自噬在冠心病中的研究进展
Research Progress on Autophagy in Coronary Heart Disease
DOI: 10.12677/acm.2025.153793, PDF, HTML, XML,   
作者: 刘 垚, 梁 玲, 杨锦文:西安医学院研究生工作部,陕西 西安;西安市第九医院心血管内科,陕西 西安;余 航, 王玉宁:西安医学院研究生工作部,陕西 西安;胡小菁*:西安市第九医院心血管内科,陕西 西安
关键词: 自噬冠心病心血管疾病动脉粥样硬化Autophagy Coronary Heart Disease (CHD) Cardiovascular Disease Atherosclerosis
摘要: 冠心病是一种对人类健康构成重大威胁的心血管疾病,其发病机制错综复杂,尽管治疗方法多样,但仍面临许多亟待解决的挑战。近年来,自噬作为一种重要的细胞自我调节机制,在心血管疾病研究中逐渐受到关注。研究表明自噬与冠心病的发生发展密切相关,文章系统阐述了自噬的概念、机制以及在冠心病中的机制、挑战,旨在为冠心病的防治开辟新的视角和奠定理论基础。
Abstract: Coronary heart disease stands as a grave cardiovascular condition that presents a substantial risk to human health. Its pathogenesis is rather complex, and although there are various treatment methods, many challenges remain to be overcome. In recent years, autophagy, as an important cellular self-regulatory mechanism, has gradually attracted attention in the research of cardiovascular diseases. Research has indicated that there is a significant association between autophagy and the onset as well as progression of coronary heart disease. This article systematically elucidates the overview and mechanisms of autophagy, as well as its mechanisms and challenges in coronary heart disease, aiming to provide novel perspectives and establish a theoretical foundation for the prevention and treatment of coronary heart disease.
文章引用:刘垚, 梁玲, 杨锦文, 余航, 王玉宁, 胡小菁. 自噬在冠心病中的研究进展[J]. 临床医学进展, 2025, 15(3): 1695-1700. https://doi.org/10.12677/acm.2025.153793

1. 引言

冠状动脉粥样硬化性心脏病(CHD)是由于冠状动脉内发生粥样硬化,导致血管腔变窄或堵塞,进而引发心肌缺血、缺氧或坏死的一种心脏疾病[1]。近年来,随着我国社会经济的飞速发展,我国人民生活条件明显提高,随之而来的健康问题也日益严重,尤其是心血管疾病(CVD),据最新的流行病学报告指出[2],CVD在我国农村和城市居民死因中超过恶性肿瘤死因占首位,占比接近50%,且死亡率呈逐年上升趋势,严重危害人类健康,而占比最大的心血管疾病为冠心病。因此,深入探索冠心病的发病机制并开发新的治疗策略非常有必要。自噬是一种高度保守的细胞代谢过程,这一过程在维持细胞稳态、应对营养缺乏、氧化应激和病原体感染等应激条件下发挥关键作用。近年来,研究表明自噬功能障碍与多种心血管疾病的发生发展密切相关,包括冠心病、心力衰竭和心肌病等。本文旨在综述自噬在冠心病中的研究进展,探讨自噬在冠心病中的调控机制,为冠心病的预防和治疗提供新的思路和理论依据。

2. 自噬概述

自噬的概念最早在1962年提出,是指真核细胞所特有的、高度保守的细胞内代谢途径,能够通过与溶酶体融合降解细胞内长寿蛋白、清除损伤或衰老的细胞器,以实现细胞代谢和细胞器更新的需要[3]。自噬主要有三种类型:巨自噬、分子伴侣介导的自噬和微自噬。其中,关于巨自噬的研究最深入,通常简称为自噬[4]。自噬根据分解物的不同被分为非选择性和选择性自噬[5]

