[1]
|
Tham, Y., Li, X., Wong, T.Y., Quigley, H.A., Aung, T. and Cheng, C. (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology, 121, 2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013
|
[2]
|
Foster, P.J. (2001) Glaucoma in China: How Big Is the Problem? British Journal of Ophthalmology, 85, 1277-1282. https://doi.org/10.1136/bjo.85.11.1277
|
[3]
|
Lam, D. (2002) Argon Laser Peripheral Iridoplasty versus Conventional Systemic Medical Therapy in Treatment of Acute Primary Angle-Closure Glaucoma a Prospective, Randomized, Controlled Trial. Ophthalmology, 109, 1591-1596. https://doi.org/10.1016/s0161-6420(02)01158-2
|
[4]
|
Jayaram, H., Kolko, M., Friedman, D.S. and Gazzard, G. (2023) Glaucoma: Now and Beyond. The Lancet, 402, 1788-1801. https://doi.org/10.1016/s0140-6736(23)01289-8
|
[5]
|
Zhang, X., Jiang, J., Kong, K., Li, F., Chen, S., Wang, P., et al. (2024) Optic Neuropathy in High Myopia: Glaucoma or High Myopia or Both? Progress in Retinal and Eye Research, 99, Article ID: 101246. https://doi.org/10.1016/j.preteyeres.2024.101246
|
[6]
|
Topouzis, F., Wilson, M.R., Harris, A., Anastasopoulos, E., Yu, F., Mavroudis, L., et al. (2007) Prevalence of Open-Angle Glaucoma in Greece: The Thessaloniki Eye Study. American Journal of Ophthalmology, 144, 511-519.e1. https://doi.org/10.1016/j.ajo.2007.06.029
|
[7]
|
Heijl, A., Bengtsson, B. and Oskarsdottir, S.E. (2013) Prevalence and Severity of Undetected Manifest Glaucoma: Results from the Early Manifest Glaucoma Trial Screening. Ophthalmology, 120, 1541-1545. https://doi.org/10.1016/j.ophtha.2013.01.043
|
[8]
|
Fleming, C. (2005) Screening for Primary Open-Angle Glaucoma in the Primary Care Setting: An Update for the US Preventive Services Task Force. The Annals of Family Medicine, 3, 167-170. https://doi.org/10.1370/afm.293
|
[9]
|
Chan, P.P.M., Larson, M.D., Dickerson, J.E., Mercieca, K., Koh, V.T.C., Lim, R., et al. (2023) Minimally Invasive Glaucoma Surgery: Latest Developments and Future Challenges. Asia-Pacific Journal of Ophthalmology, 12, 537-564. https://doi.org/10.1097/apo.0000000000000646
|
[10]
|
Tang, J. (2019) Cost-Effectiveness and Cost-Utility of Population-Based Glaucoma Screening in China: A Decision-Analytic Mar-Kov Model. The Lancet Global Health, 7, e968-e978.
|
[11]
|
Sharma, P., Sample, P.A., Zangwill, L.M. and Schuman, J.S. (2008) Diagnostic Tools for Glaucoma Detection and Management. Survey of Ophthalmology, 53, S17-S32. https://doi.org/10.1016/j.survophthal.2008.08.003
|
[12]
|
Killer, H. and Pircher, A. (2018) Normal Tension Glaucoma: Review of Current Understanding and Mechanisms of the Pathogenesis. Eye, 32, 924-930. https://doi.org/10.1038/s41433-018-0042-2
|
[13]
|
Almazroa, A., Sun, W., Alodhayb, S., Raahemifar, K. and Lakshminarayanan, V. (2017) Optic Disc Segmentation for Glaucoma Screening System Using Fundus Images. Clinical Ophthalmology, 11, 2017-2029. https://doi.org/10.2147/opth.s140061
|
[14]
|
Pietris, J., Lam, A., Bacchi, S., Gupta, A.K., Kovoor, J.G. and Chan, W.O. (2022) Health Economic Implications of Artificial Intelligence Implementation for Ophthalmology in Australia: A Systematic Review. Asia-Pacific Journal of Ophthalmology, 11, 554-562. https://doi.org/10.1097/apo.0000000000000565
|
[15]
|
Samuel, A.L. (1959) Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3, 210-229. https://doi.org/10.1147/rd.33.0210
|
[16]
|
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539
|
[17]
|
Aggarwal, R., Sounderajah, V., Martin, G., Ting, D.S.W., Karthikesalingam, A., King, D., et al. (2021) Diagnostic Accuracy of Deep Learning in Medical Imaging: A Systematic Review and Meta-Analysis. NPJ Digital Medicine, 4, Article No. 65. https://doi.org/10.1038/s41746-021-00438-z
|
[18]
|
Hemelings, R., Elen, B., Schuster, A.K., Blaschko, M.B., Barbosa-Breda, J., Hujanen, P., et al. (2023) A Generalizable Deep Learning Regression Model for Automated Glaucoma Screening from Fundus Images. NPJ Digital Medicine, 6, Article No. 112. https://doi.org/10.1038/s41746-023-00857-0
