[1]
|
Yao, W., Liu, C., Kong, X., Zhang, Z., Wang, Y. and Gao, W. (2023) A Systematic Review of Heat Pipe Applications in Buildings. Journal of Building Engineering, 76, Article 107287. https://doi.org/10.1016/j.jobe.2023.107287
|
[2]
|
Diaz, M.E., Savage, M.D. and Cerro, R.L. (2016) Prediction of Static Contact Angles on the Basis of Molecular Forces and Adsorption Data. Physical Review E, 94, Article 022801. https://doi.org/10.1103/physreve.94.022801
|
[3]
|
Kilic, K.I. and Dauskardt, R.H. (2019) Design of Ultrastiff Organosilicate Hybrid Glasses. Advanced Functional Materials, 29, Article 1904890. https://doi.org/10.1002/adfm.201904890
|
[4]
|
Zhang, J., Zhu, L., Wang, C., Huang, J. and Guo, Z. (2023) Robust Superamphiphobic Coating Applied to Grease-Proof Mining Transformer Components. Langmuir, 39, 7968-7978. https://doi.org/10.1021/acs.langmuir.3c00858
|
[5]
|
Zhong, J., Zheng, X., He, G., Xia, J. and Pu, Z. (2020) Ultralow Dielectric Constant and High Temperature Resistance Composites Based on Self-Crosslinking Polysulfone and Hollow Glass Beads. Journal of Electronic Materials, 49, 7581-7588. https://doi.org/10.1007/s11664-020-08491-2
|
[6]
|
Mollaee, M., Zhu, X., Jenkins, S., Zong, J., Temyanko, E., Norwood, R., et al. (2020) Magneto-Optical Properties of Highly Dy3+ Doped Multicomponent Glasses. Optics Express, 28, 11789-11796. https://doi.org/10.1364/oe.392008
|
[7]
|
Jiang, J., Guo, Q., Wang, B., Zhou, L., Xu, C., Deng, C., et al. (2016) Research on Variation of Static Contact Angle in Incomplete Wetting System and Modeling Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 400-406. https://doi.org/10.1016/j.colsurfa.2016.05.051
|
[8]
|
Duchemin, B., Cazaux, G., Gomina, M. and Bréard, J. (2021) Temperature-Dependence of the Static Contact Angle: A Transition State Theory Approach. Journal of Colloid and Interface Science, 592, 215-226. https://doi.org/10.1016/j.jcis.2021.02.059
|
[9]
|
Hamad, H.L. and Mawlud, S.Q. (2023) Spectroscopic and Surface Wetting Properties of Samarium Doped Lead-Tellurite Glass Embedded with Titanium Nanoparticles: Self-Cleaning Glass. Preprint (Version 1). https://doi.org/10.21203/rs.3.rs-3266717/v1
|
[10]
|
Ivanovski, V., Mayerhöfer, T.G., Kriltz, A. and Popp, J. (2017) IR-ATR Investigation of Surface Anisotropy in Silicate Glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 608-617. https://doi.org/10.1016/j.saa.2016.10.027
|
[11]
|
Wang, Z., Li, H.N., Yu, T.B., Chen, H. and Zhao, J. (2019) On the Predictive Modelling of Machined Surface Topography in Abrasive Air Jet Polishing of Quartz Glass. International Journal of Mechanical Sciences, 152, 1-18. https://doi.org/10.1016/j.ijmecsci.2018.12.041
|
[12]
|
Zheng, W., Van den Hurk, R., Cao, Y., Du, R., Sun, X., Wang, Y., et al. (2016) Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors. Biosensors, 6, Article 8. https://doi.org/10.3390/bios6010008
|
[13]
|
Soldera, M., Alamri, S., Sürmann, P.A., Kunze, T. and Lasagni, A.F. (2021) Microfabrication and Surface Functionalization of Soda Lime Glass through Direct Laser Interference Patterning. Nanomaterials, 11, 129-146. https://doi.org/10.3390/nano11010129
|
[14]
|
Li, Z., Liu, J., Yuan, Y., Li, E. and Wang, F. (2017) Effects of Surface Fluoride-Functionalizing of Glass Fiber on the Properties of PTFE/Glass Fiber Microwave Composites. RSC Advances, 7, 22810-22817. https://doi.org/10.1039/c7ra02715j
|
[15]
|
Chen, Y., Kang, E.T., Neoh, K.G. and Huang, W. (2001) Electroless Metallization of Glass Surfaces Functionalized by Silanization and Graft Polymerization of Aniline. Langmuir, 17, 7425-7432. https://doi.org/10.1021/la010866y
