基于网络药理学探讨GLP-1RAs治疗非酒精性脂肪肝合并糖尿病的作用机制
Exploring the Mechanism of Action of GLP-1RAs in the Treatment of Non-Alcoholic Fatty Liver Disease Combined with Diabetes Based on Network Pharmacology
摘要: 目的:基于网络药理学探讨GLP-1RAs治疗非酒精性脂肪肝合并糖尿病的作用机制。方法:通过Pharmmapper、TargetNET、SEA和the Binding Database数据库查找筛选4种GLP-1RAs的作用靶点。通过GeneCards、DisGeNET以及OMIM查找并筛选NAFLD和T2DM的致病基因。使用DAVID数据库进行GO和KEGG富集分析,Cytoscape3.10.0绘制GLP-1RAs治疗NAFLD和T2DM的“药物–靶点–疾病的网络关系图”,利用MCODE插件进行聚类分析,Hubba插件筛选核心靶点,并绘制“核心靶点–通路的网络图”。结果:通过网络药理学筛选出GLP-1RAs治疗NAFLD合并T2DM的35个潜在靶点,筛选后获得13个核心靶点,它们分别是CASP3、ESR1、SIRT1、IGF1R、CCND1、GSK3B、AR、PRKACA、PARP1、NOS3、REN、MAPK8、ACE1。GO和KEGG富集分析结果表明,RAS系统相关通路和胰岛素抵抗相关通路是研究的关键通路。结论:GLP-1RAs有可能是通过激活RAS系统中ACE2/Ang(1-7)/Mas轴,对抗ACE/AngII/AT1R轴发挥其作用,以及根据血糖水平调节胰岛素的释放,增加胰岛素的生物合成和分泌等途径改善胰岛素抵抗对NAFLD和T2DM表现出有益疗效。
Abstract: Objective: To explore the mechanism of GLP-1RAs in the treatment of non-alcoholic fatty liver disease (NAFLD) complicated with type 2 diabetes mellitus (T2DM) through network pharmacology. Methods: The target proteins of four GLP-1RAs were screened via Pharmmapper, TargetNET, SEA and the Binding Database. The pathogenic genes of NAFLD and T2DM were retrieved and filtered through GeneCards, DisGeNET and OMIM. The DAVID database was employed for GO and KEGG enrichment analysis. Cytoscape3.10.0 was utilized to construct the “drug-target-disease network relationship diagram” for GLP-1RAs in treating NAFLD and T2DM. The MCODE plugin was used for cluster analysis, and the Hubba plugin was applied to screen core targets and create the “core target-pathway network diagram”. Results: Using network pharmacology, we identified 35 potential targets of GLP-1RAs for treating NAFLD with T2DM, and further screening yielded 13 core targets: CASP3, ESR1, SIRT1, IGF1R, CCND1, GSK3B, AR, PRKACA, PARP1, NOS3, REN, MAPK8, and ACE1. GO and KEGG enrichment analysis results indicate that pathways related to the RAS system and insulin resistance are critical pathways in the study. Conclusion: GLP-1RAs may exert their effects by activating the ACE2/Ang(1-7)/Mas axis in the RAS system to counteract the ACE/AngII/AT1R axis, and by regulating insulin release according to blood glucose levels, increasing insulin biosynthesis and secretion, and other pathways to improve insulin resistance, thereby showing beneficial effects on NAFLD and T2DM.
文章引用:齐高林, 张紫祺, 孙佳旭, 张成, 李红艳. 基于网络药理学探讨GLP-1RAs治疗非酒精性脂肪肝合并糖尿病的作用机制[J]. 医学诊断, 2025, 15(2): 200-210. https://doi.org/10.12677/md.2025.152027

1. 引言

非酒精性脂肪肝病(Non-alcoholic fatty liver disease, NAFLD)指由代谢功能障碍而非酒精或其它肝损伤因素导致脂肪在脂肪组织以外组织中异常积聚的临床病理综合征。NAFLD常与二型糖尿病(Diabetes mellitus type 2, T2DM)、肥胖症、高脂血症、高血压和代谢综合征等并发。一项关于T2DM人群调查研究表明:血糖水平与NAFLD组织学严重程度呈正相关[1]。T2DM和NAFLD全球流行率Meta分析也发现:每两个T2DM患者中就会有一个患NAFLD,其NAFLD患病率是普通人的2倍[2]。同样,NAFLD患者的T2DM患病率也比普通人高2倍[3]。因此NAFLD与T2DM之间形成了一种恶性循环,相互影响。而胰岛素抵抗(Insulin resistance, IR)是NAFLD和T2DM发生发展过程中的重要公共事件之一[4]。IR通过与脂肪细胞失调、线粒体功能障碍、遗传因素和肠道微生物群变化等相互影响,在NAFLD发病中起重要作用。

