|
[1]
|
Robinson, N.J. and Winge, D.R. (2010) Copper Metallochaperones. Annual Review of Biochemistry, 79, 537-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ruiz, L.M., Libedinsky, A. and Elorza, A.A. (2021) Role of Copper on Mitochondrial Function and Metabolism. Frontiers in Molecular Biosciences, 8, Article 711227. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Acín-Pérez, R., Fernández-Silva, P., Peleato, M.L., Pérez-Martos, A. and Enriquez, J.A. (2008) Respiratory Active Mitochondrial Supercomplexes. Molecular Cell, 32, 529-539. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Weihl, C.C. and Lopate, G. (2006) Motor Neuron Disease Associated with Copper Deficiency. Muscle & Nerve, 34, 789-793. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Su, T.A., Shihadih, D.S., Cao, W., Detomasi, T.C., Heffern, M.C., Jia, S., et al. (2018) A Modular Ionophore Platform for Liver-Directed Copper Supplementation in Cells and Animals. Journal of the American Chemical Society, 140, 13764-13774. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Uauy, R., Olivares, M. and Gonzalez, M. (1998) Essentiality of Copper in Humans. The American Journal of Clinical Nutrition, 67, 952S-959S. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Olivares, R.W.I., Postma, G.C., Schapira, A., Iglesias, D.E., Valdez, L.B., Breininger, E., et al. (2018) Biochemical and Morphological Alterations in Hearts of Copper-Deficient Bovines. Biological Trace Element Research, 189, 447-455. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Stabel, J.R. and Spears, J.W. (1989) Effect of Copper on Immune Function and Disease Resistance. In: Kies, C., Ed., Copper Bioavailability and Metabolism, Springer, 243-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cendrowska-Pinkosz, M., Ostrowska-Lesko, M., Ognik, K., Krauze, M., Juskiewicz, J., Dabrowska, A., et al. (2022) Dietary Copper Deficiency Leads to Changes in Gene Expression Indicating an Increased Demand for NADH in the Prefrontal Cortex of the Rat’s Brain. International Journal of Molecular Sciences, 23, Article 6706. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ge, E.J., et al. (2022) Connecting Copper and Cancer: From Transition Metal Signalling to Metalloplasia. Nature Reviews Cancer, 22, 102-113.
|
|
[11]
|
Jouybari, L., Kiani, F., Islami, F., Sanagoo, A., Sayehmiri, F., Hosnedlova, B., et al. (2020) Copper Concentrations in Breast Cancer: A Systematic Review and Meta-Analysis. Current Medicinal Chemistry, 27, 6373-6383. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ressnerova, A., Raudenska, M., Holubova, M., Svobodova, M., Polanska, H., Babula, P., et al. (2016) Zinc and Copper Homeostasis in Head and Neck Cancer: Review and Meta-analysis. Current Medicinal Chemistry, 23, 1304-1330. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lukanović, D., Herzog, M., Kobal, B. and Černe, K. (2020) The Contribution of Copper Efflux Transporters ATP7A and ATP7B to Chemoresistance and Personalized Medicine in Ovarian Cancer. Biomedicine & Pharmacotherapy, 129, Article ID: 110401. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Díez, M., Cerdà, F.J., Arroyo, M. and Balibrea, J.L. (1989) Use of the Copper/Zinc Ratio in the Diagnosis of Lung Cancer. Cancer, 63, 726-730. [Google Scholar] [CrossRef]