|
[16]
|
Liu, J. and Dong, S. (2000) Grafting of Diaminoalkane on Glassy Carbon Surface and Its Functionalization. Electrochemistry Communications, 2, 707-712. https://doi.org/10.1016/s1388-2481(00)00105-3
|
[17]
|
Yilbas, B.S., Ibrahim, A., Ali, H., Khaled, M. and Laoui, T. (2018) Hydrophobic and Optical Characteristics of Graphene and Graphene Oxide Films Transferred onto Functionalized Silica Particles Deposited Glass Surface. Applied Surface Science, 442, 213-223. https://doi.org/10.1016/j.apsusc.2018.02.176
|
[18]
|
Esmaeilzadeh, J., Hesaraki, S., Hadavi, S.M., Ebrahimzadeh, M.H. and Esfandeh, M. (2017) Poly (D/L) Lactide/Polycaprolactone/Bioactive Glasss Nanocomposites Materials for Anterior Cruciate Ligament Reconstruction Screws: The Effect of Glass Surface Functionalization on Mechanical Properties and Cell Behaviors. Materials Science and Engineering: C, 77, 978-989. https://doi.org/10.1016/j.msec.2017.03.134
|
[19]
|
Hagg, D., Eifert, A., Dörr, A., Bodziony, F. and Marschall, H. (2023) Counter-Intuitive Penetration of Droplets into Hydrophobic Gaps in Theory and Experiment. Scientific Reports, 13, Article No. 16518. https://doi.org/10.1038/s41598-023-43138-2
|
[20]
|
Han, T., Shr, J., Wu, C. and Hsieh, C. (2007) A Modified Wenzel Model for Hydrophobic Behavior of Nanostructured Surfaces. Thin Solid Films, 515, 4666-4669. https://doi.org/10.1016/j.tsf.2006.11.008
|
[21]
|
Hou, B., Wu, C., Li, X., Huang, J. and Chen, M. (2021) Contact Line-Based Model for the Cassie-Wenzel Transition of a Sessile Droplet on the Hydrophobic Micropillar-Structured Surfaces. Applied Surface Science, 542, Article 148611. https://doi.org/10.1016/j.apsusc.2020.148611
|
[22]
|
Hertaeg, M.J., Tabor, R.F., Berry, J.D. and Garnier, G. (2019) Dynamics of Stain Growth from Sessile Droplets on Paper. Journal of Colloid and Interface Science, 541, 312-321. https://doi.org/10.1016/j.jcis.2019.01.032
|
[23]
|
Parvate, S., Dixit, P. and Chattopadhyay, S. (2020) Superhydrophobic Surfaces: Insights from Theory and Experiment. The Journal of Physical Chemistry B, 124, 1323-1360. https://doi.org/10.1021/acs.jpcb.9b08567
|
[24]
|
Nandakumar Chandran, K., Naveen, P.T., Abhilash, R. and Kumar Ranjith, S. (2021) Theoretical Modelling of Droplet Extension on Hydrophobic Surfaces. International Journal of Computational Fluid Dynamics, 35, 534-548. https://doi.org/10.1080/10618562.2021.1998464
|
[25]
|
Landel, J.R., Peaudecerf, F.J., Temprano-Coleto, F., Gibou, F., Goldstein, R.E. and Luzzatto-Fegiz, P. (2020) A Theory for the Slip and Drag of Superhydrophobic Surfaces with Surfactant. Journal of Fluid Mechanics, 883, A18. https://doi.org/10.1017/jfm.2019.857
|
[26]
|
Razavi, S.M.R., Oh, J., Sett, S., Feng, L., Yan, X., Hoque, M.J., et al. (2017) Superhydrophobic Surfaces Made from Naturally Derived Hydrophobic Materials. ACS Sustainable Chemistry & Engineering, 5, 11362-11370. https://doi.org/10.1021/acssuschemeng.7b02424
|
[27]
|
Young, T. (1805) III. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87. https://doi.org/10.1098/rstl.1805.0005
|
[28]
|
Onda, T. (2022) Theoretical Investigation of Wenzel and Cassie Wetting States on Porous Films and Fiber Meshes. Langmuir, 38, 13744-13752. https://doi.org/10.1021/acs.langmuir.2c01847
|
[29]
|
Li, H., Feng, X. and Zhang, K. (2021) Study of the Classical Cassie Theory and Wenzel Theory Used in Nanoscale. Journal of Bionic Engineering, 18, 398-408. https://doi.org/10.1007/s42235-021-0029-8
|
[30]
|