胰高糖素样肽-1 (Glucagon-like peptide-1, GLP-1)是一种肠道激素,主要由肠道L细胞在摄入食物后分泌,它通过葡萄糖依赖的方式刺激胰腺β细胞胰岛素分泌,减少胰腺α细胞胰高血糖素分泌,从而减缓胃排空,减少食物摄入,抑制餐后高血糖,同时限制体重增长[5]。胰高糖素样肽-1受体激动剂(Glucagon-like peptide-1 receptor agonists, GLP-1RAs)是近年来上市的新型降糖药物之一。越来越多的证据表明:GLP-1RAs对于NASH患者具有显著疗效[6],且临床用药具有安全性[7]-[9]

本文通过网络药理学方法探讨GLP-1RAs治疗非酒精性脂肪肝合并糖尿病的作用机制。

2. 方法

2.1. 获取4种GLP-1RAs药物靶点

在PubChem数据库中(https://pubchem.ncbi.nlm.nih.gov/)分别以Beinaglutide,Liraglutide,Semaglutide和Tirzepatide为关键词,依次获得这4种药的PubChem ID、2D Structure、Canonical SMILES和Synonyms。从以下数据库分别获取这四种GLP-1RAs的作用靶点,1) 在PharmMapper (https://www.lilab-ecust.cn/pharmmapper/)数据库中以药物2D Structure文件查找药物相关靶点,物种选择智人。2) TargetNet (http://targetnet.scbdd.com/)数据库以药物Canonical SMILES号搜索药物靶点,筛选条件为AUG ≥ 0.7。3) SEA (https://sea.bkslab.org/)数据库以药物Canonical SMILES号搜索药物靶点,物种选择智人。4) 在the Binding DB (https://www.bindingdb.org/rwd/bind/index.jsp)数据库以药物Canonical SMILES号和不同的Synonyms搜索药物靶点。通过UniPort (https://www.uniprot.org/)对药物靶点进行均一化处理,获得四种GLP-1RAs药物靶点。最后,通过微生信(https://www.bioinformatics.com.cn/)做4种药物靶点的4元文恩图,将交集靶点视为GLP-1RAs的作用靶点。

2.2. 获取NAFLD和T2DM疾病靶点

在以下数据库以“non-alcoholic fatty liver disease”和“Type 2 diabetes mellitus”为关键词获取NAFLD和T2DM疾病靶点。1) GeneCards (https://www.genecards.org/),筛选条件为大于Relevance (2倍)中位数值。2) DisGeNET (https://www.disgenet.org/),NAFLD筛去Score为0.01的靶点3) OMIM (https://www.omim.org/)。物种为智人。通过Venny2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/)获取NAFLD和T2DM两种疾病的交集靶点及与4种GLP-1RAs的交集靶点。

2.3. 构建药物–靶点–疾病网络图

通过Cytoscape3.10.0软件对上述分析到的“药物–交集靶点–疾病”之间的相互用作用关系进行可视化,构建一个以椭圆表示药物,菱形代表交集靶点,正八边形为疾病的节点信息,以边表示药物与靶点之间相互作用或者靶点与疾病之间相关联的网络图。

2.4. 构建疾病PPI网络和聚类分析

在String数据库(https://cn.string-db.org/)输入疾病的交集靶点,获得一个中等可信(可自我调节)的蛋白–蛋白互相作用网络图。导入Cytoscape3.10.0中,并利用其MCODE插件,筛选条件设置Degree Cutoff为2,Node Score Cutoff 为0.2,K-Core 为2,进行聚类分析。对于聚类分析相关度前三的网络进行京都基因和基因组百科全书KEGG (Kyoto Encyclopedia of Genes and Genomes)分析。

2.5. Hub靶点的筛选

在String数据库(https://cn.string-db.org/)输入4种GLP-1RAs与两疾病的交集靶点,同样获得一个中等可信(可自我调节)的蛋白–蛋白互相作用网络图。导入软件Cytoscape3.10.0中,利用CytoHubba插件中的Maximal Clique Centrality (MCC),Maximum Neighborhood Component (MNC),Edge Percolated Component (EPC)和Degree对交集靶点进行筛选,筛选条件为得分大于或等于中位数。