|
|
[15]
|
Jin, Y., Zhang, C., Xu, H., Xue, S., Wang, Y., Hou, Y., et al. (2011) Combined Effects of Serum Trace Metals and Polymorphisms of CYP1A1 or GSTM1 on Non-Small Cell Lung Cancer: A Hospital Based Case-Control Study in China. Cancer Epidemiology, 35, 182-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Oyama, T., Matsuno, K., Kawamoto, T., Mitsudomi, T., Shirakusa, T. and Kodama, Y. (1994) Efficiency of Serum Copper/Zinc Ratio for Differential Diagnosis of Patients with and without Lung Cancer. Biological Trace Element Research, 42, 115-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Saleh, S.A.K., Adly, H.M., Abdelkhaliq, A.A. and Nassir, A.M. (2020) Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Current Urology, 14, 44-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Baltaci, A.K., Dundar, T.K., Aksoy, F. and Mogulkoc, R. (2016) Changes in the Serum Levels of Trace Elements before and after the Operation in Thyroid Cancer Patients. Biological Trace Element Research, 175, 57-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cobine, P.A. and Brady, D.C. (2022) Cuproptosis: Cellular and Molecular Mechanisms Underlying Copper-Induced Cell Death. Molecular Cell, 82, 1786-1787. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tsvetkov, P., Detappe, A., Cai, K., Keys, H.R., Brune, Z., Ying, W., et al. (2019) Mitochondrial Metabolism Promotes Adaptation to Proteotoxic Stress. Nature Chemical Biology, 15, 681-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Oliveri, V. (2020) Biomedical Applications of Copper Ionophores. Coordination Chemistry Reviews, 422, Article ID: 213474. [Google Scholar] [CrossRef]
|
|
[22]
|
Hunsaker, E.W. and Franz, K.J. (2019) Emerging Opportunities to Manipulate Metal Trafficking for Therapeutic Benefit. Inorganic Chemistry, 58, 13528-13545. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Graham, R.E., Elliott, R.J.R., Munro, A.F. and Carragher, N.O. (2023) A Cautionary Note on the Use of N-Acetylcysteine as a Reactive Oxygen Species Antagonist to Assess Copper Mediated Cell Death. PLOS ONE, 18, e0294297. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Morikawa, T., Yasuno, R. and Wada, H. (2001) Do Mammalian Cells Synthesize Lipoic Acid? Identification of a Mouse cDNA Encoding a Lipoic Acid Synthase Located in Mitochondria. FEBS Letters, 498, 16-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Schonauer, M.S., Kastaniotis, A.J., Kursu, V.A.S., Hiltunen, J.K. and Dieckmann, C.L. (2009) Lipoic Acid Synthesis and Attachment in Yeast Mitochondria. Journal of Biological Chemistry, 284, 23234-23242. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Solmonson, A. and DeBerardinis, R.J. (2018) Lipoic Acid Metabolism and Mitochondrial Redox Regulation. Journal of Biological Chemistry, 293, 7522-7530. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mayr, J.A., Feichtinger, R.G., Tort, F., Ribes, A. and Sperl, W. (2014) Lipoic Acid Biosynthesis Defects. Journal of Inherited Metabolic Disease, 37, 553-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
马建荣, 余永红, 陈艺彩, 鄢明峰, 张文彬. 细菌中酶蛋白硫辛酰化途径研究进展[J]. 微生物学报, 2021, 61(8): 2278-2293.