Kim, D. and Ryu, S. (2020) How and When the Cassie-Baxter Droplet Starts to Slide on Textured Surfaces. Langmuir, 36, 14031-14038. https://doi.org/10.1021/acs.langmuir.0c02614
|
[31]
|
Marmur, A. (2021) Surface Tension of an Ideal Solid: What Does It Mean? Current Opinion in Colloid & Interface Science, 51, Article 101388. https://doi.org/10.1016/j.cocis.2020.09.001
|
[32]
|
Yu, S., Guo, Z. and Liu, W. (2015) Biomimetic Transparent and Superhydrophobic Coatings: From Nature and Beyond Nature. Chemical Communications, 51, 1775-1794. https://doi.org/10.1039/c4cc06868h
|
[33]
|
Feng, J., Xin, J., Feng, Q., Liu, Z., Wang, D., Ma, D., et al. (2023) Facile Fabrication of a Low-Cost, Room-Temperature Curable Superhydrophobic Coating with Excellent Stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 668, Article 131477. https://doi.org/10.1016/j.colsurfa.2023.131477
|
[34]
|
Han, Z., Yuan, J., Tian, P., Liu, B., Tan, J. and Zhang, Q. (2023) Preparation of Highly Transparent and Wear-Resistant Sio2 Coating by Alkali/Acid Dual Catalyzed Sol-Gel Method. Journal of Materials Research, 38, 3316-3323. https://doi.org/10.1557/s43578-023-01062-1
|
[35]
|
Jing, X., Xia, Y., Chen, F., Yang, C., Yang, Z. and Jaffery, S.H.I. (2022) Preparation of Superhydrophobic Glass Surface with High Adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633, Article 127861. https://doi.org/10.1016/j.colsurfa.2021.127861
|
[36]
|
Liu, P., Bai, X., Xing, W., Zhang, Y., Chen, N., Zhang, Y., et al. (2021) Translucent and Superhydrophobic Glass for Self-Cleaning and Acid Rain-Restraining. Materials Chemistry and Physics, 259, Article 124049. https://doi.org/10.1016/j.matchemphys.2020.124049
|
[37]
|
赵高扬, 郅晓, 常慧丽. 玻璃表面超疏水性薄膜制备[J]. 功能材料, 2007, 38(6): 1034-1036.
|
[38]
|
王薇, 周忠华, 脱永峰, 等. 耐磨透明超疏水薄膜的制备及工艺研究[J]. 厦门大学学报(自然科学版), 2014, 53(5): 718-725.
|
[39]
|
胡昌义, 李靖华. 化学气相沉积技术与材料制备[J]. 稀有金属, 2001, 25(5): 364-368.
|
[40]
|
Zheng, J., Yang, J., Cao, W., Huang, Y., Zhou, Z. and Huang, Y. (2022) Fabrication of Transparent Wear-Resistant Superhydrophobic Sio2 Film via Phase Separation and Chemical Vapor Deposition Methods. Ceramics International, 48, 32143-32151. https://doi.org/10.1016/j.ceramint.2022.07.154
|
[41]
|
Kalmoni, J.J., Heale, F.L., Blackman, C.S., Parkin, I.P. and Carmalt, C.J. (2023) A Single-Step Route to Robust and Fluorine-Free Superhydrophobic Coatings via Aerosol-Assisted Chemical Vapor Deposition. Langmuir, 39, 7731-7740. https://doi.org/10.1021/acs.langmuir.3c00554
|
[42]
|
Zhang, F., Shi, Z., Jiang, Y., Xu, C., Wu, Z., Wang, Y., et al. (2017) Fabrication of Transparent Superhydrophobic Glass with Fibered-Silica Network. Applied Surface Science, 407, 526-531. https://doi.org/10.1016/j.apsusc.2017.02.207
|
[43]
|
Pratiwi, N., Zulhadjri, Arief, S. and Wellia, D.V. (2020) A Facile Preparation of Transparent Ultrahydrophobic Glass via Tio2/Octadecyltrichlorosilane (ODTS) Coatings for Self‐Cleaning Material. ChemistrySelect, 5, 1450-1454. https://doi.org/10.1002/slct.201904153
|
[44]
|
Zhao, S., Zhao, J., Wen, M., Yao, M., Wang, F., Huang, F., et al. (2018) Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass. Langmuir, 34, 11316-11324. https://doi.org/10.1021/acs.langmuir.8b01960
|
[45]
|
Liu, X., Wang, Y., Chen, Z., Ben, K. and Guan, Z. (2016) A Self-Modification Approach toward Transparent Superhydrophobic Glass for Rainproofing and Superhydrophobic Fiberglass Mesh for Oil-Water Separation. Applied Surface Science, 360, 789-797. https://doi.org/10.1016/j.apsusc.2015.11.069
|
[46]
|
刘善堂. 扫描探针加工和自组装技术相结合的研究进展-表面图形可控的功能纳米结构的制备[J]. 武汉工程大学学报, 2007, 29(4): 1-4.