2.6. GO和KEGG富集分析

把药物疾病的交集靶点输入DAVID (https://david.ncifcrf.gov/)数据库,物种选择为智人,进行基因本体GO (Gene Ontology,如BP生物过程,CC生物组分,MF细胞功能)和KEGG分析。同样地,在DAVID数据库输入Hub靶点进行GO和KEGG分析。并通过微生信(https://www.bioinformatics.com.cn/)以富集气泡图的形式进行可视化。

2.7. 靶点–通路图

利用Excel创建靶点和通路的数据表格,并将其导入Cytoscape3.10.0软件,最终生成一个网络图。在这个网络图中,靶点用正六边形表示,通路用V字形表示,而靶点与通路之间的关系则通过连线边来展示。

3. 结果

3.1. 四种GLP-1RAs药及NAFLD和T2DM靶点及交集靶点获取

在PharmMapper、TargetNET、SEA、the Binding Datebase四个数据库[10]-[13],共计得到Beinaglutide的作用靶点572个,Liraglutide的作用靶点498个,Semaglutide的作用靶点392个,Tirzepatide的作用靶点369个,4元文恩图获得4种GLP-1RAs药的交集靶点123个(见图1(A))。在GeneCards中,获取NAFLD靶点2547个,种类选择为Protein Coding,筛选到1796个靶点,再以Relevance score的中位数进行筛选,最终得到897个致病靶点。T2DM则获得15025个靶点,同样地,种类选择为Protein Coding,筛选到9625个靶点,再用Relevance score的2倍中位数进行筛选,最终得到2032个致病靶点[14]。在DisGeNET中,我们获取到NAFLD的致病靶点447个,T2DM的治病靶点9个[15]。在OMIM中,分别获得NAFLD和T2DM的致病靶点530和517个。Uniport均一化并删去重复项后[16],得到NAFLD的致病靶点1569个,T2DM的致病靶点2490个。两种疾病的共同致病基因有757个(见图1(B))。分别用4种GLP-1RAs与两种疾病取交集,获得Beinaglutide有效作用靶点100个,Liraglutide的有效作用靶点117个,Semaglutide的有效作用靶点89个,Tirzepatide的有效作用靶点93个。而四种GLP-1RAs共同起作用的靶点收集到35个(见图1(C))。

Figure 1. Venn diagram and network diagram. (A) The shared targets of four glucagon-like peptide-1 receptor agonists (GLP-1RAs): Benarutide, liraglutide, Semaglutide, and Tipotide; (B) Shared targets between non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM); (C) Overlapping targets among diseases and drugs; (D) “drug-target-disease” network diagram

1. 韦恩图和网络图。(A) 贝那鲁肽,利拉鲁肽,司美格鲁肽,替尔泊肽四种GLP-1RAs的共同靶点;(B) 非酒精性脂肪性肝病和二型糖尿病的共同靶点;(C) 疾病与药物的交集靶点;(D) “药物–靶点–疾病”网络图

3.2. 药物–靶点–疾病网络图构建

通过Excel建立一个药物–靶点–疾病的关系表格和属性表格,导入Cytoscape3.10.0,获得一个由178个节点和743条边组成的网络图[17]。其中4个椭圆形节点分别表示四种GLP-1RAs药物,172个菱形节点代表作用靶点,2个正八边形节点则为NAFLD和T2DM两种疾病。药物与作用靶点间的边代表药物对该靶点具有调控作用,疾病与作用靶点间的边代表靶点对疾病的致病作用,共743条边表示它们之间存在相互作用关系(见图1(D))。

Figure 2. Cluster analysis of disease target genes

2. 疾病靶基因的聚类分析

3.3. 疾病靶基因的聚类分析和富集分析

把2.1获取的NAFLD和T2DM 757个共同靶点通过STRING数据库进行蛋白–蛋白互相作用网络图[18],利用Cytoscape3.10.0中MCODE进行聚类分析,以寻找NAFLD和T2DM的共同致病机制下的关键靶点,聚类结果共计8个(见图2),根据得分我们取前三个聚类分析的结果。获得以CXCL8为种子靶点,由50个靶点组成的聚类图(见图2(A)),以CSF2为种子靶点,由24个靶点组成的聚类图(见图2(B)),以CYP2A6为种子靶点,由81个靶点组成的聚类图(见图2(C))。

