[1]
|
López, M.J., Carbajal, J., Alfaro, A.L., Saravia, L.G., Zanabria, D., Araujo, J.M., et al. (2023) Characteristics of Gastric Cancer around the World. Critical Reviews in Oncology/Hematology, 181, Article ID: 103841. https://doi.org/10.1016/j.critrevonc.2022.103841
|
[2]
|
Liu, G. and Song, G. (2019) Regulation of Tumor Cell Glycometabolism and Tumor Therapy. Journal of Biomedical Engineering, 36, 691-695.
|
[3]
|
El Hassouni, B., Granchi, C., Vallés-Martí, A., Supadmanaba, I.G.P., Bononi, G., Tuccinardi, T., et al. (2020) The Dichotomous Role of the Glycolytic Metabolism Pathway in Cancer Metastasis: Interplay with the Complex Tumor Microenvironment and Novel Therapeutic Strategies. Seminars in Cancer Biology, 60, 238-248. https://doi.org/10.1016/j.semcancer.2019.08.025
|
[4]
|
Tufail, M., Jiang, C. and Li, N. (2024) Altered Metabolism in Cancer: Insights into Energy Pathways and Therapeutic Targets. Molecular Cancer, 23, Article No. 203. https://doi.org/10.1186/s12943-024-02119-3
|
[5]
|
Pavlova, N.N. and Thompson, C.B. (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism, 23, 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
|
[6]
|
DeBerardinis, R.J. and Chandel, N.S. (2016) Fundamentals of Cancer Metabolism. Science Advances, 2, e1600200. https://doi.org/10.1126/sciadv.1600200
|
[7]
|
Vander Heiden, M.G. and DeBerardinis, R.J. (2017) Understanding the Intersections between Metabolism and Cancer Biology. Cell, 168, 657-669. https://doi.org/10.1016/j.cell.2016.12.039
|
[8]
|
Zhang, Y., Fang, N., You, J. and Zhou, Q. (2014) Advances in the Relationship between Tumor Cell Metabolism and Tumor Metastasis. Chinese Journal of Lung Cancer, 17, 812-818.
|
[9]
|
Damaghi, M., Wojtkowiak, J.W. and Gillies, R.J. (2013) Ph Sensing and Regulation in Cancer. Frontiers in Physiology, 4, Article 370. https://doi.org/10.3389/fphys.2013.00370
|
[10]
|
Swietach, P., Vaughan-Jones, R.D., Harris, A.L. and Hulikova, A. (2014) The Chemistry, Physiology and Pathology of pH in Cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, Article ID: 20130099. https://doi.org/10.1098/rstb.2013.0099
|
[11]
|
Supuran, C.T. (2008) Carbonic Anhydrases: Novel Therapeutic Applications for Inhibitors and Activators. Nature Reviews Drug Discovery, 7, 168-181. https://doi.org/10.1038/nrd2467
|
[12]
|
Occhipinti, R. and Boron, W.F. (2019) Role of Carbonic Anhydrases and Inhibitors in Acid-Base Physiology: Insights from Mathematical Modeling. International Journal of Molecular Sciences, 20, Article 3841. https://doi.org/10.3390/ijms20153841
|
[13]
|
Lee, S., Boron, W.F. and Occhipinti, R. (2023) Potential Novel Role of Membrane-Associated Carbonic Anhydrases in the Kidney. International Journal of Molecular Sciences, 24, Article 4251. https://doi.org/10.3390/ijms24044251
|
[14]
|
Sheng, G., Gao, Y., Wu, H., Liu, Y. and Yang, Y. (2023) Functional Heterogeneity of MCT1 and MCT4 in Metabolic Reprogramming Affects Osteosarcoma Growth and Metastasis. Journal of Orthopaedic Surgery and Research, 18, Article No. 131. https://doi.org/10.1186/s13018-023-03623-w
|
[15]
|
Felmlee, M.A., Jones, R.S., Rodriguez-Cruz, V., Follman, K.E. and Morris, M.E. (2020) Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease. Pharmacological Reviews, 72, 466-485. https://doi.org/10.1124/pr.119.018762
|
[16]
|
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Research, 43, e47. https://doi.org/10.1093/nar/gkv007
|
[17]
|
Liu, S., Wang, Z., Zhu, R., Wang, F., Cheng, Y. and Liu, Y. (2021) Three Differential Expression Analysis Methods for RNA Sequencing: Limma, EdgeR, DESeq2. Journal of Visualized Experiments, 175, e62528. https://doi.org/10.3791/62528-v
|
[18]
|
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., et al. (2005) Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proceedings of the National Academy of Sciences, 102, 15545-15550. https://doi.org/10.1073/pnas.0506580102
|
[19]
|
