[1]
|
van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M. and Brouns, S.J.J. (2009) Crispr-Based Adaptive and Heritable Immunity in Prokaryotes. Trends in Biochemical Sciences, 34, 401-407. https://doi.org/10.1016/j.tibs.2009.05.002
|
[2]
|
Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science, 360, 436-439. https://doi.org/10.1126/science.aar6245
|
[3]
|
Swarts, D.C. and Jinek, M. (2019) Mechanistic Insights into the Cis and Trans-Acting DNase Activities of Cas12a. Molecular Cell, 73, 589-600.e4. https://doi.org/10.1016/j.molcel.2018.11.021
|
[4]
|
Bhatia, S., Pooja, and Yadav, S.K. (2023) CRISPR-Cas for Genome Editing: Classification, Mechanism, Designing and Applications. International Journal of Biological Macromolecules, 238, Article 124054. https://doi.org/10.1016/j.ijbiomac.2023.124054
|
[5]
|
Paul, B. and Montoya, G. (2020) CRISPR-Cas12a: Functional Overview and Applications. Biomedical Journal, 43, 8-17. https://doi.org/10.1016/j.bj.2019.10.005
|
[6]
|
Chen, P., Zhou, J., Wan, Y., Liu, H., Li, Y., Liu, Z., et al. (2020) A Cas12a Ortholog with Stringent PAM Recognition Followed by Low Off-Target Editing Rates for Genome Editing. Genome Biology, 21, Article No. 78. https://doi.org/10.1186/s13059-020-01989-2
|
[7]
|
Kim, H.S., Lee, S.J. and Lee, D.Y. (2022) Milk Protein-Shelled Gold Nanoparticles with Gastrointestinally Active Absorption for Aurotherapy to Brain Tumor. Bioactive Materials, 8, 35-48. https://doi.org/10.1016/j.bioactmat.2021.06.026
|
[8]
|
Liu, W., Ayupova, T., Wang, W., Shepherd, S., Wang, X., Akin, L.D., et al. (2024) Dynamic and Large Field of View Photonic Resonator Absorption Microscopy for Ultrasensitive Digital Resolution Detection of Nucleic Acid and Protein Biomarkers. Biosensors and Bioelectronics, 264, Article 116643. https://doi.org/10.1016/j.bios.2024.116643
|
[9]
|
He, Y., Zhou, J., Fu, R., Liu, Y., Wang, Y., Liu, H., et al. (2022) The Application of DNA-HRP Functionalized Aunp Probes in Colorimetric Detection of Citrus-Associated Alternaria Genes. Talanta, 237, Article 122917. https://doi.org/10.1016/j.talanta.2021.122917
|
[10]
|
Petryayeva, E. and Krull, U.J. (2011) Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing—A Review. Analytica Chimica Acta, 706, 8-24. https://doi.org/10.1016/j.aca.2011.08.020
|
[11]
|
Wang, W., You, Y. and Gunasekaran, S. (2021) LSPR-Based Colorimetric Biosensing for Food Quality and Safety. Comprehensive Reviews in Food Science and Food Safety, 20, 5829-5855. https://doi.org/10.1111/1541-4337.12843
|
[12]
|
Qian, X.-. and Nie, S.M. (2008) Single-Molecule and Single-Nanoparticle SERS: From Fundamental Mechanisms to Biomedical Applications. Chemical Society Reviews, 37, 912-920. https://doi.org/10.1039/b708839f
|
[13]
|
Le Ru, E.C. and Auguié, B. (2024) Enhancement Factors: A Central Concept during 50 Years of Surface-Enhanced Raman Spectroscopy. ACS Nano, 18, 9773-9783. https://doi.org/10.1021/acsnano.4c01474
|
[14]
|
Ou, J., Zhou, Z., Chen, Z. and Tan, H. (2019) Optical Diagnostic Based on Functionalized Gold Nanoparticles. International Journal of Molecular Sciences, 20, Article 4346. https://doi.org/10.3390/ijms20184346
|
[15]
|
Xiao, T., Huang, J., Wang, D., Meng, T. and Yang, X. (2020) Au and Au-Based Nanomaterials: Synthesis and Recent Progress in Electrochemical Sensor Applications. Talanta, 206, Article 120210. https://doi.org/10.1016/j.talanta.2019.120210