除此之外,继续对疾病共同靶点通过David数据库进行富集分析,在DAVID数据库获得GO分析和KEGG富集分析的数据后,以Fold Enrichment为横坐标,富集到的通路名称为纵坐标,P值的负对数表示颜色,富集到的基因数目表示圆圈大小,做出以下富集气泡图[19]。前20个重要术语如图3所示。在KEGG中,富集到Lipid and atherosclerosis和Adipocytokine signaling pathway与脂质和脂肪因子相关的通路,Non-alcoholic fatty liver disease非酒精性脂肪性肝病,AGE-RAGE signaling pathway in diabetic complications与糖尿病相关的信号通路,Insulin resistance 胰岛素抵抗,FoxO signaling pathway和PI3K-Akt signaling pathway信号通路(见图3(D))。GO生物过程覆盖了炎症反应,凋亡过程的调控,细胞对胰岛素刺激的反应,以及对胆固醇的调节过程(见图3(A)~(C))。

Figure 3. GO and KEGG analysis of common disease targets. (A) Biological processes; (B) Cell components; (C) Molecular function; (D) Enrichment analysis of KEGG pathway

3. 疾病共同靶点的GO和KEGG分析。(A) 生物学过程;(B) 细胞组分;(C) 分子功能;(D) KEGG通路富集分析

3.4. 对关键靶点进行GO和KEGG富集分析

对3.1获取的4种GLP-1RAs与两种疾病的35个交集靶点,通过DAVID数据库进行GO分析和KEGG富集分析,同样地,以Fold Enrichment为横坐标,富集到的通路名称为纵坐标,P值的负对数表示颜色,富集到的基因数目表示圆圈大小,做出以下富集气泡图。

在KEGG信号通路中,富集到Renin-angiotensin system和Renin secretion与肾素相关的通路,Insulin resistance和Insulin signaling pathway与胰岛素相关的通路,以及AGE-RAGE signaling pathway in diabetic complications,FoxO signaling pathway等信号通路(见图4(D))。GO生物过程覆盖了胰岛素受体再循环,RASS系统相关的调控,例如细胞对醛固酮的反应,血管紧张素成熟,还有对胆固醇储存的调节。GO细胞组分覆盖了半胱天冬酶复合物,丝氨酸型内肽酶复合物,GO分子功能覆盖了胰岛素的结合,包括胰岛素受体结合,胰岛素受体底物结合(见图4(A)~(C))。

Figure 4. GO and KEGG enrichment analysis of four common targets of GLP-1RAs and two diseases. (A) Biological processes; (B) Cell components; (C) Molecular function; (D) Enrichment analysis of KEGG pathway

4. 四种GLP-1RAs与两种疾病共同靶点的GO和KEGG富集分析。(A) 生物学过程;(B) 细胞组分;(C) 分子功能;(D) KEGG通路富集分析

3.5. Hubba基因与核心靶点筛选

通过STRING数据库,获得35个交集靶点的PPI网络图,由35个节点和160条边组成,对其中游离的节点选择隐藏(Figure 5(A))。我们再利用Cytoscape3.10.0中具有12中拓扑算法的的插件CytoHubba来筛选Hubba基因,我们用到了其中的MCC、EPC、MNC和Degree这四种拓扑算法,用中位数筛选一半的基因,同时满足这四个条件的靶点共有15个,他们分别是CASP3、ESR1、SIRT1、IGF1R、CCND1、GSK3B、AR、PRKACA、PARP1、NOS3、REN、MAPK8、ACE、DPP4、HMGCR。由于DPP4没有富集到KEGG前20条重要通路上,HMGCR仅富集到一条通路上,其余的13个基因则作为核心靶点(见图5(A))。

3.6. 核心靶点–通路网络图的构建

从3个聚类的疾病靶基因和药物疾病靶共同基因的富集分析中选择了15个重要的KEGG途径,标准如下:(1) 这些途径应富含疾病靶点和共同靶点。(2) 这些途径应该至少包含两个核心靶点。(3) 包含在前20个显著(基于共同靶基因富集的P值)通路。构建的核心靶点–通路图由13个核心靶点和15条通路共计28个节点与49条边组成(见图5(B))。