3. 自噬的调节机制

自噬的过程是一个非常复杂的自降解过程,涉及的关键步骤如下:1) 信号通路调节自噬的启动。AMPK通过阻止mTORC1复合物的生成,降低了mTORC1对ULK1复合物形成的限制作用,从而促进自噬囊泡的产生[6]。2) Beclin-1/VPS34复合物促进自噬囊泡的延伸。激活的激酶JNK通过磷酸化BCL-2和BIM以释放Beclin1来破坏Beclin1/BCL-2和Beclin1/BIM复合体。游离Beclin1激活VPS34并与其结合形成复合物,产生的PI3P促进自噬囊泡的延伸[7]。3) ATG12-ATG5复合物与ATG16结合并完成聚合。聚合物复合物ATG5-ATG12-ATG16L由ATG5、ATG12和ATG16L的一系列作用形成,然后聚合物复合物与自噬囊泡融合[8]。4) LC3通过一系列反应插入自噬体。半胱氨酸蛋白酶ATG4将LC3裂解成LC3-I,再被ATG3、ATG7和磷脂酰乙醇胺加工形成LC3-II后进入自噬体中[9]。5) 自噬溶酶体由自噬体和溶酶体融合形成。STX17与SNAP29和VAMP8结合形成SNARE复合物,该复合物转移到自噬体膜上,使溶酶体与自噬体融合并形成自噬溶酶体[10]

4. 自噬与冠心病

研究表明,自噬参与人类整个寿命中心脏功能的维持和修复[11] [12]。2001年,Shimomura等[13]从扩张型心肌病患者获得心脏组织标本,最早证实了自噬参与人类心脏疾病的发生。在某些情况下,疾病诱导的自噬是心肌细胞对应激的适应性反应,类似于肾素–血管紧张素–醛固酮系统激活和左心室心肌肥厚在心脏疾病中的作用,具有进化保守性[14]。自噬在心脏中的作用是双向的,一定范围内的自噬有助于维持细胞稳态,而过度的自噬可产生损伤性作用,能加速细胞死亡、促进疾病的发生。在心血管疾病中,自噬发生的时间、范围和细胞类型不同,可能产生完全不同的作用。抑制基础水平的自噬可促进心力衰竭的发生[15]。适度增强心肌细胞自噬可起保护性作用,而过度的自噬激活可导致细胞内物质的过度降解,加速心肌细胞死亡[16]。总之,关于自噬在心血管病中的具体作用,尚缺乏一致结论。现有的研究表明,自噬在冠心病中的作用机制主要包括以下几个方面:

(一) 促进心肌细胞存活

在冠心病的发生发展过程中,心肌细胞常常面临着缺血、缺氧等不利条件。在这些情况下,自噬作为一种细胞的自我保护机制,通常能够在这些情况下促进心肌细胞的存活。一方面,自噬可以清除受损的大分子物质和细胞器,防止它们在细胞内堆积,从而维持细胞内环境稳定;另一方面,自噬还能够促进细胞内蛋白质的更新和循环利用,为心肌细胞提供必要的营养物质和能量。但自噬机制的破坏或过度的自噬通常会导致细胞死亡[17]。很多研究揭示,通过自噬的“适应性”诱导方式,能够显著增强心肌细胞的生存能力,表明其具有心脏保护作用[18]

(二) 抑制动脉粥样硬化

动脉粥样硬化(AS)是冠心病的主要病理基础,其发生发展涉及多个环节和因素。近年来,研究发现细胞自噬在抑制AS方面发挥重要作用[19]。当自噬异常时,细胞凋亡和坏死增加,进而促进斑块的不稳定性[20]。首先,自噬能够清除动脉壁内的脂质沉积,特别是胆固醇酯[21],从而减少泡沫细胞的形成。泡沫细胞是AS的典型特征之一[22],尤其是来源于巨噬细胞源性的泡沫细胞,它们的形成与脂质代谢紊乱密切相关,尤其在调节胆固醇代谢稳态方面发挥着重要作用[23] [24]。研究表明,巨噬细胞自噬增强时可减少泡沫细胞的形成[25]。其次,自噬还能够调节脂质代谢相关基因的表达,进一步影响脂质在动脉壁内的沉积。如有研究表明:转录因子EB (Transcription Factor EB, TFEB)通过调控脂肪自噬、脂肪分解及脂质代谢相关基因的表达,能够促进脂质的降解与排出,恢复脂质平衡,进而减轻或逆转动脉粥样硬化的进展[26]。此外,自噬还能够通过清除细胞内的炎症因子和氧化应激产物,减轻动脉粥样硬化的炎症反应和氧化应激损伤。目前抑制核因子-κB (NF-κB)信号通路[27]、下调Rho激酶[28]减少炎症因子表达和抑制Toll样受体(TLR4和TLR7)是其发挥抗炎作用的主要途径[29] [30],而拮抗氧化应激损伤的研究则多聚焦在抑制脂质过氧化反应、动态调控凋亡与自噬方面[31]

