[1]
|
Kehlet, H., Jensen, T.S. and Woolf, C.J. (2006) Persistent Postsurgical Pain: Risk Factors and Prevention. The Lancet, 367, 1618-1625. https://doi.org/10.1016/s0140-6736(06)68700-x
|
[2]
|
Follin, S.L. and Charland, S.L. (1997) Acute Pain Management: Operative or Medical Procedures and Trauma. Annals of Pharmacotherapy, 31, 1068-1076. https://doi.org/10.1177/106002809703100917
|
[3]
|
Borgeat, A. and Ekatodramis, G. (2002) Anaesthesia for Shoulder Surgery. Best Practice & Research Clinical Anaesthesiology, 16, 211-225. https://doi.org/10.1053/bean.2002.0234
|
[4]
|
Ilfeld, B.M., Morey, T.E., Wang, R.D. and Enneking, F.K. (2002) Continuous Popliteal Sciatic Nerve Block for Postoperative Pain Control at Home: A Randomized, Double-Blinded, Placebo-Controlled Study. Anesthesiology, 97, 959-965. https://doi.org/10.1097/00000542-200210000-00031
|
[5]
|
Ilfeld, B.M., Morey, T.E., Wright, T.W., Chidgey, L.K. and Enneking, F.K. (2003) Continuous Interscalene Brachial Plexus Block for Postoperative Pain Control at Home: A Randomized, Double-Blinded, Placebo-Controlled Study. Anesthesia & Analgesia, 96, 1089-1095. https://doi.org/10.1213/01.ane.0000049824.51036.ef
|
[6]
|
Borgeat, A., Aguirre, J., Marquardt, M., Mrdjen, J. and Blumenthal, S. (2010) Continuous Interscalene Analgesia with Ropivacaine 0.2% versus Ropivacaine 0.3% after Open Rotator Cuff Repair: The Effects on Postoperative Analgesia and Motor Function. Anesthesia & Analgesia, 111, 1543-1547. https://doi.org/10.1213/ane.0b013e3181f94cac
|
[7]
|
Ekatodramis, G., Borgeat, A., Huledal, G., Jeppsson, L., Westman, L. and Sjövall, J. (2003) Continuous Interscalene Analgesia with Ropivacaine 2 mg/mL after Major Shoulder Surgery. Anesthesiology, 98, 143-150. https://doi.org/10.1097/00000542-200301000-00023
|
[8]
|
Bleckner, L.L., Bina, S., Kwon, K.H., McKnight, G., Dragovich, A. and Buckenmaier, C.C. (2010) Serum Ropivacaine Concentrations and Systemic Local Anesthetic Toxicity in Trauma Patients Receiving Long-Term Continuous Peripheral Nerve Block Catheters. Anesthesia & Analgesia, 110, 630-634. https://doi.org/10.1213/ane.0b013e3181c76a33
|
[9]
|
Tran, Q.H., Muñoz, L., Russo, G. and Finlayson, R.J. (2008) Ultrasonography and Stimulating Perineural Catheters for Nerve Blocks: A Review of the Evidence. Canadian Journal of Anesthesia/Journal canadien d’anesthésie, 55, 447-457. https://doi.org/10.1007/bf03016312
|
[10]
|
Grant, S.A., Nielsen, K.C., Greengrass, R.A., Steele, S.M. and Klein, S.M. (2001) Continuous Peripheral Nerve Block for Ambulatory Surgery. Regional Anesthesia and Pain Medicine, 26, 209-214. https://doi.org/10.1097/00115550-200105000-00003
|
[11]
|
Boezaart, A.P. and Warltier, D.C. (2006) Perineural Infusion of Local Anesthetics. Anesthesiology, 104, 872-880. https://doi.org/10.1097/00000542-200604000-00033
|
[12]
|