Figure 5. PPI network map and core target-pathway network. Figure (A) PPI network diagram of 14 core targets; (B) Network diagram of core target-pathway

5. PPI网络图与核心靶点–通路网络。图(A) 14个核心靶点的PPI网络图;(B) 核心靶点–通路的网络图

4. 讨论

非酒精性脂肪性肝病是一个动态的过程,最初的单纯性脂肪肝,脂肪细胞过量堆积产生的肝脂毒性,脂质中间体在非脂肪组织中积累引起肝细胞功能障碍和死亡,从而导致非酒精性脂肪性肝炎。非酒精性脂肪性肝病的发病机制仍不清楚,目前广为接受的是“多重打击”学说。首次打击即为肝脏的脂肪变性,遗传易感性,表观遗传,代谢功能障碍(主要是胰岛素抵抗),氧化应激,肠道微生物的改变以及肝脏代谢能力下降等多重因素相继或共同影响都是更晚期肝病发展的潜在因素[20]。作为慢性病中的一员,胰岛β细胞出现缺陷,和/或胰岛素抵抗时,二型糖尿病便出现了。NAFLD和T2DM都与胰岛素抵抗相关的代谢紊乱有关,如动脉粥样硬化性血脂异常,高血压和心血管疾病。

上述对疾病靶基因富集结果也说明:代谢紊乱(如脂质代谢失调、胰岛素抵抗)与炎症反应之间存在紧密的联系。这种交叉作用可能是多种代谢相关疾病(如动脉粥样硬化、糖尿病和非酒精性脂肪性肝病)的共同病理机制。AGEs是通过Maillard反应、多元醇途径、糖酵解、脂质过氧化和葡萄糖自氧化等多种途径形成的不可逆产物。AGEs与其受体RAGE结合后,激活多种信号通路(如PI3K-Akt信号通路),导致炎症因子表达增加和细胞凋亡[21] [22]。这些过程是糖尿病并发症(如动脉粥样硬化)的重要机制。GO生物过程中的“炎症反应”和“凋亡过程的调控”表明,炎症不仅是代谢紊乱的结果,也是其驱动因素。例如,TNF-α等炎症因子通过干扰胰岛素信号通路,导致胰岛素抵抗。

GLP-1RAs通过增加饱腹感、延迟胃排空以及可能增加棕色脂肪组织的热量产生来促进体重减轻,而体重管理是NAFLD治疗的重要组成部分[23]。除此之外,GLP-1RAs还通过多种途径展现出对NAFLD的有益之处,例如:减少氧化应激,减少炎症,改善内皮功能[24] [25]等等。根据我们在3.4对于四种GLP-1RAs与NAFLD和T2DM两种疾病的交集靶点进行富集分析后的结果导向,GLP-1RAs对治疗NAFLD伴T2DM过程中,可能通过调控肾素–血管紧张素–醛固酮系统以及胰岛素抵抗等方面发挥其作用。

在RAS中,血管紧张素转换酶(ACE)是关键的酶之一,它将血管紧张素I (Ang I)转化为血管紧张素II (Ang II)。Ang II是一种强效的血管收缩剂,能够增加肝脏中甘油三酯的积累,刺激线粒体产生更多的活性氧,上调多种炎症因子的表达,激活肝星状细胞,还能够干扰胆固醇的代谢[26]。在NAFLD的背景下,Ang II的这些作用可能导致肝脏损伤和纤维化的加剧。在T2DM患者中,RAS的激活,特别是Ang II的产生,已被证明可以直接影响葡萄糖的摄取和利用。Ang II可以通过影响胰岛素信号通路中的多个步骤来抑制胰岛素的作用,进一步加剧胰岛素抵抗,从而导致血糖水平升高[27]。经典RAS分支涉及血管紧张素转换酶(ACE)、血管紧张素I (Ang I)转化为血管紧张素II (Ang II),并通过血管紧张素类型1受体(AT1)介导其生物效应。RAS还包括一个保护性或“非经典”轴,其中包括其中包括ACE2和其产物血管紧张素-(1-7) [Ang-(1-7)],ACE2是一种羧肽酶,能够将Ang II降解为Ang-(1-7),而Ang-(1-7)通过其受体Mas (Mas受体)发挥抗炎、抗纤维化和血管舒张的作用。因此,ACE2/Ang-(1-7)/Mas轴在抵抗Ang II的有害效应和保护肝脏免受纤维化和炎症损伤方面起着与Ang II相反的重要作用[28]。Yang等人运用ACE2敲除小鼠构建高脂诱导的NAFLD模型中显示,ACE2基因敲除会增加肝脏脂肪变性的严重程度。并通过一系列实验探究出GLP-1类似物Liraglutide能够通过PI3K/AKT途径激活ACE2/Ang(1-7)/Mas轴,对抗ACE/Ang II/AT1R轴,从而对肝脏表现出保护作用[29]。在NAFLD的背景下,RAS的激活与肝脏损伤、胰岛素抵抗和代谢紊乱有关。研究表明,通过抑制ACE活性或增加ACE2活性,可以减少肝脏炎症和纤维化,改善肝脏功能[30]。因此,RAS的调节可能成为治疗NAFLD的潜在治疗靶点,特别是在糖尿病和代谢综合征患者中,这些患者的RAS通常表现出异常激活状态。通过调节RAS的平衡,可能有助于减轻NAFLD的进展,改善患者的代谢健康状况。