(三) 促进心肌梗死后心肌组织的修复与再生

急性心肌梗死(Acute Myocardial Infarction, AMI)是导致全球冠心病患者死亡的主要因素之一。AMI的早期治疗可恢复缺血性心肌的血液供应,降低死亡风险。但是,当中断的心肌供血在一定时间内恢复时,会对原有缺血性心肌造成更严重的损害,被称为心肌缺血/再灌注损伤(Myocardial Ischemia/Reperfusion Injury, MIRI)。研究表明,自噬的适量激活不仅不会导致MIRI的细胞死亡,还可能起保护作用。Xie等[32]通过建立兔和原代心肌细胞的I/R模型,发现再灌注诱导的自噬增强有心脏保护作用。在心肌细胞缺氧预适应模型中发现,反复而短暂的缺氧可诱导自噬的发生,而抑制自噬后预适应产生的保护作用也随之消失[33] [34]。此外,在心肌梗死慢性期的存活心肌细胞内可检测到自噬体,提示自噬可促进心肌的存活;应用自噬抑制剂巴菲霉素A1可加速心室的重构和心脏功能的恶化[35]。新血管形成是心肌梗死的潜在治疗途径,有研究表明,miR-499-5p敲低能够增强血管内皮细胞的增殖、迁移及血管生成能力,通过靶向PTEN,负调节PI3K/AKT/mTOR参与细胞生长、存活和增殖。Wang等[36]使用丹参酮IIA干预心肌梗死小鼠的研究表明,丹参酮ⅡA可降低心肌梗死的面积,提高LVEF、LVFS、左心室体积、质量的水平,显著促进血管内皮生长因子(VEGF)、Ang-1基因的表达和提高微血管密度,促使内皮细胞的迁移、增殖、血管的形成,可见丹参酮IIA通过调节miR-499-5p/PTEN信号通路的表达以促进血管的形成。VEGF可强效促进血管生成,加快心肌梗死后侧支血管形成,有助于改善心肌缺血缺氧症状[37]

5. 自噬相关治疗策略在冠心病防治中的潜在应用

基于自噬在冠心病中的重要作用,调控自噬已成为冠心病防治的新策略。在药物干预方面,多种药物已被证实可以通过调节自噬发挥心血管保护作用。例如,雷帕霉素及其类似物通过抑制mTOR通路激活自噬,在动物模型中显示出减轻心肌缺血再灌注损伤和抑制动脉粥样硬化的作用[38]。研究表明,雷帕霉素及其类似物具有抗动脉粥样硬化的特性,并已经在临床上应用于预防支架内再狭窄[39]。此外,一些传统中药成分,如人参皂苷和姜黄素等,也被发现具有调节自噬的作用,可能成为冠心病治疗的潜在药物[40] [41]

在基因治疗方面,通过基因编辑技术调控自噬相关基因的表达为冠心病治疗提供了新的思路[42]。然而,基因治疗的安全性和有效性仍需进一步研究和验证。

在生活方式干预方面,适度的运动和热量限制已被证实可以通过激活自噬发挥心血管保护作用。研究表明,规律的有氧运动可以增强心肌细胞和血管细胞的自噬活性,改善心脏功能和血管内皮功能[43]。此外,通过增加身体锻炼、减少热量摄入、间歇性禁食等方式也被发现可以通过激活自噬减轻动脉粥样硬化[44]

目前关于自噬在冠心病治疗方面的研究颇多,尤其是中医药方面,未来关于我国中医药的研究将是重点关注方向。

6. 自噬在冠心病中的挑战与展望

尽管自噬在冠心病中的研究取得了一定的进展,但仍面临许多挑战。首先,自噬在冠心病中的调控机制仍不完全清楚,需要深入研究自噬上下游的信号通路以及分子之间在疾病中的相互作用。其次,自噬在冠心病中的具体作用机制尚需进一步明确,例如自噬在不同类型冠心病中的差异、自噬对冠心病不同临床结局的影响等。除此之外,自噬在治疗疾病时,药物的开发和应用也面临诸多挑战,如药物的疗效、安全性和耐受性等问题。

展望未来,随着对自噬机制的深入了解和技术的不断进步,我们有理由相信自噬在冠心病的研究和治疗中将发挥更加重要的作用,从而为冠心病的个体化治疗提供依据,降低冠心病的发病率和死亡率。