|
[19]
|
Li, F., Su, Y., Lin, F., Li, Z., Song, Y., Nie, S., et al. (2022) A Deep-Learning System Predicts Glaucoma Incidence and Progression Using Retinal Photographs. Journal of Clinical Investigation, 132, e157968. https://doi.org/10.1172/jci157968
|
[20]
|
Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., et al. (2016) Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316, Article No. 2402. https://doi.org/10.1001/jama.2016.17216
|
[21]
|
Ting, D.S.W., Cheung, C.Y., Lim, G., Tan, G.S.W., Quang, N.D., Gan, A., et al. (2017) Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images from Multiethnic Populations with Diabetes. JAMA, 318, Article No. 2211. https://doi.org/10.1001/jama.2017.18152
|
[22]
|
Lyu, C., et al. (2015) Deep Learning for Textual Entailment Recognition. 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), Vietri sul Mare, 9-11 November 2015, 154-161. https://ieeexplore.ieee.org/document/7372131
|
[23]
|
Chen, D., Ran, E.A., Tan, T.F., Ramachandran, R., Li, F., Cheung, C., et al. (2023) Applications of Artificial Intelligence and Deep Learning in Glaucoma. Asia-Pacific Journal of Ophthalmology, 12, 80-93. https://doi.org/10.1097/apo.0000000000000596
|
[24]
|
Wu, J., Nishida, T., Weinreb, R.N. and Lin, J. (2022) Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis. American Journal of Ophthalmology, 237, 1-12. https://doi.org/10.1016/j.ajo.2021.12.008
|
[25]
|
Chaurasia, A.K., Greatbatch, C.J. and Hewitt, A.W. (2022) Diagnostic Accuracy of Artificial Intelligence in Glaucoma Screening and Clinical Practice. Journal of Glaucoma, 31, 285-299. https://doi.org/10.1097/ijg.0000000000002015
|
[26]
|
Camara, J., Neto, A., Pires, I.M., Villasana, M.V., Zdravevski, E. and Cunha, A. (2022) Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification. Journal of Imaging, 8, Article No. 19. https://doi.org/10.3390/jimaging8020019
|
[27]
|
Pandey, P.U., Ballios, B.G., Christakis, P.G., Kaplan, A.J., Mathew, D.J., Ong Tone, S., et al. (2023) Ensemble of Deep Convolutional Neural Networks Is More Accurate and Reliable than Board-Certified Ophthalmologists at Detecting Multiple Diseases in Retinal Fundus Photographs. British Journal of Ophthalmology, 108, 417-423. https://doi.org/10.1136/bjo-2022-322183
|
[28]
|
Chowdhury, A., Lodh, A., Agarwal, R., Garai, R., Nandi, A., Murmu, N., et al. (2025) Rim Learning Framework Based on TS-GAN: A New Paradigm of Automated Glaucoma Screening from Fundus Images. Computers in Biology and Medicine, 187, Article ID: 109752. https://doi.org/10.1016/j.compbiomed.2025.109752
|
[29]
|
Fan, R., Bowd, C., Christopher, M., Brye, N., Proudfoot, J.A., Rezapour, J., et al. (2022) Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning. JAMA Ophthalmology, 140, 383-391. https://doi.org/10.1001/jamaophthalmol.2022.0244
|
[30]
|
Fan, R., Alipour, K., Bowd, C., Christopher, M., Brye, N., Proudfoot, J.A., et al. (2023) Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization. Ophthalmology Science, 3, Article ID: 100233. https://doi.org/10.1016/j.xops.2022.100233
|
[31]
|
Akbar, S., Hassan, S.A., Shoukat, A., Alyami, J. and Bahaj, S.A. (2022) Detection of Microscopic Glaucoma through Fundus Images Using Deep Transfer Learning Approach. Microscopy Research and Technique, 85, 2259-2276. https://doi.org/10.1002/jemt.24083
|
[32]
|
Chaurasia, A.K., Liu, G., Greatbatch, C.J., Gharahkhani, P., Craig, J.E., Mackey, D.A., et al. (2024) A Generalised Computer Vision Model for Improved Glaucoma Screening Using Fundus Images. Eye, 39, 109-117. https://doi.org/10.1038/s41433-024-03388-4
|
[33]
|
Mohammadzadeh, V., Wu, S., Besharati, S., Davis, T., Vepa, A., Morales, E., et al. (2024) Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning. American Journal of Ophthalmology, 262, 141-152. https://doi.org/10.1016/j.ajo.2024.02.007
