[1]
|
Cialenco, I. and Glatt-Holtz, N. (2011) Parameter Estimation for the Stochastically Perturbed Navier-Stokes Equations. Stochastic Processes and their Applications, 121, 701-724. https://doi.org/10.1016/j.spa.2010.12.007
|
[2]
|
Cialenco, I. and Huang, Y. (2019) A Note on Parameter Estimation for Discretely Sampled SPDEs. Stochastics and Dynamics, 20, Article 2050016. https://doi.org/10.1142/s0219493720500161
|
[3]
|
Torres, S., Tudor, C. and Viens, F. (2014) Quadratic Variations for the Fractional-Colored Stochastic Heat Equation. Electronic Journal of Probability, 19, 1-51. https://doi.org/10.1214/ejp.v19-2698
|
[4]
|
Gamain, J. and Tudor, C.A. (2023) Exact Variation and Drift Parameter Estimation for the Nonlinear Fractional Stochastic Heat Equation. Japanese Journal of Statistics and Data Sci- ence, 6, 381-406. https://doi.org/10.1007/s42081-023-00188-0
|
[5]
|
Hu, Y. and Nualart, D. (2010) Parameter Estimation for Fractional Ornstein-Uhlenbeck Pro- cesses. Statistics Probability Letters, 80, 1030-1038. https://doi.org/10.1016/j.spl.2010.02.018
|
[6]
|
Cialenco, I., Lototsky, S.V. and Pospíšil, J. (2009) Asymptotic Properties of the Maximum Likelihood Estimator for Stochastic Parabolic Equations with Additive Fractional Brownian Motion. Stochastics and Dynamics, 9, 169-185. https://doi.org/10.1142/s0219493709002610
|
[7]
|
Markussen, B. (2003) Likelihood Inference for a Discretely Observed Stable Processde.
|
[8]
|
Bernoulli, 9, 745-762. https://doi.org/10.3150/bj/1066418876
|
[9]
|
Alòs, E., Mazet, O. and Nualart, D. (2001) Stochastic Calculus with Respect to Gaussian Processes. The Annals of Probability, 29, 766-801. https://doi.org/10.1214/aop/1008956692
|
[10]
|
Nualart, D. (1995) The Malliavin Calculus and Related Topics. Springer.
|
[11]
|
Pospíšil, J. and Tribe, R. (2007) Parameter Estimates and Exact Variations for Stochastic Heat Equations Driven by Space-Time White Noise. Stochastic Analysis and Applications, 25, 593-611. https://doi.org/10.1080/07362990701282849
|
[12]
|
Nourdin, I. and Peccati, G. (2012) Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality. Cambridge University Press. https://doi.org/10.1017/cbo9781139084659
|