[1]
|
韩雅玲, 高炜, 傅向华. 稳定性冠心病诊断与治疗指南[J]. 中华心血管病杂志, 2018, 46(9): 680-694.
|
[2]
|
胡盛寿. 中国心血管健康与疾病报告2023概要[J]. 中国循环杂志, 2024, 39(7): 625-660.
|
[3]
|
Klionsky, D.J. and Emr, S.D. (2000) Autophagy as a Regulated Pathway of Cellular Degradation. Science, 290, 1717-1721. https://doi.org/10.1126/science.290.5497.1717
|
[4]
|
Fleming, A., Bourdenx, M., Fujimaki, M., Karabiyik, C., Krause, G.J., Lopez, A., et al. (2022) The Different Autophagy Degradation Pathways and Neurodegeneration. Neuron, 110, 935-966. https://doi.org/10.1016/j.neuron.2022.01.017
|
[5]
|
Evans, T.D., Sergin, I., Zhang, X. and Razani, B. (2017) Target Acquired: Selective Autophagy in Cardiometabolic Disease. Science Signaling, 10, eaag2298. https://doi.org/10.1126/scisignal.aag2298
|
[6]
|
Fracchiolla, D., Chang, C., Hurley, J.H. and Martens, S. (2020) A PI3K-WIPI2 Positive Feedback Loop Allosterically Activates LC3 Lipidation in Autophagy. Journal of Cell Biology, 219, e201912098. https://doi.org/10.1083/jcb.201912098
|
[7]
|
Kim, J., Kundu, M., Viollet, B. and Guan, K. (2011) AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of ULK1. Nature Cell Biology, 13, 132-141. https://doi.org/10.1038/ncb2152
|
[8]
|
Karabiyik, C., Vicinanza, M., Son, S.M. and Rubinsztein, D.C. (2021) Glucose Starvation Induces Autophagy via ULK1-Mediated Activation of Pikfyve in an AMPK-Dependent Manner. Developmental Cell, 56, 1961-1975.e5. https://doi.org/10.1016/j.devcel.2021.05.010
|
[9]
|
Grunwald, D.S., Otto, N.M., Park, J., Song, D. and Kim, D. (2019) GABARAPs and LC3s Have Opposite Roles in Regulating ULK1 for Autophagy Induction. Autophagy, 16, 600-614. https://doi.org/10.1080/15548627.2019.1632620
|
[10]
|
Wong, P., Feng, Y., Wang, J., Shi, R. and Jiang, X. (2015) Regulation of Autophagy by Coordinated Action of mTORC1 and Protein Phosphatase 2A. Nature Communications, 6, Article No. 8048. https://doi.org/10.1038/ncomms9048
|
[11]
|
Nemchenko, A., Chiong, M., Turer, A., Lavandero, S. and Hill, J.A. (2011) Autophagy as a Therapeutic Target in Cardiovascular Disease. Journal of Molecular and Cellular Cardiology, 51, 584-593. https://doi.org/10.1016/j.yjmcc.2011.06.010
|
[12]
|
Rifki, O.F. and Hill, J.A. (2012) Cardiac Autophagy. Journal of Cardiovascular Pharmacology, 60, 248-252. https://doi.org/10.1097/fjc.0b013e3182646cb1
|
[13]
|
Shimomura, H., Terasaki, F., Hayashi, T., Kitaura, Y., Isomura, T. and Suma, H. (2001) Autophagic Degeneration as a Possible Mechanism of Myocardial Cell Death in Dilated Cardiomyopathy. Japanese Circulation Journal, 65, 965-968. https://doi.org/10.1253/jcj.65.965
|
[14]
|
Schiattarella, G.G. and Hill, J.A. (2015) Inhibition of Hypertrophy Is a Good Therapeutic Strategy in Ventricular Pressure Overload. Circulation, 131, 1435-1447. https://doi.org/10.1161/circulationaha.115.013894
|
[15]
|
Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. (2007) The Role of Autophagy in Cardiomyocytes in the Basal State and in Response to Hemodynamic Stress. Nature Medicine, 13, 619-624. https://doi.org/10.1038/nm1574
|
[16]
|
Zhu, H., Tannous, P., Johnstone, J.L., Kong, Y., Shelton, J.M., Richardson, J.A., et al. (2007) Cardiac Autophagy Is a Maladaptive Response to Hemodynamic Stress. Journal of Clinical Investigation, 117, 1782-1793. https://doi.org/10.1172/jci27523