|
[47]
|
Maoz, R., Burshtain, D., Cohen, H., Nelson, P., Berson, J., Yoffe, A., et al. (2016) Site‐Targeted Interfacial Solid‐Phase Chemistry: Surface Functionalization of Organic Monolayers via Chemical Transformations Locally Induced at the Boundary between Two Solids. Angewandte Chemie International Edition, 55, 12366-12371. https://doi.org/10.1002/anie.201604973
|
[48]
|
徐国华, HigashitaniKo. OTS自组装单分子膜在玻璃表面形成过程的AFM研究[J]. 高等学校化学学报, 2000, 21(8): 1257-1260.
|
[49]
|
曹耿, 潘美英, 钟锐, 等. 普通硅酸盐玻璃表面的疏水改性及其微纳结构表征[J]. 四川大学学报, 2014, 51(4): 804-808.
|
[50]
|
王华林, 史铁均, 杨善中, 等. 聚合物/层状硅酸盐有机无机纳米复合材料制备与性能研究进展[J]. 高分子材料科学与工程, 2005, 21(6): 36-44.
|
[51]
|
Wang, D., Zhang, Z., Li, Y. and Xu, C. (2014) Highly Transparent and Durable Superhydrophobic Hybrid Nanoporous Coatings Fabricated from Polysiloxane. ACS Applied Materials & Interfaces, 6, 10014-10021. https://doi.org/10.1021/am405884x
|
[52]
|
Park, E.J., Sim, J.K., Jeong, M., Seo, H.O. and Kim, Y.D. (2013) Transparent and Superhydrophobic Films Prepared with Polydimethylsiloxane-Coated Silica Nanoparticles. RSC Advances, 3, 12571-12576. https://doi.org/10.1039/c3ra42402b
|
[53]
|
Seo, K., Kim, M., Seok, S. and Kim, D.H. (2016) Transparent Superhydrophobic Surface by Silicone Oil Combustion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 110-118. https://doi.org/10.1016/j.colsurfa.2015.12.022
|
[54]
|
Liu, Y., Liu, H., Feng, Y., Liu, Z., Hu, H., Yu, B., et al. (2016) A Nanotubular Coating with Both High Transparency and Healable Superhydrophobic Self-Cleaning Properties. RSC Advances, 6, 21362-21366. https://doi.org/10.1039/c5ra26977f
|
[55]
|
Yokoi, N., Manabe, K., Tenjimbayashi, M. and Shiratori, S. (2015) Optically Transparent Superhydrophobic Surfaces with Enhanced Mechanical Abrasion Resistance Enabled by Mesh Structure. ACS Applied Materials & Interfaces, 7, 4809-4816. https://doi.org/10.1021/am508726k
|
[56]
|
Her, E.K., Ko, T., Shin, B., Roh, H., Dai, W., Seong, W.K., et al. (2013) Superhydrophobic Transparent Surface of Nanostructured Poly(Methyl Methacrylate) Enhanced by a Hydrolysis Reaction. Plasma Processes and Polymers, 10, 481-488. https://doi.org/10.1002/ppap.201200131
|
[57]
|
Fresnais, J., Chapel, J.P. and Poncin-Epaillard, F. (2006) Synthesis of Transparent Superhydrophobic Polyethylene Surfaces. Surface and Coatings Technology, 200, 5296-5305. https://doi.org/10.1016/j.surfcoat.2005.06.022
|
[58]
|
Teshima, K., Sugimura, H., Inoue, Y., Takai, O. and Takano, A. (2005) Transparent Ultra Water-Repellent Poly(Ethylene Terephthalate) Substrates Fabricated by Oxygen Plasma Treatment and Subsequent Hydrophobic Coating. Applied Surface Science, 244, 619-622. https://doi.org/10.1016/j.apsusc.2004.10.143
|
[59]
|
Palumbo, F., Di Mundo, R., Cappelluti, D. and d’Agostino, R. (2011) Superhydrophobic and Superhydrophilic Polycarbonate by Tailoring Chemistry and Nano‐Texture with Plasma Processing. Plasma Processes and Polymers, 8, 118-126. https://doi.org/10.1002/ppap.201000098
|
[60]
|
Wang, G., Liang, W., Wang, B., Zhang, Y., Li, J., Shi, L., et al. (2013) Conductive and Transparent Superhydrophobic Films on Various Substrates by in Situ Deposition. Applied Physics Letters, 102, Article 203703. https://doi.org/10.1063/1.4807472
|
[61]
|
Kim, H., Sohn, S. and Ahn, J.S. (2013) Transparent and Super-Hydrophobic Properties of PTFE Films Coated on Glass Substrate Using RF-Magnetron Sputtering and Cat-CVD Methods. Surface and Coatings Technology, 228, S389-S392. https://doi.org/10.1016/j.surfcoat.2012.05.085
|