NOTES

*通讯作者。

参考文献

[1] 韩雅玲, 高炜, 傅向华. 稳定性冠心病诊断与治疗指南[J]. 中华心血管病杂志, 2018, 46(9): 680-694.
[2] 胡盛寿. 中国心血管健康与疾病报告2023概要[J]. 中国循环杂志, 2024, 39(7): 625-660.
[3] Klionsky, D.J. and Emr, S.D. (2000) Autophagy as a Regulated Pathway of Cellular Degradation. Science, 290, 1717-1721.
https://doi.org/10.1126/science.290.5497.1717
[4] Fleming, A., Bourdenx, M., Fujimaki, M., Karabiyik, C., Krause, G.J., Lopez, A., et al. (2022) The Different Autophagy Degradation Pathways and Neurodegeneration. Neuron, 110, 935-966.
https://doi.org/10.1016/j.neuron.2022.01.017
[5] Evans, T.D., Sergin, I., Zhang, X. and Razani, B. (2017) Target Acquired: Selective Autophagy in Cardiometabolic Disease. Science Signaling, 10, eaag2298.
https://doi.org/10.1126/scisignal.aag2298
[6] Fracchiolla, D., Chang, C., Hurley, J.H. and Martens, S. (2020) A PI3K-WIPI2 Positive Feedback Loop Allosterically Activates LC3 Lipidation in Autophagy. Journal of Cell Biology, 219, e201912098.
https://doi.org/10.1083/jcb.201912098
[7] Kim, J., Kundu, M., Viollet, B. and Guan, K. (2011) AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of ULK1. Nature Cell Biology, 13, 132-141.
https://doi.org/10.1038/ncb2152
[8] Karabiyik, C., Vicinanza, M., Son, S.M. and Rubinsztein, D.C. (2021) Glucose Starvation Induces Autophagy via ULK1-Mediated Activation of Pikfyve in an AMPK-Dependent Manner. Developmental Cell, 56, 1961-1975.e5.
https://doi.org/10.1016/j.devcel.2021.05.010
[9] Grunwald, D.S., Otto, N.M., Park, J., Song, D. and Kim, D. (2019) GABARAPs and LC3s Have Opposite Roles in Regulating ULK1 for Autophagy Induction. Autophagy, 16, 600-614.
https://doi.org/10.1080/15548627.2019.1632620
[10] Wong, P., Feng, Y., Wang, J., Shi, R. and Jiang, X. (2015) Regulation of Autophagy by Coordinated Action of mTORC1 and Protein Phosphatase 2A. Nature Communications, 6, Article No. 8048.
https://doi.org/10.1038/ncomms9048
[11] Nemchenko, A., Chiong, M., Turer, A., Lavandero, S. and Hill, J.A. (2011) Autophagy as a Therapeutic Target in Cardiovascular Disease. Journal of Molecular and Cellular Cardiology, 51, 584-593.
https://doi.org/10.1016/j.yjmcc.2011.06.010
[12] Rifki, O.F. and Hill, J.A. (2012) Cardiac Autophagy. Journal of Cardiovascular Pharmacology, 60, 248-252.
https://doi.org/10.1097/fjc.0b013e3182646cb1
[13] Shimomura, H., Terasaki, F., Hayashi, T., Kitaura, Y., Isomura, T. and Suma, H. (2001) Autophagic Degeneration as a Possible Mechanism of Myocardial Cell Death in Dilated Cardiomyopathy. Japanese Circulation Journal, 65, 965-968.
https://doi.org/10.1253/jcj.65.965
[14] Schiattarella, G.G. and Hill, J.A. (2015) Inhibition of Hypertrophy Is a Good Therapeutic Strategy in Ventricular Pressure Overload. Circulation, 131, 1435-1447.
https://doi.org/10.1161/circulationaha.115.013894
[15] Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. (2007) The Role of Autophagy in Cardiomyocytes in the Basal State and in Response to Hemodynamic Stress. Nature Medicine, 13, 619-624.
https://doi.org/10.1038/nm1574
[16] Zhu, H., Tannous, P., Johnstone, J.L., Kong, Y., Shelton, J.M., Richardson, J.A., et al. (2007) Cardiac Autophagy Is a Maladaptive Response to Hemodynamic Stress. Journal of Clinical Investigation, 117, 1782-1793.
https://doi.org/10.1172/jci27523