|
|
[30]
|
Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Dreishpoon, M.B., Bick, N.R., Petrova, B., Warui, D.M., Cameron, A., Booker, S.J., et al. (2023) FDX1 Regulates Cellular Protein Lipoylation through Direct Binding to LIAS. Journal of Biological Chemistry, 299, Article ID: 105046. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Cai, Y., He, Q., Liu, W., Liang, Q., Peng, B., Li, J., et al. (2022) Comprehensive Analysis of the Potential Cuproptosis-Related Biomarker LIAS That Regulates Prognosis and Immunotherapy of Pan-Cancers. Frontiers in Oncology, 12, Article 952129. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Cai, Y., He, Q., Liu, W., Liang, Q., Peng, B., Li, J., et al. (2022) Comprehensive Analysis of the Potential Cuproptosis-Related Biomarker LIAS That Regulates Prognosis and Immunotherapy of Pan-Cancers. Frontiers in Oncology, 12, Article 952129. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Leishangthem, B.D., Sharma, A. and Bhatnagar, A. (2015) Role of Altered Mitochondria Functions in the Pathogenesis of Systemic Lupus Erythematosus. Lupus, 25, 272-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ryu, C., Walia, A., Ortiz, V., Perry, C., Woo, S., Reeves, B.C., et al. (2020) Bioactive Plasma Mitochondrial DNA Is Associated with Disease Progression in Scleroderma‐Associated Interstitial Lung Disease. Arthritis & Rheumatology, 72, 1905-1915. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, Y., Zhang, L. and Zhou, F. (2022) Cuproptosis: A New Form of Programmed Cell Death. Cellular & Molecular Immunology, 19, 867-868. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Baker, Z.N., Cobine, P.A. and Leary, S.C. (2017) The Mitochondrion: A Central Architect of Copper Homeostasis. Metallomics, 9, 1501-1512. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Xin, L., Yang, X., Cai, G., Fan, D., Xia, Q., Liu, L., et al. (2015) Serum Levels of Copper and Zinc in Patients with Rheumatoid Arthritis: A Meta-Analysis. Biological Trace Element Research, 168, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhou, Y., Li, X., Ng, L., Zhao, Q., Guo, W., Hu, J., et al. (2023) Identification of Copper Death-Associated Molecular Clusters and Immunological Profiles in Rheumatoid Arthritis. Frontiers in Immunology, 14, Article 1103509. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhao, J., Guo, S., Schrodi, S.J. and He, D. (2022) Cuproptosis and Cuproptosis-Related Genes in Rheumatoid Arthritis: Implication, Prospects, and Perspectives. Frontiers in Immunology, 13, Article 930278. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
杨添祥. 铜死亡基因在类风湿性关节炎中的生物信息学分析[D]: [硕士学位论文]. 衡阳: 南华大学, 2023.
|
|
[42]
|
Li, Y., Xu, B., Zhang, J., Liu, X., Ganesan, K. and Shi, G. (2023) Exploring the Role of LIAS-Related Cuproptosis in Systemic Lupus Erythematosus. Lupus, 32, 1598-1609. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, Y., Li, X., Sun, R., Ji, J., Yang, F., Tian, W., et al. (2022) A Broad Cuproptosis Landscape in Inflammatory Bowel Disease. Frontiers in Immunology, 13, Article 1031539. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lutsenko, S. (2010) Human Copper Homeostasis: A Network of Interconnected Pathways. Current Opinion in Chemical Biology, 14, 211-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Habarou, F., Hamel, Y., Haack, T.B., Feichtinger, R.G., Lebigot, E., Marquardt, I., et al. (2017) Biallelic Mutations in LIPT2 Cause a Mitochondrial Lipoylation Defect Associated with Severe Neonatal Encephalopathy. The American Journal of Human Genetics, 101, 283-290. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Mayr, J.A., Zimmermann, F.A., Fauth, C., Bergheim, C., Meierhofer, D., Radmayr, D., et al. (2011) Lipoic Acid Synthetase Deficiency Causes Neonatal-Onset Epilepsy, Defective Mitochondrial Energy Metabolism, and Glycine Elevation. The American Journal of Human Genetics, 89, 792-797. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, Y., He, Q., Yu, J., Liu, C., Feng, L., Chai, Z., et al. (2015) Lipoic Acid Protects Dopaminergic Neurons in Lps-Induced Parkinson’s Disease Model. Metabolic Brain Disease, 30, 1217-1226. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Liao, Y., Wang, D., Gu, C., Wang, X., Zhu, S., Zheng, Z., et al. (2024) A Cuproptosis Nanocapsule for Cancer Radiotherapy. Nature Nanotechnology, 19, 1892-1902. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Guo, B., Yang, F., Zhang, L., Zhao, Q., Wang, W., Yin, L., et al. (2023) Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD-L1 for Enhanced Cancer Immunotherapy. Advanced Materials, 35, Article ID: 2212267. [Google Scholar] [CrossRef] [PubMed]
|