|
[34]
|
de Vente, C., Vermeer, K.A., Jaccard, N., Wang, H., Sun, H., Khader, F., et al. (2024) AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge. IEEE Transactions on Medical Imaging, 43, 542-557. https://doi.org/10.1109/tmi.2023.3313786
|
[35]
|
Pascal, L., Perdomo, O.J., Bost, X., Huet, B., Otálora, S. and Zuluaga, M.A. (2022) Multi-Task Deep Learning for Glaucoma Detection from Color Fundus Images. Scientific Reports, 12, Article No. 12361. https://doi.org/10.1038/s41598-022-16262-8
|
[36]
|
Lin, M., Liu, L., Gordon, M., Kass, M., Wang, F., Van Tassel, S.H., et al. (2022) Primary Open-Angle Glaucoma Diagnosis from Optic Disc Photographs Using a Siamese Network. Ophthalmology Science, 2, Article ID: 100209. https://doi.org/10.1016/j.xops.2022.100209
|
[37]
|
Shi, M., Luo, Y., Tian, Y., Shen, L.Q., Zebardast, N., Eslami, M., et al. (2025) Equitable Artificial Intelligence for Glaucoma Screening with Fair Identity Normalization. NPJ Digital Medicine, 8, Article No. 46. https://doi.org/10.1038/s41746-025-01432-5
|
[38]
|
Ran, A.R., Wang, X., Chan, P.P., Wong, M.O.M., Yuen, H., Lam, N.M., et al. (2023) Developing a Privacy-Preserving Deep Learning Model for Glaucoma Detection: A Multicentre Study with Federated Learning. British Journal of Ophthalmology, 108, 1114-1123. https://doi.org/10.1136/bjo-2023-324188
|
[39]
|
Hogarty, D.T., Hogarty, J.P. and Hewitt, A.W. (2020) Smartphone Use in Ophthalmology: What Is Their Place in Clinical Practice? Survey of Ophthalmology, 65, 250-262. https://doi.org/10.1016/j.survophthal.2019.09.001
|
[40]
|
Rao, D.P., Shroff, S., Savoy, F.M., Hsu, C., Negiloni, K., et al. (2023) Evaluation of an Offline, Artificial Intelligence System for Referable Glaucoma Screening Using a Smartphone-Based Fundus Camera: A Prospective Study. Eye, 38, 1104-1111. https://doi.org/10.1038/s41433-023-02826-z
|
[41]
|
Guo, F., Li, W., Zhao, X., Qiu, J. and Mai, Y. (2020) A Mobile App for Glaucoma Diagnosis and Its Possible Clinical Applications. BMC Medical Informatics and Decision Making, 20, Article No. 128. https://doi.org/10.1186/s12911-020-1123-2
|
[42]
|
Phene, S., Dunn, R.C., Hammel, N., Liu, Y., Krause, J., Kitade, N., et al. (2019) Deep Learning and Glaucoma Specialists. Ophthalmology, 126, 1627-1639. https://doi.org/10.1016/j.ophtha.2019.07.024
|
[43]
|
Zapata, M.A., Royo-Fibla, D., Font, O., Vela, J.I., Marcantonio, I., Moya-Sanchez, E.U., et al. (2020) Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma. Clinical Ophthalmology, 14, 419-429. https://doi.org/10.2147/opth.s235751
|
[44]
|
Xu, Q., Song, X., Su, Y.F., et al. (2023) External Validation of a Deep Learning Detection System for Glaucomatous Optic Neuropathy: A Real-World Multicentre Study. Eye, 37, 3813-3818. https://doi.org/10.1038/s41433-023-02622-9
|
[45]
|
Gunasekeran, D.V., Zheng, F., Lim, G.Y.S., Chong, C.C.Y., Zhang, S., Ng, W.Y., et al. (2022) Acceptance and Perception of Artificial Intelligence Usability in Eye Care (APPRAISE) for Ophthalmologists: A Multinational Perspective. Frontiers in Medicine, 9, Article ID: 875242. https://doi.org/10.3389/fmed.2022.875242
|
[46]
|
Li, F., et al. (2024) The AI Revolution in Glaucoma: Bridging Challenges with Opportunities. Progress in Retinal and Eye Research, 103, Article ID: 101291.
|
[47]
|
Ho, S.Y., Phua, K., Wong, L. and Bin Goh, W.W. (2020) Extensions of the External Validation for Checking Learned Model Interpretability and Generalizability. Patterns, 1, Article ID: 100129. https://doi.org/10.1016/j.patter.2020.100129
|
[48]
|
Lv, B., Li, S., Liu, Y., Wang, W., Li, H., Zhang, X., et al. (2022) Development and Validation of an Explainable Artificial Intelligence Framework for Macular Disease Diagnosis Based on Optical Coherence Tomography Images. Retina, 42, 456-464. https://doi.org/10.1097/iae.0000000000003325
|