|
[17]
|
Liu, S., Yao, S., Yang, H., Liu, S. and Wang, Y. (2023) Autophagy: Regulator of Cell Death. Cell Death & Disease, 14, Article No. 648. https://doi.org/10.1038/s41419-023-06154-8
|
[18]
|
Wu, X., Zheng, D., Qin, Y., Liu, Z., Zhang, G., Zhu, X., et al. (2017) Nobiletin Attenuates Adverse Cardiac Remodeling after Acute Myocardial Infarction in Rats via Restoring Autophagy Flux. Biochemical and Biophysical Research Communications, 492, 262-268. https://doi.org/10.1016/j.bbrc.2017.08.064
|
[19]
|
Huby, T. and Le Goff, W. (2022) Macrophage SR-B1 in Atherosclerotic Cardiovascular Disease. Current Opinion in Lipidology, 33, 167-174. https://doi.org/10.1097/mol.0000000000000822
|
[20]
|
Yang, N., Dong, B., Song, Y., Li, Y., Kou, L. and Qin, Q. (2022) Apolipoprotein J Attenuates Vascular Restenosis by Promoting Autophagy and Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells. Journal of Cardiovascular Translational Research, 15, 1086-1099. https://doi.org/10.1007/s12265-022-10227-y
|
[21]
|
Ouimet, M., Ediriweera, H., Afonso, M.S., Ramkhelawon, B., Singaravelu, R., Liao, X., et al. (2017) Microrna-33 Regulates Macrophage Autophagy in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1058-1067. https://doi.org/10.1161/atvbaha.116.308916
|
[22]
|
Barrett, T.J. (2020) Macrophages in Atherosclerosis Regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 20-33. https://doi.org/10.1161/atvbaha.119.312802
|
[23]
|
Kloc, M., Kubiak, J.Z. and Ghobrial, R.M. (2022) Macrophage-, Dendritic-, Smooth Muscle-, Endothelium-, and Stem Cells-Derived Foam Cells in Atherosclerosis. International Journal of Molecular Sciences, 23, Article No. 14154. https://doi.org/10.3390/ijms232214154
|
[24]
|
Ouimet, M., Franklin, V., Mak, E., Liao, X., Tabas, I. and Marcel, Y.L. (2011) Autophagy Regulates Cholesterol Efflux from Macrophage Foam Cells via Lysosomal Acid Lipase. Cell Metabolism, 13, 655-667. https://doi.org/10.1016/j.cmet.2011.03.023
|
[25]
|
Wang, T., Sun, C., Hu, L., Gao, E., Li, C., Wang, H., et al. (2020) Sirt6 Stabilizes Atherosclerosis Plaques by Promoting Macrophage Autophagy and Reducing Contact with Endothelial Cells. Biochemistry and Cell Biology, 98, 120-129. https://doi.org/10.1139/bcb-2019-0057
|
[26]
|
Li, M., et al. (2021) TFEB: A Emerging Regulator in Lipid Homeostasis for Atherosclerosis. Frontiers in Physiology, 12, Article ID: 639920.
|
[27]
|
Deretic, V. (2021) Autophagy in Inflammation, Infection, and Immunometabolism. Immunity, 54, 437-453. https://doi.org/10.1016/j.immuni.2021.01.018
|
[28]
|
Yong, Y., Zhang, L., Hu, Y., Wu, J., Yan, L., Pan, Y., et al. (2022) Targeting Autophagy Regulation in NLRP3 Inflammasome-Mediated Lung Inflammation in Covid-19. Clinical Immunology, 244, Article ID: 109093. https://doi.org/10.1016/j.clim.2022.109093
|
[29]
|
尚卫兵, 朱博冉, 张海楼, 等. 加味补阳还五汤对防治动脉粥样硬化的Toll样受体7及其下游信号转导通路的影响[J]. 中华中医药杂志, 2020, 35(4): 1767-1773.
|
[30]
|
朱博冉, 吴佳菲, 薛文达, 等. 加味补阳还五汤对防治动脉粥样硬化的ApoE-/-小鼠Toll样受体4及其下游主要元件的影响[J]. 中国实验方剂学杂志, 2017, 23(20): 150-156.
|
[31]
|
游宇, 李林, 侯贝贝, 等. 补阳还五汤抗ApoE-/-小鼠动脉粥样硬化作用与调控巨噬细胞自噬的机制研究[J]. 中药药理与临床, 2018, 34(4): 2-6.