[17] Liu, S., Yao, S., Yang, H., Liu, S. and Wang, Y. (2023) Autophagy: Regulator of Cell Death. Cell Death & Disease, 14, Article No. 648.
https://doi.org/10.1038/s41419-023-06154-8
[18] Wu, X., Zheng, D., Qin, Y., Liu, Z., Zhang, G., Zhu, X., et al. (2017) Nobiletin Attenuates Adverse Cardiac Remodeling after Acute Myocardial Infarction in Rats via Restoring Autophagy Flux. Biochemical and Biophysical Research Communications, 492, 262-268.
https://doi.org/10.1016/j.bbrc.2017.08.064
[19] Huby, T. and Le Goff, W. (2022) Macrophage SR-B1 in Atherosclerotic Cardiovascular Disease. Current Opinion in Lipidology, 33, 167-174.
https://doi.org/10.1097/mol.0000000000000822
[20] Yang, N., Dong, B., Song, Y., Li, Y., Kou, L. and Qin, Q. (2022) Apolipoprotein J Attenuates Vascular Restenosis by Promoting Autophagy and Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells. Journal of Cardiovascular Translational Research, 15, 1086-1099.
https://doi.org/10.1007/s12265-022-10227-y
[21] Ouimet, M., Ediriweera, H., Afonso, M.S., Ramkhelawon, B., Singaravelu, R., Liao, X., et al. (2017) Microrna-33 Regulates Macrophage Autophagy in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1058-1067.
https://doi.org/10.1161/atvbaha.116.308916
[22] Barrett, T.J. (2020) Macrophages in Atherosclerosis Regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 20-33.
https://doi.org/10.1161/atvbaha.119.312802
[23] Kloc, M., Kubiak, J.Z. and Ghobrial, R.M. (2022) Macrophage-, Dendritic-, Smooth Muscle-, Endothelium-, and Stem Cells-Derived Foam Cells in Atherosclerosis. International Journal of Molecular Sciences, 23, Article No. 14154.
https://doi.org/10.3390/ijms232214154
[24] Ouimet, M., Franklin, V., Mak, E., Liao, X., Tabas, I. and Marcel, Y.L. (2011) Autophagy Regulates Cholesterol Efflux from Macrophage Foam Cells via Lysosomal Acid Lipase. Cell Metabolism, 13, 655-667.
https://doi.org/10.1016/j.cmet.2011.03.023
[25] Wang, T., Sun, C., Hu, L., Gao, E., Li, C., Wang, H., et al. (2020) Sirt6 Stabilizes Atherosclerosis Plaques by Promoting Macrophage Autophagy and Reducing Contact with Endothelial Cells. Biochemistry and Cell Biology, 98, 120-129.
https://doi.org/10.1139/bcb-2019-0057
[26] Li, M., et al. (2021) TFEB: A Emerging Regulator in Lipid Homeostasis for Atherosclerosis. Frontiers in Physiology, 12, Article ID: 639920.
[27] Deretic, V. (2021) Autophagy in Inflammation, Infection, and Immunometabolism. Immunity, 54, 437-453.
https://doi.org/10.1016/j.immuni.2021.01.018
[28] Yong, Y., Zhang, L., Hu, Y., Wu, J., Yan, L., Pan, Y., et al. (2022) Targeting Autophagy Regulation in NLRP3 Inflammasome-Mediated Lung Inflammation in Covid-19. Clinical Immunology, 244, Article ID: 109093.
https://doi.org/10.1016/j.clim.2022.109093
[29] 尚卫兵, 朱博冉, 张海楼, 等. 加味补阳还五汤对防治动脉粥样硬化的Toll样受体7及其下游信号转导通路的影响[J]. 中华中医药杂志, 2020, 35(4): 1767-1773.
[30] 朱博冉, 吴佳菲, 薛文达, 等. 加味补阳还五汤对防治动脉粥样硬化的ApoE-/-小鼠Toll样受体4及其下游主要元件的影响[J]. 中国实验方剂学杂志, 2017, 23(20): 150-156.
[31] 游宇, 李林, 侯贝贝, 等. 补阳还五汤抗ApoE-/-小鼠动脉粥样硬化作用与调控巨噬细胞自噬的机制研究[J]. 中药药理与临床, 2018, 34(4): 2-6.
[32] Xie, M., Kong, Y., Tan, W., May, H., Battiprolu, P.K., Pedrozo, Z., et al. (2014) Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy. Circulation, 129, 1139-1151.