Soltesz, S., Meiger, D., Milles-Thieme, S., Saxler, G. and Ziegeler, S. (2016) Intermittent versus Continuous Sciatic Block Combined with Femoral Block for Patients Undergoing Knee Arthroplasty. A Randomized Controlled Trial. International Orthopaedics, 40, 1861-1867. https://doi.org/10.1007/s00264-016-3117-3
|
[13]
|
Greengrass, R. (2003) Continuous Regional Anesthesia before Surgical Peripheral Sympathectomy in a Patient with Severe Digital Necrosis Associated with Raynaud’s Phenomenon and Scleroderma. Regional Anesthesia and Pain Medicine, 28, 354-358. https://doi.org/10.1016/s1098-7339(03)00186-x
|
[14]
|
Berger, A., Tizian, C. and Zenz, M. (1985) Continuous Plexus Blockade for Improved Circulation in Microvascular Surgery. Annals of Plastic Surgery, 14, 16-19. https://doi.org/10.1097/00000637-198501000-00004
|
[15]
|
Manriquez, R.G. and Pallares, V. (1978) Continuous Brachial Plexus Block for Prolonged Sympathectomy and Control of Pain. Anesthesia & Analgesia, 57, 128-130. https://doi.org/10.1213/00000539-197801000-00029
|
[16]
|
Cheeley, L.N. (1952) Treatment of Periperal Embolism by Continuous Sciatic Nerve Block. Anesthesia & Analgesia, 31, 211-212. https://doi.org/10.1213/00000539-195211000-00047
|
[17]
|
Stojadinovic, A., Auton, A., Peoples, G.E., McKnight, G.M., Shields, C., Croll, S.M., et al. (2006) Responding to Challenges in Modern Combat Casualty Care: Innovative Use of Advanced Regional Anesthesia. Pain Medicine, 7, 330-338. https://doi.org/10.1111/j.1526-4637.2006.00171.x
|
[18]
|
Capdevila, X., Dadure, C., Bringuier, S., Bernard, N., Biboulet, P., Gaertner, E., et al. (2006) Effect of Patient-Controlled Perineural Analgesia on Rehabilitation and Pain after Ambulatory Orthopedic Surgery: A Multicenter Randomized Trial. Anesthesiology, 105, 566-573. https://doi.org/10.1097/00000542-200609000-00022
|
[19]
|
Neuburger, M., Breitbarth, J., Reisig, F., Lang, D. and Büttner, J. (2006) Complications and Adverse Events in Continuous Peripheral Regional Anesthesia Results of Investigations on 3,491 Catheters. Der Anaesthesist, 55, 33-40. https://doi.org/10.1007/s00101-005-0920-4
|
[20]
|
Bergman, B.D., Hebl, J.R., Kent, J. and Horlocker, T.T. (2003) Neurologic Complications of 405 Consecutive Continuous Axillary Catheters. Anesthesia & Analgesia, 96, 247-252. https://doi.org/10.1213/00000539-200301000-00050
|
[21]
|
Tuominen, M., Pitkänen, M. and Rosenberg, P.H. (1987) Postoperative Pain Relief and Bupivacaine Plasma Levels during Continuous Interscalene Brachial Plexus Block. Acta Anaesthesiologica Scandinavica, 31, 276-278. https://doi.org/10.1111/j.1399-6576.1987.tb02565.x
|
[22]
|
Denson, D.D., Raj, P.P., Saldahna, F., et al. (1983). Continuous Perineural Infusion of Bupivacaine for Prolonged Analgesia: Pharmacokinetic Considerations. International Journal of Clinical Pharmacology, Therapy, and Toxicology, 21, 591-597.
