[1]
|
Bao, T., Damtie, M.M., Yu, Z.M., Liu, Y., Jin, J., Wu, K., et al. (2019) Green Synthesis of Fe3O4@Carbon Filter Media for Simultaneous Phosphate Recovery and Nitrogen Removal from Domestic Wastewater in Biological Aerated Filters. ACS Sustainable Chemistry & Engineering, 7, 16698-16709. https://doi.org/10.1021/acssuschemeng.9b04119
|
[2]
|
Duan, X., Zhao, Y. and Zhang, J. (2020) Characteristics of the Root Exudate Release System of Typical Plants in Plateau Lakeside Wetland under Phosphorus Stress Conditions. Open Chemistry, 18, 808-821. https://doi.org/10.1515/chem-2020-0059
|
[3]
|
Barbaux, Y., Dekiouk, M., Le Maguer, D., Gengembre, L., Huchette, D. and Grimblot, J. (1992) Bulk and Surface Analysis of a Fe-P-O Oxydehydrogenation Catalyst. Applied Catalysis A: General, 90, 51-60. https://doi.org/10.1016/0926-860x(92)80247-a
|
[4]
|
Carrillo, V., Castillo, R., Magrí, A., Holzapfel, E. and Vidal, G. (2024) Phosphorus Recovery from Domestic Wastewater: A Review of the Institutional Framework. Journal of Environmental Management, 351, Article ID: 119812. https://doi.org/10.1016/j.jenvman.2023.119812
|
[5]
|
Wang, S., Huang, Y., Wu, Q., Yao, W., Lu, Y., Huang, B., et al. (2023) A Review of the Application of Iron Oxides for Phosphorus Removal and Recovery from Wastewater. Critical Reviews in Environmental Science and Technology, 54, 405-423. https://doi.org/10.1080/10643389.2023.2242227
|
[6]
|
Blanco, C., González, F., Pesquera, C., Benito, I., Mendioroz, S. and Pajares, J.A. (1989) Differences between One Aluminic Palygorskite and Another Magnesic by Infrared Spectroscopy. Spectroscopy Letters, 22, 659-673. https://doi.org/10.1080/00387018908053926
|
[7]
|
Chahi, A., Petit, S. and Decarreau, A. (2002) Infrared Evidence of Dioctahedral-Trioctahedral Site Occupancy in Palygorskite. Clays and Clay Minerals, 50, 306-313. https://doi.org/10.1346/00098600260358067
|
[8]
|
Chen, H., Zhao, Y. and Wang, A. (2007) Removal of Cu(II) from Aqueous Solution by Adsorption onto Acid-Activated Palygorskite. Journal of Hazardous Materials, 149, 346-354. https://doi.org/10.1016/j.jhazmat.2007.03.085
|
[9]
|
Cheng, H., Yang, J., Frost, R.L. and Wu, Z. (2011) Infrared Transmission and Emission Spectroscopic Study of Selected Chinese Palygorskites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83, 518-524. https://doi.org/10.1016/j.saa.2011.08.077
|
[10]
|
Fang, D., Huang, L., Fang, Z., Zhang, Q., Shen, Q., Li, Y., et al. (2018) Evaluation of Porous Calcium Silicate Hydrate Derived from Carbide Slag for Removing Phosphate from Wastewater. Chemical Engineering Journal, 354, 1-11. https://doi.org/10.1016/j.cej.2018.08.001
|
[11]
|
Gan, F., Zhou, J., Wang, H., Du, C. and Chen, X. (2009) Removal of Phosphate from Aqueous Solution by Thermally Treated Natural Palygorskite. Water Research, 43, 2907-2915. https://doi.org/10.1016/j.watres.2009.03.051
|
[12]
|
Goscianska, J., Ptaszkowska-Koniarz, M., Frankowski, M., Franus, M., Panek, R. and Franus, W. (2018) Removal of Phosphate from Water by Lanthanum-Modified Zeolites Obtained from Fly Ash. Journal of Colloid and Interface Science, 513, 72-81. https://doi.org/10.1016/j.jcis.2017.11.003
|
[13]
|
Gajewska, M. and Kasprzyk, M. (2017) Preliminary Results from Application Phoslock® to Remove Phosphorus Compounds from Wastewater. Journal of Ecological Engineering, 18, 82-89. https://doi.org/10.12911/22998993/74275
|
[14]
|
Dai, F., Wen, M., Wang, J., Jiang, W., Tian, X., Dong, Y., et al. (2018) Preparation and Properties of CA/ATP-g-CDs Gel Fibers for Simultaneous Detection and Adsorption of Methylene Blue. RSC Advances, 8, 22577-22582. https://doi.org/10.1039/c8ra01324a
|
[15]
|
Yin, H. and Kong, M. (2014) Simultaneous Removal of Ammonium and Phosphate from Eutrophic Waters Using Natural Calcium-Rich Attapulgite-Based Versatile Adsorbent. Desalination, 351, 128-137. https://doi.org/10.1016/j.desal.2014.07.029
|
[16]
|
Liu, S., Zhao, S., Fan, F., Zhang, B. and Wang, S. (2022) Magnetically Separable and Recyclable Lanthanum/Iron Co-Modified Attapulgite: A Sustainable Option to Efficiently Control Phosphate Loading. Journal of Cleaner Production, 348, Article ID: 131294. https://doi.org/10.1016/j.jclepro.2022.131294
|
[17]
|
Zhang, C., Wang, X., Wang, X. and Liu, B. (2022) Characterization of La-Mg-Modified Palygorskite and Its Adsorption of Phosphate. Journal of Environmental Chemical Engineering, 10, Article ID: 107658. https://doi.org/10.1016/j.jece.2022.107658
|
[18]
|
干方群, 周健民, 王火焰, 等. 不同浓度酸改性对凹凸棒石黏土磷吸附性能的影响[J]. 土壤学报, 2010, 47(2): 319-324.