IR是T2DM的特征之一,同时也与NAFLD的发展有关。在NAFLD中,肝脏中过多的脂肪积累导致脂毒性,这会损害肝细胞,增加IR,并可能IR可以导致炎症细胞因子(如肿瘤坏死因子α和白细胞介素6)的产生增加,这些细胞因子在肥胖和NAFLD中起到促进作用,并可能影响胰岛素信号传导,从而加剧IR。导致炎症和肝纤维化。这种IR的增加又进一步加剧了T2DM的病理过程。IR导致身体不能有效地利用胰岛素,这导致血糖水平升高,进而可能引发或加剧T2DM [31] [32]。GLP-1RAs能够根据血糖水平调节胰岛素的释放,增加胰岛素的生物合成和分泌。GLP-1RAs还能减少胰高血糖素的释放,降低肝脏的糖异生作用,减少血糖的产生[33]。胰岛素信号通路异常与脂质代谢紊乱共同促进NAFLD的发生发展。胰岛素抵抗和高胰岛素血症促进游离脂肪酸从外周脂肪组织释放到肝脏,加速肝细胞对游离脂肪酸的利用,并促进活体中过量的甘油三酯合成,加剧NAFLD [34]。而GLP-1RAs有助于改善血脂水平,减少肝脏和肌肉中的脂毒性,这有可能改善IR [33]

本文通过网络药理学的方法,对4种GLP-1RAs治疗NAFLD伴T2DM的作用机制进行分析,发现GLP-1RAs有可能是通过激活RAS系统中ACE2/Ang(1-7)/Mas轴,对抗ACE/Ang II/AT1R轴发挥其作用,以及改善胰岛素抵抗等途径对NAFLD表现出有益疗效。这些发现可能支持GLP-1RAs治疗NAFLD的进一步发展,作为NAFLD患者一线治疗的关键证据。目前,还没有批准适当的药物治疗NAFLD。我们希望在未来,能够有更大规模的临床试验评估并批准新的NAFLD治疗药物,这些药物可以安全地用于T2DM患者。