|
[23]
|
Compère, V., Rey, N., Baert, O., Ouennich, A., Fourdrinier, V., Roussignol, X., et al. (2009) Major Complications after 400 Continuous Popliteal Sciatic Nerve Blocks for Post‐Operative Analgesia. Acta Anaesthesiologica Scandinavica, 53, 339-345. https://doi.org/10.1111/j.1399-6576.2008.01849.x
|
[24]
|
Williams, B.A. and Murinson, B.B. (2008) Diabetes Mellitus and Subclinical Neuropathy: A Call for New Paths in Peripheral Nerve Block Research. Anesthesiology, 109, 361-362. https://doi.org/10.1097/aln.0b013e3181829f0d
|
[25]
|
Blumenthal, S., Borgeat, A., Maurer, K., Beck-Schimmer, B., Kliesch, U., Marquardt, M., et al. (2006) Preexisting Subclinical Neuropathy as a Risk Factor for Nerve Injury after Continuous Ropivacaine Administration through a Femoral Nerve Catheter. Anesthesiology, 105, 1053-1056. https://doi.org/10.1097/00000542-200611000-00028
|
[26]
|
Jaimes-Aguirre, L., Vianey Gibbens-Bandala, B., Morales-Avila, E., Eli Ocampo-García, B., Seyedeh-Fatemeh, M. and Amirhosein, A. (2016) Polymer-Based Drug Delivery Systems, Development and Pre-Clinical Status. Current Pharmaceutical Design, 22, 2886-2903. https://doi.org/10.2174/1381612822666160217125028
|
[27]
|
de Araújo, D.R., Ribeiro, L.N.d.M. and de Paula, E. (2019) Lipid-Based Carriers for the Delivery of Local Anesthetics. Expert Opinion on Drug Delivery, 16, 701-714. https://doi.org/10.1080/17425247.2019.1629415
|
[28]
|
Hudson, S.P., Padera, R.F., Langer, R. and Kohane, D.S. (2008) The Biocompatibility of Mesoporous Silicates. Biomaterials, 29, 4045-4055. https://doi.org/10.1016/j.biomaterials.2008.07.007
|
[29]
|
Peng, F., Liu, J., Zhang, Y., Fan, J., Gong, D., He, L., et al. (2022) Designer Self-Assembling Peptide Nanofibers Induce Biomineralization of Lidocaine for Slow-Release and Prolonged Analgesia. Acta Biomaterialia, 146, 66-79. https://doi.org/10.1016/j.actbio.2022.05.002
|
[30]
|
Peng, F., Liu, J., Chen, J., Wu, W., Zhang, Y., Zhao, G., et al. (2023) Nanocrystals Slow-Releasing Ropivacaine and Doxorubicin to Synergistically Suppress Tumor Recurrence and Relieve Postoperative Pain. ACS Nano, 17, 20135-20152. https://doi.org/10.1021/acsnano.3c05831
|
[31]
|
Moradkhani, M.R., Karimi, A. and Negahdari, B. (2017) Nanotechnology Application to Local Anaesthesia (LA). Artificial Cells, Nanomedicine, and Biotechnology, 46, 355-360. https://doi.org/10.1080/21691401.2017.1313263
|
[32]
|
Torchilin, V.P. (2005) Recent Advances with Liposomes as Pharmaceutical Carriers. Nature Reviews Drug Discovery, 4, 145-160. https://doi.org/10.1038/nrd1632
|
[33]
|
Sun, M., Osipitan, O.O., Sulicz, E.K. and Di Pasqua, A.J. (2022) Preparation and Optimization of an Ultraflexible Liposomal Gel for Lidocaine Transdermal Delivery. Materials, 15, Article 4895. https://doi.org/10.3390/ma15144895
|
[34]
|
Skolnik, A. and Gan, T.J. (2014) New Formulations of Bupivacaine for the Treatment of Postoperative Pain: Liposomal Bupivacaine and Saber-Bupivacaine. Expert Opinion on Pharmacotherapy, 15, 1535-1542. https://doi.org/10.1517/14656566.2014.930436
|
[35]
|
Ilfeld, B.M., Eisenach, J.C. and Gabriel, R.A. (2020) Clinical Effectiveness of Liposomal Bupivacaine Administered by Infiltration or Peripheral Nerve Block to Treat Postoperative Pain. Anesthesiology, 134, 283-344. https://doi.org/10.1097/aln.0000000000003630