|
[19]
|
闫洁. 碱改性凹凸棒对土壤重金属的钝化效果与研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2017.
|
[20]
|
李燕. 凹凸棒土改性及其脱氮除磷效率和机理研究[D]: [硕士学位论文]. 雅安: 四川农业大学, 2016.
|
[21]
|
房百惠. 改性凹凸棒土钝化城市污泥重金属及其环境安全性评价[D]: [硕士学位论文]. 济南: 齐鲁工业大学, 2021.
|
[22]
|
柏文博. 盐改性凹凸棒黏土吸附剂的吸附性能研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2020.
|
[23]
|
Yang, X., Chen, J., Wu, X. and Zhu, G. (2024) Toward a Better Understanding of Polymeric Aluminum‐Modified Attapulgite for the Efficient Removal of Low Phosphorus Concentration. Water Environment Research, 96, e11122. https://doi.org/10.1002/wer.11122
|
[24]
|
李迎春, 董良飞, 仝驰, 等. 稀土改性凹凸棒土对低浓度磷的吸附性能[J]. 环境工程学报, 2021, 15(10): 3214-3222.
|
[25]
|
Yin, H., Yang, P., Kong, M. and Li, W. (2020) Preparation of the Lanthanum-Aluminum-Amended Attapulgite Composite as a Novel Inactivation Material to Immobilize Phosphorus in Lake Sediment. Environmental Science & Technology, 54, 11602-11610. https://doi.org/10.1021/acs.est.0c03277
|
[26]
|
李秀玲, 莫焱玲, 关虹, 等. 锆-铈@凹凸棒土复合吸附剂的制备及其除磷性能试验研究[J]. 湿法冶金, 2022, 41(5): 444-451.
|
[27]
|
李文翠. 凹凸棒土改性条件的探究及对污水中重金属离子的去除研究[D]: [硕士学位论文]. 沈阳: 沈阳师范大学, 2018.
|
[28]
|
孔豪. 镧改性凹凸棒土-壳聚糖复合材料的制备及除磷性能研究[D]: [硕士学位论文]. 北京: 中国农业科学院, 2023.
|
[29]
|
Deng, C., Xue, J. and Wu, Y. (2022) Using Magnetite/Zirconium-Comodified Attapulgite as a Novel Phosphorus (P) Sorbent for the Efficient Removal of P and the Adsorption Mechanism Allowing This Effect. Applied Water Science, 13, Article No. 12. https://doi.org/10.1007/s13201-022-01821-1
|
[30]
|
Xu, C., Feng, Y., Li, H., Yang, Y. and Wu, R. (2023) Adsorption and Immobilization of Phosphorus from Eutrophic Seawater and Sediment Using Attapulgite—Behavior and Mechanism. Chemosphere, 313, Article ID: 137390. https://doi.org/10.1016/j.chemosphere.2022.137390
|
[31]
|
Baile, W., Fang, L., Fortner, J.D., et al. (2017) Highly Efficient and Selective Phosphate Removal from Wastewater by Magnetically Recoverable La(OH)3/Fe3O4 Nanocomposites. Water Research, 126, 179-188.
|
[32]
|
Pan, Z., Zeng, B., Shen, L., Teng, J., Lai, T., Zhao, L., et al. (2024) Innovative Treatment of Industrial Effluents through Combining Ferric Iron and Attapulgite Application. Chemosphere, 358, Article ID: 142132. https://doi.org/10.1016/j.chemosphere.2024.142132
|
[33]
|
Song, Y., Yuan, P., Wei, Y., Liu, D., Tian, Q., Zhou, J., et al. (2019) Constructing Hierarchically Porous Nestlike Al2O3-MnO2@Diatomite Composite with High Specific Surface Area for Efficient Phosphate Removal. Industrial & Engineering Chemistry Research, 58, 23166-23174. https://doi.org/10.1021/acs.iecr.9b05574
|
[34]
|
Lv, N., Li, X., Qi, X. and Ren, Y. (2022) Calcium-Modified Granular Attapulgite Removed Phosphorus from Synthetic Wastewater Containing Low-Strength Phosphorus. Chemosphere, 296, Article ID: 133898. https://doi.org/10.1016/j.chemosphere.2022.133898
|
[35]
|
Wang, H., Wang, X. and Zhao, J. (2019) Application of MgO-Modified Palygorskite for Nutrient Recovery from Swine Wastewater: Effect of Ph, Ions, and Organic Acids. Environmental Science and Pollution Research, 26, 19729-19737. https://doi.org/10.1007/s11356-019-05254-3
|
[36]
|
Kong, H., Li, Q., Zheng, X., Chen, P., Zhang, G. and Huang, Z. (2023) Lanthanum Modified Chitosan-Attapulgite Composite for Phosphate Removal from Water: Performance, Mechanisms and Applicability. International Journal of Biological Macromolecules, 224, 984-997. https://doi.org/10.1016/j.ijbiomac.2022.10.183
|
[37]
|
Kong, H., Wang, J., Zhang, G., Shen, F., Li, Q. and Huang, Z. (2023) Synthesis of Three-Dimensional Porous Lanthanum Modified Attapulgite Chitosan Hydrogel Bead for Phosphate Removal: Performance, Mechanism, Cost-Benefit Analysis. Separation and Purification Technology, 320, Article ID: 124098. https://doi.org/10.1016/j.seppur.2023.124098
|