NOTES

*通讯作者。

*通讯作者。

参考文献

[1] Pang, Y., Kartsonaki, C., Turnbull, I., Guo, Y., Clarke, R., Chen, Y., et al. (2018) Diabetes, Plasma Glucose, and Incidence of Fatty Liver, Cirrhosis, and Liver Cancer: A Prospective Study of 0.5 Million People. Hepatology, 68, 1308-1318.
https://doi.org/10.1002/hep.30083
[2] Younossi, Z.M., Golabi, P., de Avila, L., Paik, J.M., Srishord, M., Fukui, N., et al. (2019) The Global Epidemiology of NAFLD and NASH in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Journal of Hepatology, 71, 793-801.
https://doi.org/10.1016/j.jhep.2019.06.021
[3] Binet, Q., Loumaye, A., Preumont, V., Thissen, J., Hermans, M.P. and Lanthier, N. (2022) Non-Invasive Screening, Staging and Management of Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in Type 2 Diabetes Mellitus Patients: What Do We Know So Far? Acta Gastro Enterologica Belgica, 85, 346-357.
https://doi.org/10.51821/85.2.9775
[4] Choudhury, J. and Sanyal, A.J. (2004) Insulin Resistance and the Pathogenesis of Nonalcoholic Fatty Liver Disease. Clinics in Liver Disease, 8, 575-594.
https://doi.org/10.1016/j.cld.2004.04.006
[5] Kan, M., Fu, H., Xu, Y., Yue, Z., Du, B., Chen, Q., et al. (2023) Effects of Once‐Weekly Glucagon‐Like Peptide‐1 Receptor Agonists on Type 2 Diabetes Mellitus Complicated with Coronary Artery Disease: Potential Role of the Renin‐angiotensin System. Diabetes, Obesity and Metabolism, 25, 3223-3234.
https://doi.org/10.1111/dom.15219
[6] Nomoto, H., Takahashi, Y., Takano, Y., Yokoyama, H., Tsuchida, K., Nagai, S., et al. (2023) Effect of Switching to Once-Weekly Semaglutide on Non-Alcoholic Fatty Liver Disease: The SWITCH-SEMA 1 Subanalysis. Pharmaceutics, 15, Article 2163.
https://doi.org/10.3390/pharmaceutics15082163
[7] Lamos, E.M., Kristan, M., Siamashvili, M. and Davis, S.N. (2021) Effects of Anti-Diabetic Treatments in Type 2 Diabetes and Fatty Liver Disease. Expert Review of Clinical Pharmacology, 14, 837-852.
https://doi.org/10.1080/17512433.2021.1917374
[8] Miao, L., Xu, J., Targher, G., Byrne, C.D. and Zheng, M. (2022) Old and New Classes of Glucose-Lowering Agents as Treatments for Non-Alcoholic Fatty Liver Disease: A Narrative Review. Clinical and Molecular Hepatology, 28, 725-738.
https://doi.org/10.3350/cmh.2022.0015
[9] Zachou, M., Flevari, P., Nasiri-Ansari, N., Varytimiadis, C., Kalaitzakis, E., Kassi, E., et al. (2023) The Role of Anti-Diabetic Drugs in NAFLD. Have We Found the Holy Grail? A Narrative Review. European Journal of Clinical Pharmacology, 80, 127-150.
https://doi.org/10.1007/s00228-023-03586-1
[10] Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., et al. (2017) PharmMapper 2017 Update: A Web Server for Potential Drug Target Identification with a Comprehensive Target Pharmacophore Database. Nucleic Acids Research, 45, W356-W360.
https://doi.org/10.1093/nar/gkx374
[11] Yao, Z., Dong, J., Che, Y., Zhu, M., Wen, M., Wang, N., et al. (2016) TargetNet: A Web Service for Predicting Potential Drug-Target Interaction Profiling via Multi-Target SAR Models. Journal of Computer-Aided Molecular Design, 30, 413-424.
https://doi.org/10.1007/s10822-016-9915-2
[12] Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J. and Shoichet, B.K. (2007) Relating Protein Pharmacology by Ligand Chemistry. Nature Biotechnology, 25, 197-206.
https://doi.org/10.1038/nbt1284
[13] Gilson, M.K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L. and Chong, J. (2015) BindingDB in 2015: A Public Database for Medicinal Chemistry, Computational Chemistry and Systems Pharmacology. Nucleic Acids Research, 44, D1045-D1053.
https://doi.org/10.1093/nar/gkv1072
[14] Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., et al. (2016) The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54, 1.30.1-1.30.33.
https://doi.org/10.1002/cpbi.5
[15] Piñero, J., et al. (2020) The DisGeNET Knowledge Platform for Disease Genomics: 2019 Update. Nucleic Acids Research, 48, D845-D855.
[16] Consortium, U. (2023) UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51, D523-D531.
[17] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504.
https://doi.org/10.1101/gr.1239303
[18] Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2018) STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Research, 47, D607-D613.