|
[16]
|
Ielo, I., Rando, G., Giacobello, F., Sfameni, S., Castellano, A., Galletta, M., et al. (2021) Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules, 26, Article 5823. https://doi.org/10.3390/molecules26195823
|
[17]
|
Chen, T., Lu, Y., Xiong, X., Qiu, M., Peng, Y. and Xu, Z. (2024) Hydrolytic Nanozymes: Preparation, Properties, and Applications. Advances in Colloid and Interface Science, 323, Article 103072. https://doi.org/10.1016/j.cis.2023.103072
|
[18]
|
Yang, J., Wang, X., Sun, Y., Chen, B., Hu, F., Guo, C., et al. (2022) Recent Advances in Colorimetric Sensors Based on Gold Nanoparticles for Pathogen Detection. Biosensors, 13, Article 29. https://doi.org/10.3390/bios13010029
|
[19]
|
Yuan, C., Tian, T., Sun, J., Hu, M., Wang, X., Xiong, E., et al. (2020) Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/cas12a/13a System. Analytical Chemistry, 92, 4029-4037. https://doi.org/10.1021/acs.analchem.9b05597
|
[20]
|
Rowe, A.M., St. Leger, A.J., Jeon, S., Dhaliwal, D.K., Knickelbein, J.E. and Hendricks, R.L. (2013) Herpes Keratitis. Progress in Retinal and Eye Research, 32, 88-101. https://doi.org/10.1016/j.preteyeres.2012.08.002
|
[21]
|
Hoarau, G., Haigh, O., Vauloup-Fellous, C., Boucher, R., Rouquette, A., Faure, P., et al. (2023) Diagnostic Performance of Real-Time Quantitative PCR in Tear Samples in Various Subtypes of Herpes Simplex Keratitis. Journal of Clinical Microbiology, 61, e0088523. https://doi.org/10.1128/jcm.00885-23
|
[22]
|
Huang, M., Chen, Y., Zheng, L. and Yao, Y. (2023) Highly Sensitive and Naked-Eye Detection of Herpes Simplex Virus Type 1 Using LAMP-Crispr/Cas12 Diagnostic Technology and Gold Nanoparticles. Heliyon, 9, e22146. https://doi.org/10.1016/j.heliyon.2023.e22146
|
[23]
|
Zhang, W.S., Pan, J., Li, F., Zhu, M., Xu, M., Zhu, H., et al. (2021) Reverse Transcription Recombinase Polymerase Amplification Coupled with Crispr-Cas12a for Facile and Highly Sensitive Colorimetric Sars-Cov-2 Detection. Analytical Chemistry, 93, 4126-4133. https://doi.org/10.1021/acs.analchem.1c00013
|
[24]
|
Liu, H., Gao, X., Xu, C. and Liu, D. (2022) SERS Tags for Biomedical Detection and Bioimaging. Theranostics, 12, 1870-1903. https://doi.org/10.7150/thno.66859
|
[25]
|
Demirel, G., Gieseking, R.L.M., Ozdemir, R., Kahmann, S., Loi, M.A., Schatz, G.C., et al. (2019) Molecular Engineering of Organic Semiconductors Enables Noble Metal-Comparable SERS Enhancement and Sensitivity. Nature Communications, 10, Article No. 5502. https://doi.org/10.1038/s41467-019-13505-7
|
[26]
|
Choi, N., Dang, H., Das, A., Sim, M.S., Chung, I.Y. and Choo, J. (2020) SERS Biosensors for Ultrasensitive Detection of Multiple Biomarkers Expressed in Cancer Cells. Biosensors and Bioelectronics, 164, Article 112326. https://doi.org/10.1016/j.bios.2020.112326
|
[27]
|
Huang, X., Sheng, B., Tian, H., Chen, Q., Yang, Y., Bui, B., et al. (2023) Real-Time SERS Monitoring Anticancer Drug Release along with SERS/MR Imaging for Ph-Sensitive Chemo-Phototherapy. Acta Pharmaceutica Sinica B, 13, 1303-1317. https://doi.org/10.1016/j.apsb.2022.08.024
|
[28]
|