https://doi.org/10.1161/circulationaha.113.002416
[33] Yan, L., Vatner, D.E., Kim, S., Ge, H., Masurekar, M., Massover, W.H., et al. (2005) Autophagy in Chronically Ischemic Myocardium. Proceedings of the National Academy of Sciences, 102, 13807-13812.
https://doi.org/10.1073/pnas.0506843102
[34] Huang, C., Yitzhaki, S., Perry, C.N., Liu, W., Giricz, Z., Mentzer, R.M., et al. (2010) Autophagy Induced by Ischemic Preconditioning Is Essential for Cardioprotection. Journal of Cardiovascular Translational Research, 3, 365-373.
https://doi.org/10.1007/s12265-010-9189-3
[35] Kanamori, H., Takemura, G., Goto, K., Maruyama, R., Tsujimoto, A., Ogino, A., et al. (2011) The Role of Autophagy Emerging in Postinfarction Cardiac Remodelling. Cardiovascular Research, 91, 330-339.
https://doi.org/10.1093/cvr/cvr073
[36] Wang, X. and Wu, C. (2022) Tanshinone IIA Improves Cardiac Function via Regulating Mir-499-5p Dependent Angiogenesis in Myocardial Ischemic Mice. Microvascular Research, 143, Article ID: 104399.
https://doi.org/10.1016/j.mvr.2022.104399
[37] Ríos-Navarro, C., Hueso, L., Díaz, A., Marcos-Garcés, V., Bonanad, C., Ruiz-Sauri, A., et al. (2021) Role of Antiangiogenic Vegf-A165b in Angiogenesis and Systolic Function after Reperfused Myocardial Infarction. Revista Española de Cardiología (English Edition), 74, 131-139.
https://doi.org/10.1016/j.rec.2020.03.013
[38] Huang, C., Huang, W., Zhang, L., Zhang, C., Zhou, C., Wei, W., et al. (2022) Targeting Peptide, Fluorescent Reagent Modified Magnetic Liposomes Coated with Rapamycin Target Early Atherosclerotic Plaque and Therapy. Pharmaceutics, 14, Article No. 1083.
https://doi.org/10.3390/pharmaceutics14051083
[39] Harada, Y., Colleran, R., Kufner, S., Giacoppo, D., Rheude, T., Michel, J., et al. (2016) Five-Year Clinical Outcomes in Patients with Diabetes Mellitus Treated with Polymer-Free Sirolimus-and Probucol-Eluting Stents versus Second-Generation Zotarolimus-Eluting Stents: A Subgroup Analysis of a Randomized Controlled Trial. Cardiovascular Diabetology, 15, Article No. 124.
https://doi.org/10.1186/s12933-016-0429-y
[40] Zhang, B., Yang, J., Li, X., Zhu, H., Sun, J., Jiang, L., et al. (2023) Tetrahydrocurcumin Ameliorates Postinfarction Cardiac Dysfunction and Remodeling by Inhibiting Oxidative Stress and Preserving Mitochondrial Function via SIRT3 Signaling Pathway. Phytomedicine, 121, Article ID: 155127.
https://doi.org/10.1016/j.phymed.2023.155127
[41] Lu, S., Luo, Y., Sun, G. and Sun, X. (2020) Ginsenoside Compound K Attenuates Ox-LDL-Mediated Macrophage Inflammation and Foam Cell Formation via Autophagy Induction and Modulating NF-κB, P38, and JNK MAPK Signaling. Frontiers in Pharmacology, 11, Article ID: 567238.
https://doi.org/10.3389/fphar.2020.567238
[42] 刘洪娟, 徐亚伟. CRISPR/Cas9基因编辑在心血管领域的应用进展[J]. 心血管病学进展, 2021, 42(12): 1117-1119.
[43] 吴爱萍, 朱悦红, 夏婉, 等. 有氧运动通过miR-34a/SIRT1通路调控自噬改善急性心肌梗死大鼠心肌损伤的作用机制[J]. 心脑血管病防治, 2024, 24(5): 13-18, 51.
[44] Stanciu, G.D., Rusu, R.N., Bild, V., Filipiuc, L.E., Tamba, B. and Ababei, D.C. (2021) Systemic Actions of SGLT2 Inhibition on Chronic mTOR Activation as a Shared Pathogenic Mechanism between Alzheimer’s Disease and Diabetes. Biomedicines, 9, Article No. 576.
https://doi.org/10.3390/biomedicines9050576