https://doi.org/10.1093/nar/gky1131
[19] Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., et al. (2023) SRplot: A Free Online Platform for Data Visualization and Graphing. PLOS ONE, 18, e0294236.
https://doi.org/10.1371/journal.pone.0294236
[20] Clayton-Chubb, D., Kemp, W., Majeed, A., Lubel, J.S., Hodge, A. and Roberts, S.K. (2023) Understanding NAFLD: From Case Identification to Interventions, Outcomes, and Future Perspectives. Nutrients, 15, Article 687.
https://doi.org/10.3390/nu15030687
[21] Asadipooya, K. and Uy, E.M. (2019) Advanced Glycation End Products (ages), Receptor for Ages, Diabetes, and Bone: Review of the Literature. Journal of the Endocrine Society, 3, 1799-1818.
https://doi.org/10.1210/js.2019-00160
[22] Taguchi, K. and Fukami, K. (2023) RAGE Signaling Regulates the Progression of Diabetic Complications. Frontiers in Pharmacology, 14, Article 1128872.
https://doi.org/10.3389/fphar.2023.1128872
[23] Berkovic, M.C., Virovic-Jukic, L., Bilic-Curcic, I. and Mrzljak, A. (2020) Post-Transplant Diabetes Mellitus and Preexisting Liver Disease—A Bidirectional Relationship Affecting Treatment and Management. World Journal of Gastroenterology, 26, 2740-2757.
https://doi.org/10.3748/wjg.v26.i21.2740
[24] Tang, S., Zhang, Q., Tang, H., Wang, C., Su, H., Zhou, Q., et al. (2016) Effects of Glucagon-Like Peptide-1 on Advanced Glycation Endproduct-Induced Aortic Endothelial Dysfunction in Streptozotocin-Induced Diabetic Rats: Possible Roles of Rho Kinase-and AMP Kinase-Mediated Nuclear Factor κB Signaling Pathways. Endocrine, 53, 107-116.
https://doi.org/10.1007/s12020-015-0852-y
[25] Wei, R., Ma, S., Wang, C., Ke, J., Yang, J., Li, W., et al. (2016) Exenatide Exerts Direct Protective Effects on Endothelial Cells through the AMPK/Akt/eNOS Pathway in a GLP-1 Receptor-Dependent Manner. American Journal of Physiology-Endocrinology and Metabolism, 310, E947-E957.
https://doi.org/10.1152/ajpendo.00400.2015
[26] Wu, Y., Ma, K.L., Zhang, Y., Wen, Y., Wang, G.H., Hu, Z.B., et al. (2016) Lipid Disorder and Intrahepatic Renin-Angiotensin System Activation Synergistically Contribute to Non‐Alcoholic Fatty Liver Disease. Liver International, 36, 1525-1534.
https://doi.org/10.1111/liv.13131
[27] Mkhize, B.C., Mosili, P., Ngubane, P.S., Sibiya, N.H. and Khathi, A. (2023) The Relationship between Renin-Angiotensin-Aldosterone System (RAAS) Activity, Osteoporosis and Estrogen Deficiency in Type 2 Diabetes. International Journal of Molecular Sciences, 24, Article ID: 11963.
https://doi.org/10.3390/ijms241511963
[28] Mastoor, Z., Diz-Chaves, Y., González-Matías, L.C. and Mallo, F. (2022) Renin-Angiotensin System in Liver Metabolism: Gender Differences and Role of Incretins. Metabolites, 12, Article 411.
https://doi.org/10.3390/metabo12050411
[29] Yang, M., Ma, X., Xuan, X., Deng, H., Chen, Q. and Yuan, L. (2020) Liraglutide Attenuates Non-Alcoholic Fatty Liver Disease in Mice by Regulating the Local Renin-Angiotensin System. Frontiers in Pharmacology, 11, Article 432.
https://doi.org/10.3389/fphar.2020.00432
[30] Rajapaksha, I.G., Gunarathne, L.S., Asadi, K., Laybutt, R., Andrikopoulous, S., Alexander, I.E., et al. (2021) Angiotensin Converting Enzyme‐2 Therapy Improves Liver Fibrosis and Glycemic Control in Diabetic Mice with Fatty Liver. Hepatology Communications, 6, 1056-1072.
https://doi.org/10.1002/hep4.1884
[31] Tanase, D.M., Gosav, E.M., Costea, C.F., Ciocoiu, M., Lacatusu, C.M., Maranduca, M.A., et al. (2020) The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). Journal of Diabetes Research, 2020, Article ID: 3920196.
https://doi.org/10.1155/2020/3920196
[32] Fujii, H. and Kawada, N. (2020) The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 21, Article 3863.
https://doi.org/10.3390/ijms21113863
[33] Fang, L., Li, J., Zeng, H. and Liu, J. (2024) Effects of GLP-1 Receptor Agonists on the Degree of Liver Fibrosis and CRP in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. Primary Care Diabetes, 18, 268-276.
https://doi.org/10.1016/j.pcd.2024.03.005
[34] Wang, X.J. and Malhi, H. (2018) Nonalcoholic Fatty Liver Disease. Annals of Internal Medicine, 169, ITC65-ITC80.
https://doi.org/10.7326/aitc201811060