|
[36]
|
Kumar, L., Kukreti, G., Rana, R., Chaurasia, H., Sharma, A., Sharma, N., et al. (2023) Poly(Lactic-co-Glycolic) Acid (PLGA) Nanoparticles and Transdermal Drug Delivery: An Overview. Current Pharmaceutical Design, 29, 2940-2953. https://doi.org/10.2174/0113816128275385231027054743
|
[37]
|
Horie, R.T., Sakamoto, T., Nakagawa, T., Tabata, Y., Okamura, N., Tomiyama, N., et al. (2009) Sustained Delivery of Lidocaine into the Cochlea Using Poly Lactic/Glycolic Acid Microparticles. The Laryngoscope, 120, 377-383. https://doi.org/10.1002/lary.20713
|
[38]
|
Daly, S., Claydon, N.C.A., Newcombe, R.G., Seong, J., Addy, M. and West, N.X. (2021) Randomised Controlled Trial of a Microneedle Patch with a Topical Anaesthetic for Relieving the Pain of Dental Injections. Journal of Dentistry, 107, Article ID: 103617. https://doi.org/10.1016/j.jdent.2021.103617
|
[39]
|
Priya, S. and Singhvi, G. (2022) Microneedles-Based Drug Delivery Strategies: A Breakthrough Approach for the Management of Pain. Biomedicine & Pharmacotherapy, 155, Article ID: 113717. https://doi.org/10.1016/j.biopha.2022.113717
|
[40]
|
Yang, Y., Chu, H., Zhang, Y., Xu, L., Luo, R., Zheng, H., et al. (2022) Rapidly Separable Bubble Microneedle Patch for Effective Local Anesthesia. Nano Research, 15, 8336-8344. https://doi.org/10.1007/s12274-022-4508-y
|
[41]
|
Yin, Q., Wu, L., Gou, M., Qian, Z., Zhang, W. and Liu, J. (2009) Long‐Lasting Infiltration Anaesthesia by Lidocaine‐loaded Biodegradable Nanoparticles in Hydrogel in Rats. Acta Anaesthesiologica Scandinavica, 53, 1207-1213. https://doi.org/10.1111/j.1399-6576.2009.02030.x
|
[42]
|
Chen, P., Park, Y.J., Chang, L., Kohane, D.S., Bartlett, R.H., Langer, R., et al. (2004) Injectable Microparticle‐Gel System for Prolonged and Localized Lidocaine Release. I. in Vitro Characterization. Journal of Biomedical Materials Research Part A, 70, 412-419. https://doi.org/10.1002/jbm.a.30086
|
[43]
|
Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., et al. (2021) Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. Journal of Controlled Release, 332, 312-336. https://doi.org/10.1016/j.jconrel.2021.02.031
|
[44]
|
Liu, H., Farrell, S. and Uhrich, K. (2000) Drug Release Characteristics of Unimolecular Polymeric Micelles. Journal of Controlled Release, 68, 167-174. https://doi.org/10.1016/s0168-3659(00)00247-9
|
[45]
|
Zhang, W., Ning, C., Xu, W., Hu, H., Li, M., Zhao, G., et al. (2018) Precision-Guided Long-Acting Analgesia by Hydrogel-Immobilized Bupivacaine-Loaded Microsphere. Theranostics, 8, 3331-3347. https://doi.org/10.7150/thno.25276
|
[46]
|
Mintzer, M.A. and Grinstaff, M.W. (2011) Biomedical Applications of Dendrimers: A Tutorial. Chemical Society Reviews, 40, 173-190. https://doi.org/10.1039/b901839p
|
[47]
|
Kannan, R.M., Nance, E., Kannan, S. and Tomalia, D.A. (2014) Emerging Concepts in Dendrimer‐Based Nanomedicine: From Design Principles to Clinical Applications. Journal of Internal Medicine, 276, 579-617. https://doi.org/10.1111/joim.12280
|
[48]
|
