[1]
|
Pang, Y., Kartsonaki, C., Turnbull, I., Guo, Y., Clarke, R., Chen, Y., et al. (2018) Diabetes, Plasma Glucose, and Incidence of Fatty Liver, Cirrhosis, and Liver Cancer: A Prospective Study of 0.5 Million People. Hepatology, 68, 1308-1318. https://doi.org/10.1002/hep.30083
|
[2]
|
Younossi, Z.M., Golabi, P., de Avila, L., Paik, J.M., Srishord, M., Fukui, N., et al. (2019) The Global Epidemiology of NAFLD and NASH in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Journal of Hepatology, 71, 793-801. https://doi.org/10.1016/j.jhep.2019.06.021
|
[3]
|
Binet, Q., Loumaye, A., Preumont, V., Thissen, J., Hermans, M.P. and Lanthier, N. (2022) Non-Invasive Screening, Staging and Management of Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in Type 2 Diabetes Mellitus Patients: What Do We Know So Far? Acta Gastro Enterologica Belgica, 85, 346-357. https://doi.org/10.51821/85.2.9775
|
[4]
|
Choudhury, J. and Sanyal, A.J. (2004) Insulin Resistance and the Pathogenesis of Nonalcoholic Fatty Liver Disease. Clinics in Liver Disease, 8, 575-594. https://doi.org/10.1016/j.cld.2004.04.006
|
[5]
|
Kan, M., Fu, H., Xu, Y., Yue, Z., Du, B., Chen, Q., et al. (2023) Effects of Once‐Weekly Glucagon‐Like Peptide‐1 Receptor Agonists on Type 2 Diabetes Mellitus Complicated with Coronary Artery Disease: Potential Role of the Renin‐angiotensin System. Diabetes, Obesity and Metabolism, 25, 3223-3234. https://doi.org/10.1111/dom.15219
|
[6]
|
Nomoto, H., Takahashi, Y., Takano, Y., Yokoyama, H., Tsuchida, K., Nagai, S., et al. (2023) Effect of Switching to Once-Weekly Semaglutide on Non-Alcoholic Fatty Liver Disease: The SWITCH-SEMA 1 Subanalysis. Pharmaceutics, 15, Article 2163. https://doi.org/10.3390/pharmaceutics15082163
|
[7]
|
Lamos, E.M., Kristan, M., Siamashvili, M. and Davis, S.N. (2021) Effects of Anti-Diabetic Treatments in Type 2 Diabetes and Fatty Liver Disease. Expert Review of Clinical Pharmacology, 14, 837-852. https://doi.org/10.1080/17512433.2021.1917374
|
[8]
|
Miao, L., Xu, J., Targher, G., Byrne, C.D. and Zheng, M. (2022) Old and New Classes of Glucose-Lowering Agents as Treatments for Non-Alcoholic Fatty Liver Disease: A Narrative Review. Clinical and Molecular Hepatology, 28, 725-738. https://doi.org/10.3350/cmh.2022.0015
|
[9]
|
Zachou, M., Flevari, P., Nasiri-Ansari, N., Varytimiadis, C., Kalaitzakis, E., Kassi, E., et al. (2023) The Role of Anti-Diabetic Drugs in NAFLD. Have We Found the Holy Grail? A Narrative Review. European Journal of Clinical Pharmacology, 80, 127-150. https://doi.org/10.1007/s00228-023-03586-1
|
[10]
|
Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., et al. (2017) PharmMapper 2017 Update: A Web Server for Potential Drug Target Identification with a Comprehensive Target Pharmacophore Database. Nucleic Acids Research, 45, W356-W360. https://doi.org/10.1093/nar/gkx374
|
[11]
|
Yao, Z., Dong, J., Che, Y., Zhu, M., Wen, M., Wang, N., et al. (2016) TargetNet: A Web Service for Predicting Potential Drug-Target Interaction Profiling via Multi-Target SAR Models. Journal of Computer-Aided Molecular Design, 30, 413-424. https://doi.org/10.1007/s10822-016-9915-2
|
[12]
|
Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J. and Shoichet, B.K. (2007) Relating Protein Pharmacology by Ligand Chemistry. Nature Biotechnology, 25, 197-206. https://doi.org/10.1038/nbt1284
|
[13]
|
Gilson, M.K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L. and Chong, J. (2015) BindingDB in 2015: A Public Database for Medicinal Chemistry, Computational Chemistry and Systems Pharmacology. Nucleic Acids Research, 44, D1045-D1053. https://doi.org/10.1093/nar/gkv1072
|
[14]
|
Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., et al. (2016) The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54, 1.30.1-1.30.33. https://doi.org/10.1002/cpbi.5
|
[15]
|
Piñero, J., et al. (2020) The DisGeNET Knowledge Platform for Disease Genomics: 2019 Update. Nucleic Acids Research, 48, D845-D855.
|
[16]
|
Consortium, U. (2023) UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51, D523-D531.