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. and Ishiguro-Watanabe, M. (2022) KEGG for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic Acids Research, 51, D587-D592. https://doi.org/10.1093/nar/gkac963
|
[20]
|
Langfelder, P. and Horvath, S. (2008) WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinformatics, 9, Article No. 559. https://doi.org/10.1186/1471-2105-9-559
|
[21]
|
Statnikov, A., Wang, L. and Aliferis, C.F. (2008) A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification. BMC Bioinformatics, 9, Article No. 319. https://doi.org/10.1186/1471-2105-9-319
|
[22]
|
Wang, Q., Qiao, W., Zhang, H., Liu, B., Li, J., Zang, C., et al. (2022) Nomogram Established on Account of Lasso-Cox Regression for Predicting Recurrence in Patients with Early-Stage Hepatocellular Carcinoma. Frontiers in Immunology, 13, Article 1019638. https://doi.org/10.3389/fimmu.2022.1019638
|
[23]
|
Engebretsen, S. and Bohlin, J. (2019) Statistical Predictions with Glmnet. Clinical Epigenetics, 11, Article No. 123. https://doi.org/10.1186/s13148-019-0730-1
|
[24]
|
Rich, J.T., Neely, J.G., Paniello, R.C., Voelker, C.C.J., Nussenbaum, B. and Wang, E.W. (2010) A Practical Guide to Understanding Kaplan‐Meier Curves. Otolaryngology—Head and Neck Surgery, 143, 331-336. https://doi.org/10.1016/j.otohns.2010.05.007
|
[25]
|
Peng, Y., Wang, Y., Zhou, C., Mei, W. and Zeng, C. (2022) PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Frontiers in Oncology, 12, Article 819128. https://doi.org/10.3389/fonc.2022.819128
|
[26]
|
Kroemer, G. and Pouyssegur, J. (2008) Tumor Cell Metabolism: Cancer’s Achilles’ Heel. Cancer Cell, 13, 472-482. https://doi.org/10.1016/j.ccr.2008.05.005
|
[27]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
|
[28]
|
Xu, H., Ghishan, F.K. and Kiela, P.R. (2018) SLC9 Gene Family: Function, Expression, and Regulation. Comprehensive Physiology, 8, 555-583.
|
[29]
|
Bernardazzi, C., Sheikh, I.A., Xu, H. and Ghishan, F.K. (2022) The Physiological Function and Potential Role of the Ubiquitous Na+/H+ Exchanger Isoform 8 (NHE8): An Overview Data. International Journal of Molecular Sciences, 23, Article 10857. https://doi.org/10.3390/ijms231810857
|
[30]
|
Laubitz, D., Gurney, M.A., Midura-Kiela, M., Clutter, C., Besselsen, D.G., Chen, H., et al. (2022) Decreased NHE3 Expression in Colon Cancer Is Associated with DNA Damage, Increased Inflammation and Tumor Growth. Scientific Reports, 12, Article No. 14725. https://doi.org/10.1038/s41598-022-19091-x
|
[31]
|
Ueno, Y., Ozaki, S., Umakoshi, A., Yano, H., Choudhury, M.E., Abe, N., et al. (2019) Chloride Intracellular Channel Protein 2 in Cancer and Non-Cancer Human Tissues: Relationship with Tight Junctions. Tissue Barriers, 7, Article ID: 1593775. https://doi.org/10.1080/21688370.2019.1593775
|
[32]
|
Kostritskaia, Y., Klüssendorf, M., Pan, Y.E., Hassani Nia, F., Kostova, S. and Stauber, T. (2023) Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206. In: Fahlke, C., Ed., Anion Channels and Transporters, Springer, 181-218. https://doi.org/10.1007/164_2023_673
|
[33]
|
Lu, P., Ding, Q., Li, X., Ji, X., Li, L., Fan, Y., et al. (2019) SWELL1 Promotes Cell Growth and Metastasis of Hepatocellular Carcinoma in Vitro and in Vivo. EBioMedicine, 48, 100-116. https://doi.org/10.1016/j.ebiom.2019.09.007
|
[34]
|
Guang, D., Xiaofei, Z., Yu, M., Hui, N., Min, S. and Xiaonan, S. (2024) Pomiferin Targeting SLC9A9 Based on Histone Acetylation Modification Pattern Is a Potential Therapeutical Option for Gastric Cancer with High Malignancy. Biochemical Pharmacology, 226, Article ID: 116333. https://doi.org/10.1016/j.bcp.2024.116333
|
[35]
|
Liu, T., Li, Y., Wang, D., Stauber, T. and Zhao, J. (2023) Trends in Volume-Regulated Anion Channel (VRAC) Research: Visualization and Bibliometric Analysis from 2014 to 2022. Frontiers in Pharmacology, 14, Article 1234885. https://doi.org/10.3389/fphar.2023.1234885
|