|
[32]
|
Xie, M., Kong, Y., Tan, W., May, H., Battiprolu, P.K., Pedrozo, Z., et al. (2014) Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy. Circulation, 129, 1139-1151. https://doi.org/10.1161/circulationaha.113.002416
|
[33]
|
Yan, L., Vatner, D.E., Kim, S., Ge, H., Masurekar, M., Massover, W.H., et al. (2005) Autophagy in Chronically Ischemic Myocardium. Proceedings of the National Academy of Sciences, 102, 13807-13812. https://doi.org/10.1073/pnas.0506843102
|
[34]
|
Huang, C., Yitzhaki, S., Perry, C.N., Liu, W., Giricz, Z., Mentzer, R.M., et al. (2010) Autophagy Induced by Ischemic Preconditioning Is Essential for Cardioprotection. Journal of Cardiovascular Translational Research, 3, 365-373. https://doi.org/10.1007/s12265-010-9189-3
|
[35]
|
Kanamori, H., Takemura, G., Goto, K., Maruyama, R., Tsujimoto, A., Ogino, A., et al. (2011) The Role of Autophagy Emerging in Postinfarction Cardiac Remodelling. Cardiovascular Research, 91, 330-339. https://doi.org/10.1093/cvr/cvr073
|
[36]
|
Wang, X. and Wu, C. (2022) Tanshinone IIA Improves Cardiac Function via Regulating Mir-499-5p Dependent Angiogenesis in Myocardial Ischemic Mice. Microvascular Research, 143, Article ID: 104399. https://doi.org/10.1016/j.mvr.2022.104399
|
[37]
|
Ríos-Navarro, C., Hueso, L., Díaz, A., Marcos-Garcés, V., Bonanad, C., Ruiz-Sauri, A., et al. (2021) Role of Antiangiogenic Vegf-A165b in Angiogenesis and Systolic Function after Reperfused Myocardial Infarction. Revista Española de Cardiología (English Edition), 74, 131-139. https://doi.org/10.1016/j.rec.2020.03.013
|
[38]
|
Huang, C., Huang, W., Zhang, L., Zhang, C., Zhou, C., Wei, W., et al. (2022) Targeting Peptide, Fluorescent Reagent Modified Magnetic Liposomes Coated with Rapamycin Target Early Atherosclerotic Plaque and Therapy. Pharmaceutics, 14, Article No. 1083. https://doi.org/10.3390/pharmaceutics14051083
|
[39]
|
Harada, Y., Colleran, R., Kufner, S., Giacoppo, D., Rheude, T., Michel, J., et al. (2016) Five-Year Clinical Outcomes in Patients with Diabetes Mellitus Treated with Polymer-Free Sirolimus-and Probucol-Eluting Stents versus Second-Generation Zotarolimus-Eluting Stents: A Subgroup Analysis of a Randomized Controlled Trial. Cardiovascular Diabetology, 15, Article No. 124. https://doi.org/10.1186/s12933-016-0429-y
|
[40]
|
Zhang, B., Yang, J., Li, X., Zhu, H., Sun, J., Jiang, L., et al. (2023) Tetrahydrocurcumin Ameliorates Postinfarction Cardiac Dysfunction and Remodeling by Inhibiting Oxidative Stress and Preserving Mitochondrial Function via SIRT3 Signaling Pathway. Phytomedicine, 121, Article ID: 155127. https://doi.org/10.1016/j.phymed.2023.155127
|
[41]
|
Lu, S., Luo, Y., Sun, G. and Sun, X. (2020) Ginsenoside Compound K Attenuates Ox-LDL-Mediated Macrophage Inflammation and Foam Cell Formation via Autophagy Induction and Modulating NF-κB, P38, and JNK MAPK Signaling. Frontiers in Pharmacology, 11, Article ID: 567238. https://doi.org/10.3389/fphar.2020.567238
|
[42]
|
刘洪娟, 徐亚伟. CRISPR/Cas9基因编辑在心血管领域的应用进展[J]. 心血管病学进展, 2021, 42(12): 1117-1119.
|
[43]
|
吴爱萍, 朱悦红, 夏婉, 等. 有氧运动通过miR-34a/SIRT1通路调控自噬改善急性心肌梗死大鼠心肌损伤的作用机制[J]. 心脑血管病防治, 2024, 24(5): 13-18, 51.
|
[44]
|
Stanciu, G.D., Rusu, R.N., Bild, V., Filipiuc, L.E., Tamba, B. and Ababei, D.C. (2021) Systemic Actions of SGLT2 Inhibition on Chronic mTOR Activation as a Shared Pathogenic Mechanism between Alzheimer’s Disease and Diabetes. Biomedicines, 9, Article No. 576. https://doi.org/10.3390/biomedicines9050576
|