|
[17]
|
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504. https://doi.org/10.1101/gr.1239303
|
[18]
|
Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2018) STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Research, 47, D607-D613. https://doi.org/10.1093/nar/gky1131
|
[19]
|
Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., et al. (2023) SRplot: A Free Online Platform for Data Visualization and Graphing. PLOS ONE, 18, e0294236. https://doi.org/10.1371/journal.pone.0294236
|
[20]
|
Clayton-Chubb, D., Kemp, W., Majeed, A., Lubel, J.S., Hodge, A. and Roberts, S.K. (2023) Understanding NAFLD: From Case Identification to Interventions, Outcomes, and Future Perspectives. Nutrients, 15, Article 687. https://doi.org/10.3390/nu15030687
|
[21]
|
Asadipooya, K. and Uy, E.M. (2019) Advanced Glycation End Products (ages), Receptor for Ages, Diabetes, and Bone: Review of the Literature. Journal of the Endocrine Society, 3, 1799-1818. https://doi.org/10.1210/js.2019-00160
|
[22]
|
Taguchi, K. and Fukami, K. (2023) RAGE Signaling Regulates the Progression of Diabetic Complications. Frontiers in Pharmacology, 14, Article 1128872. https://doi.org/10.3389/fphar.2023.1128872
|
[23]
|
Berkovic, M.C., Virovic-Jukic, L., Bilic-Curcic, I. and Mrzljak, A. (2020) Post-Transplant Diabetes Mellitus and Preexisting Liver Disease—A Bidirectional Relationship Affecting Treatment and Management. World Journal of Gastroenterology, 26, 2740-2757. https://doi.org/10.3748/wjg.v26.i21.2740
|
[24]
|
Tang, S., Zhang, Q., Tang, H., Wang, C., Su, H., Zhou, Q., et al. (2016) Effects of Glucagon-Like Peptide-1 on Advanced Glycation Endproduct-Induced Aortic Endothelial Dysfunction in Streptozotocin-Induced Diabetic Rats: Possible Roles of Rho Kinase-and AMP Kinase-Mediated Nuclear Factor κB Signaling Pathways. Endocrine, 53, 107-116. https://doi.org/10.1007/s12020-015-0852-y
|
[25]
|
Wei, R., Ma, S., Wang, C., Ke, J., Yang, J., Li, W., et al. (2016) Exenatide Exerts Direct Protective Effects on Endothelial Cells through the AMPK/Akt/eNOS Pathway in a GLP-1 Receptor-Dependent Manner. American Journal of Physiology-Endocrinology and Metabolism, 310, E947-E957. https://doi.org/10.1152/ajpendo.00400.2015
|
[26]
|
Wu, Y., Ma, K.L., Zhang, Y., Wen, Y., Wang, G.H., Hu, Z.B., et al. (2016) Lipid Disorder and Intrahepatic Renin-Angiotensin System Activation Synergistically Contribute to Non‐Alcoholic Fatty Liver Disease. Liver International, 36, 1525-1534. https://doi.org/10.1111/liv.13131
|
[27]
|
Mkhize, B.C., Mosili, P., Ngubane, P.S., Sibiya, N.H. and Khathi, A. (2023) The Relationship between Renin-Angiotensin-Aldosterone System (RAAS) Activity, Osteoporosis and Estrogen Deficiency in Type 2 Diabetes. International Journal of Molecular Sciences, 24, Article ID: 11963. https://doi.org/10.3390/ijms241511963
|
[28]
|
Mastoor, Z., Diz-Chaves, Y., González-Matías, L.C. and Mallo, F. (2022) Renin-Angiotensin System in Liver Metabolism: Gender Differences and Role of Incretins. Metabolites, 12, Article 411. https://doi.org/10.3390/metabo12050411
|
[29]
|
Yang, M., Ma, X., Xuan, X., Deng, H., Chen, Q. and Yuan, L. (2020) Liraglutide Attenuates Non-Alcoholic Fatty Liver Disease in Mice by Regulating the Local Renin-Angiotensin System. Frontiers in Pharmacology, 11, Article 432. https://doi.org/10.3389/fphar.2020.00432
|
[30]
|
Rajapaksha, I.G., Gunarathne, L.S., Asadi, K., Laybutt, R., Andrikopoulous, S., Alexander, I.E., et al. (2021) Angiotensin Converting Enzyme‐2 Therapy Improves Liver Fibrosis and Glycemic Control in Diabetic Mice with Fatty Liver. Hepatology Communications, 6, 1056-1072. https://doi.org/10.1002/hep4.1884
|
[31]
|
Tanase, D.M., Gosav, E.M., Costea, C.F., Ciocoiu, M., Lacatusu, C.M., Maranduca, M.A., et al. (2020) The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). Journal of Diabetes Research, 2020, Article ID: 3920196. https://doi.org/10.1155/2020/3920196
|
[32]
|
Fujii, H. and Kawada, N. (2020) The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 21, Article 3863. https://doi.org/10.3390/ijms21113863
|
[33]
|
Fang, L., Li, J., Zeng, H. and Liu, J. (2024) Effects of GLP-1 Receptor Agonists on the Degree of Liver Fibrosis and CRP in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. Primary Care Diabetes, 18, 268-276. https://doi.org/10.1016/j.pcd.2024.03.005
|
[34]
|
Wang, X.J. and Malhi, H. (2018) Nonalcoholic Fatty Liver Disease. Annals of Internal Medicine, 169, ITC65-ITC80. https://doi.org/10.7326/aitc201811060
|