Zhao, C., Liu, A., Santamaria, C.M., Shomorony, A., Ji, T., Wei, T., et al. (2019) Polymer-Tetrodotoxin Conjugates to Induce Prolonged Duration Local Anesthesia with Minimal Toxicity. Nature Communications, 10, Article No. 2566. https://doi.org/10.1038/s41467-019-10296-9
|
[49]
|
Gao, X., Zhu, P., Yu, L., Yang, L. and Chen, Y. (2019) Ultrasound/Acidity‐Triggered and Nanoparticle‐Enabled Analgesia. Advanced Healthcare Materials, 8, e1801350. https://doi.org/10.1002/adhm.201801350
|
[50]
|
Mantha, V.R.R., Nair, H.K., Venkataramanan, R., Gao, Y.Y., Matyjaszewski, K., Dong, H., et al. (2014) Nanoanesthesia: A Novel, Intravenous Approach to Ankle Block in the Rat by Magnet-Directed Concentration of Ropivacaine-Associated Nanoparticles. Anesthesia & Analgesia, 118, 1355-1362. https://doi.org/10.1213/ane.0000000000000175
|
[51]
|
Zhang, Z., Zhang, X., Li, A. and Ma, C. (2018) Development of Bupivacaine Decorated Reduced Graphene Oxide and Its Local Anesthetic Effect—In Vivo Study. Journal of Photochemistry and Photobiology B: Biology, 180, 72-76. https://doi.org/10.1016/j.jphotobiol.2018.01.012
|
[52]
|
Vorobeichik, L., Brull, R. and Abdallah, F.W. (2017) Evidence Basis for Using Perineural Dexmedetomidine to Enhance the Quality of Brachial Plexus Nerve Blocks: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. British Journal of Anaesthesia, 118, 167-181. https://doi.org/10.1093/bja/aew411
|
[53]
|
Weerink, M.A.S., Struys, M.M.R.F., Hannivoort, L.N., Barends, C.R.M., Absalom, A.R. and Colin, P. (2017) Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clinical Pharmacokinetics, 56, 893-913. https://doi.org/10.1007/s40262-017-0507-7
|
[54]
|
Han, M., Kang, F., Yang, C., Liu, Z., Wang, T., Zhai, M., et al. (2020) Comparison of Adrenaline and Dexmedetomidine in Improving the Cutaneous Analgesia of Mexiletine in Response to Skin Pinpricks in Rats. Pharmacology, 105, 662-668. https://doi.org/10.1159/000506487
|
[55]
|
Jaakola, M., Salonen, M., Lehtinen, R. and Scheinin, H. (1991) The Analgesic Action of Dexmedetomidine—A Novel Α2-Adrenoceptor Agonist—In Healthy Volunteers. Pain, 46, 281-285. https://doi.org/10.1016/0304-3959(91)90111-a
|
[56]
|
Tüfek, A., Kaya, S., Tokgöz, O., Fırat, U., Evliyaoğlu, O., Çelik, F., et al. (2013) The Protective Effect of Dexmedetomidine on Bupivacaine-Induced Sciatic Nerve Inflammation Is Mediated by Mast Cells. Clinical & Investigative Medicine, 36, E95-E102. https://doi.org/10.25011/cim.v36i2.19572
|
[57]
|
Brummett, C.M., Norat, M.A., Palmisano, J.M. and Lydic, R. (2008) Perineural Administration of Dexmedetomidine in Combination with Bupivacaine Enhances Sensory and Motor Blockade in Sciatic Nerve Block without Inducing Neurotoxicity in Rat. Anesthesiology, 109, 502-511. https://doi.org/10.1097/aln.0b013e318182c26b
|
[58]
|
Huang, Y., Lu, Y., Zhang, L., Yan, J., Jiang, J. and Jiang, H. (2014) Perineural Dexmedetomidine Attenuates Inflammation in Rat Sciatic Nerve via the NF-κB Pathway. International Journal of Molecular Sciences, 15, 4049-4059. https://doi.org/10.3390/ijms15034049
|
[59]
|
Abdallah, F.W. and Brull, R. (2013) Facilitatory Effects of Perineural Dexmedetomidine on Neuraxial and Peripheral Nerve Block: A Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 110, 915-925. https://doi.org/10.1093/bja/aet066
|
