020. Eye, 35, 362-382. https://doi.org/10.1038/s41433-020-1096-5
|
[36]
|
Vacalebre, M., Frison, R., Corsaro, C., Neri, F., Conoci, S., Anastasi, E., et al. (2022) Advanced Optical Wavefront Technologies to Improve Patient Quality of Vision and Meet Clinical Requests. Polymers, 14, Article No. 5321. https://doi.org/10.3390/polym14235321
|
[37]
|
Cui, T., Wang, Y., Ji, S., Li, Y., Hao, W., Zou, H., et al. (2020) Applying Machine Learning Techniques in Nomogram Prediction and Analysis for SMILE Treatment. American Journal of Ophthalmology, 210, 71-77. https://doi.org/10.1016/j.ajo.2019.10.015
|
[38]
|
Li, J., Dai, Y., Mu, Z., Wang, Z., Meng, J., Meng, T., et al. (2024) Choice of Refractive Surgery Types for Myopia Assisted by Machine Learning Based on Doctors’ Surgical Selection Data. BMC Medical Informatics and Decision Making, 24, Article No. 41. https://doi.org/10.1186/s12911-024-02451-0
|
[39]
|
Achiron, A., Gur, Z., Aviv, U., Hilely, A., Mimouni, M., Karmona, L., et al. (2017) Predicting Refractive Surgery Outcome: Machine Learning Approach with Big Data. Journal of Refractive Surgery, 33, 592-597. https://doi.org/10.3928/1081597x-20170616-03
|
[40]
|
Jayadev, C. and Shetty, R. (2020) Artificial Intelligence in Laser Refractive Surgery—Potential and Promise! Indian Journal of Ophthalmology, 68, 2650-2651. https://doi.org/10.4103/ijo.ijo_3304_20
|
[41]
|
Burns, S.A., Elsner, A.E., Sapoznik, K.A., Warner, R.L. and Gast, T.J. (2019) Adaptive Optics Imaging of the Human Retina. Progress in Retinal and Eye Research, 68, 1-30. https://doi.org/10.1016/j.preteyeres.2018.08.002
|
[42]
|
Ambrósio Jr, R. (2020) Multimodal Imaging for Refractive Surgery: Quo Vadis? Indian Journal of Ophthalmology, 68, 2647-2649. https://doi.org/10.4103/0301-4738.301283
|
[43]
|
Shohani, J.B., Hajimahmoodzadeh, M. and Fallah, H. (2023) Using a Deep Learning Algorithm in Image-Based Wavefront Sensing: Determining the Optimum Number of Zernike Terms. Optics Continuum, 2, 632-645. https://doi.org/10.1364/optcon.485330
|