[60]
|
Zufferey, P.J., Chaux, R., Lachaud, P., Capdevila, X., Lanoiselée, J. and Ollier, E. (2024) Dose-Response Relationships of Intravenous and Perineural Dexamethasone as Adjuvants to Peripheral Nerve Blocks: A Systematic Review and Model-Based Network Meta-Analysis. British Journal of Anaesthesia, 132, 1122-1132. https://doi.org/10.1016/j.bja.2023.12.021
|
[61]
|
Albrecht, E., Kern, C. and Kirkham, K.R. (2014) A Systematic Review and Meta‐Analysis of Perineural Dexamethasone for Peripheral Nerve Blocks. Anaesthesia, 70, 71-83. https://doi.org/10.1111/anae.12823
|
[62]
|
Williams, B.A., Hough, K.A., Tsui, B.Y.K., Ibinson, J.W., Gold, M.S. and Gebhart, G.F. (2011) Neurotoxicity of Adjuvants Used in Perineural Anesthesia and Analgesia in Comparison with Ropivacaine. Regional Anesthesia and Pain Medicine, 36, 225-230. https://doi.org/10.1097/aap.0b013e3182176f70
|
[63]
|
Allan, S.G. and Leonard, R.C.F. (1986) Dexamethasone Antiemesis and Side-Effects. The Lancet, 327, 1035. https://doi.org/10.1016/s0140-6736(86)91305-x
|
[64]
|
Toner, A.J., Ganeshanathan, V., Chan, M.T., Ho, K.M. and Corcoran, T.B. (2017) Safety of Perioperative Glucocorticoids in Elective Noncardiac Surgery: A Systematic Review and Meta-Analysis. Anesthesiology, 126, 234-248. https://doi.org/10.1097/aln.0000000000001466
|
[65]
|
Knight, J.B., Schott, N.J., Kentor, M.L. and Williams, B.A. (2015) Neurotoxicity of Common Peripheral Nerve Block Adjuvants. Current Opinion in Anaesthesiology, 28, 598-604. https://doi.org/10.1097/aco.0000000000000222
|
[66]
|
Bernards, C.M. and Kopacz, D.J. (1998) Effect of Epinephrine on Lidocaine Clearance in Vivo: A Microdialysis Study in Humans. Anesthesiology, 89, 500A. https://doi.org/10.1097/00000542-199809090-00019
|
[67]
|
Sinnott, C.J., Cogswell, L.P., Johnson, A. and Strichartz, G.R. (2003) On the Mechanism by Which Epinephrine Potentiates Lidocaine’s Peripheral Nerve Block. Anesthesiology, 98, 181-188. https://doi.org/10.1097/00000542-200301000-00028
|
[68]
|
Kennedy, W.F., Bonica, J.J., Ward, R.J., Tolas, A.G., Martin, W.E. and Grinstein, A. (1966) Cardiorespiratory Effects of Epinephrine When Used in Regional Anesthesia. Acta Anaesthesiologica Scandinavica, 10, 320-333. https://doi.org/10.1111/j.1399-6576.1966.tb01030.x
|
[69]
|
Brustugun, J., Troland, S. and Breivik, H. (2013) The Stability of a Sulphite-Free Epidural Analgesic Solution Containing Fentanyl, Bupivacaine, and Adrenaline. Acta Anaesthesiologica Scandinavica, 57, 1321-1327. https://doi.org/10.1111/aas.12206
|
[70]
|
Behr, A., Freo, U., Ori, C., Westermann, B. and Alemanno, F. (2012) Buprenorphine Added to Levobupivacaine Enhances Postoperative Analgesia of Middle Interscalene Brachial Plexus Block. Journal of Anesthesia, 26, 746-751. https://doi.org/10.1007/s00540-012-1416-4
|
[71]
|
Zeng, J., Chen, Q., Yu, C., Zhou, J. and Yang, B. (2021) The Use of Magnesium Sulfate and Peripheral Nerve Blocks: An Updated Meta-Analysis and Systematic Review. The Clinical Journal of Pain, 37, 629-637. https://doi.org/10.1097/ajp.0000000000000944
|
[72]
|
Mert, T., Gunes, Y., Guven, M., et al. (2003) Effects of Calcium and Magnesium on Peripheral Nerve Conduction. Polish Journal of Pharmacology, 55, 25-30.
|
[73]
|
Vastani, N., Seifert, B., Spahn, D.R. and Maurer, K. (2013) Sensitivities of Rat Primary Sensory Afferent Nerves to Magnesium: Implications for Differential Nerve Blocks. European Journal of Anaesthesiology, 30, 21-28. https://doi.org/10.1097/eja.0b013e32835949ab
|
[74]
|
Pascual-Ramírez, J., Gil-Trujillo, S. and Alcantarilla, C. (2013) Intrathecal Magnesium as Analgesic Adjuvant for Spinal Anesthesia: A Meta-Analysis of Randomized Trials. Minerva Anestesiologica, 79, 667-78.
|
[75]
|
Zhu, T., Gao, Y., Xu, X., Fu, S., Lin, W. and Sun, J. (2020) Effect of Ketamine Added to Ropivacaine in Nerve Block for Postoperative Pain Management in Patients Undergoing Anterior Cruciate Ligament Reconstruction: A Randomized Trial. Clinical Therapeutics, 42, 882-891. https://doi.org/10.1016/j.clinthera.2020.03.004
|
[76]
|
Kreutzwiser, D. and Tawfic, Q.A. (2019) Expanding Role of NMDA Receptor Antagonists in the Management of Pain. CNS Drugs, 33, 347-374. https://doi.org/10.1007/s40263-019-00618-2
|
[77]
|
Imani, F. and Varrassi, G. (2019) Ketamine as Adjuvant for Acute Pain Management. Anesthesiology and Pain Medicine, 9, e100178. https://doi.org/10.5812/aapm.100178
|
[78]
|
Krishna Prasad, G., Khanna, S. and Jaishree, S. (2020) Review of Adjuvants to Local Anesthetics in Peripheral Nerve Blocks: Current and Future Trends. Saudi Journal of Anaesthesia, 14, 77-84. https://doi.org/10.4103/sja.sja_423_19
|
[79]
|
Bailard, N.S., Ortiz, J. and Flores, R.A. (2014) Additives to Local Anesthetics for Peripheral Nerve Blocks: Evidence, Limitations, and Recommendations. American Journal of Health-System Pharmacy, 71, 373-385. https://doi.org/10.2146/ajhp130336
|
[80]
|
Yung, E., Lahoti, T., Jafari, S., Weinberg, J.D., SchianodiCola, J.J., Yarmush, J.M., et al. (2009) Bicarbonate Plus Epinephrine Shortens the Onset and Prolongs the Duration of Sciatic Block Using Chloroprocaine Followed by Bupivacaine in Sprague-Dawley Rats. Regional Anesthesia and Pain Medicine, 34, 196-200. https://doi.org/10.1097/aap.0b013e31819a9528
|
[81]
|
Bobik, P., Kosel, J., Świrydo, P., Tałałaj, M., Czaban, I. and Radziwon, W. (2020) Comparison of the Pharmacological Properties of 0.375% Bupivacaine with Epinephrine, 0.5% Ropivacaine and a Mixture of Bupivacaine with Epinephrine and Lignocaine—A Randomized Prospective Study. Journal of Plastic Surgery and Hand Surgery, 54, 156-160. https://doi.org/10.1080/2000656x.2020.1720999
|
[82]
|
Capogna, G., Celleno, D., Laudano, D., et al. (1995) Alkalinization of local Anesthetics. Which Block, Which Local Anesthetic? Regional Anesthesia, 20, 369-737.
|
[83]
|
Tetzlaff, J.E., Yoon, H.J., O’Hara, J., et al. (1990) Alkalinization of Mepivacaine Accelerates Onset of Interscalene Block for Shoulder Surgery. Regional Anesthesia, 15, 242-244.
|