Chen, R., Li, S., Ren, S., Han, D., Qin, K., Jia, X., et al. (2024) Micro-/Nanostructures for Surface-Enhanced Raman Spectroscopy: Recent Advances and Perspectives. Advances in Colloid and Interface Science, 331, Article 103235. https://doi.org/10.1016/j.cis.2024.103235
|
[29]
|
Ma, L., Zhang, W., Yin, L., Li, Y., Zhuang, J., Shen, L., et al. (2023) A Sers-Signalled, Crispr/Cas-Powered Bioassay for Amplification-Free and Anti-Interference Detection of Sars-Cov-2 in Foods and Environmental Samples Using a Single Tube-in-Tube Vessel. Journal of Hazardous Materials, 452, Article 131195. https://doi.org/10.1016/j.jhazmat.2023.131195
|
[30]
|
Du, Y., Ji, S., Dong, Q., Wang, J., Han, D. and Gao, Z. (2023) Amplification-Free Detection of HBV DNA Mediated by Crispr-Cas12a Using Surface-Enhanced Raman Spectroscopy. Analytica Chimica Acta, 1245, Article 340864. https://doi.org/10.1016/j.aca.2023.340864
|
[31]
|
Badshah, M.A., Koh, N.Y., Zia, A.W., Abbas, N., Zahra, Z. and Saleem, M.W. (2020) Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence-Based Biosensing. Nanomaterials, 10, Article 1749. https://doi.org/10.3390/nano10091749
|
[32]
|
Choi, J., Lim, J., Shin, M., Paek, S. and Choi, J. (2020) Crispr-Cas12a-Based Nucleic Acid Amplification-Free DNA Biosensor via Au Nanoparticle-Assisted Metal-Enhanced Fluorescence and Colorimetric Analysis. Nano Letters, 21, 693-699. https://doi.org/10.1021/acs.nanolett.0c04303
|
[33]
|
Song, P., Wu, L.R., Yan, Y.H., Zhang, J.X., Chu, T., Kwong, L.N., et al. (2022) Limitations and Opportunities of Technologies for the Analysis of Cell-Free DNA in Cancer Diagnostics. Nature Biomedical Engineering, 6, 232-245. https://doi.org/10.1038/s41551-021-00837-3
|
[34]
|
de Sanjose, S., Quint, W.G., Alemany, L., Geraets, D.T., Klaustermeier, J.E., Lloveras, B., et al. (2010) Human Papillomavirus Genotype Attribution in Invasive Cervical Cancer: A Retrospective Cross-Sectional Worldwide Study. The Lancet Oncology, 11, 1048-1056. https://doi.org/10.1016/s1470-2045(10)70230-8
|
[35]
|
Fu, X., Shi, Y., Peng, F., Zhou, M., Yin, Y., Tan, Y., et al. (2021) Exploring the Trans-Cleavage Activity of Crispr/Cas12a on Gold Nanoparticles for Stable and Sensitive Biosensing. Analytical Chemistry, 93, 4967-4974. https://doi.org/10.1021/acs.analchem.1c00027
|
[36]
|
Bezuneh, T.T., Fereja, T.H., Kitte, S.A., Li, H. and Jin, Y. (2022) Gold Nanoparticle-Based Signal Amplified Electrochemiluminescence for Biosensing Applications. Talanta, 248, Article 123611. https://doi.org/10.1016/j.talanta.2022.123611
|
[37]
|
Wu, C., Chen, Z., Li, C., Hao, Y., Tang, Y., Yuan, Y., et al. (2022) Crispr-Cas12a-empowered Electrochemical Biosensor for Rapid and Ultrasensitive Detection of Sars-Cov-2 Delta Variant. Nano-Micro Letters, 14, Article No. 159. https://doi.org/10.1007/s40820-022-00888-4
|
[38]
|
Dai, Y., Somoza, R.A., Wang, L., Welter, J.F., Li, Y., Caplan, A.I., et al. (2019) Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angewandte Chemie International Edition, 58, 17399-17405. https://doi.org/10.1002/anie.201910772
|
[39]
|
Huang, L., Yuan, N., Guo, W., Zhang, Y. and Zhang, W. (2023) An Electrochemical Biosensor for the Highly Sensitive Detection of Staphylococcus Aureus Based on Srca-CRISPR/Cas12a. Talanta, 252, Article 123821. https://doi.org/10.1016/j.talanta.2022.123821
|
[40]
|
Yuan, X., Ge, L., Zhou, H. and Tang, J. (2023) Size, Composition, and Surface Capping-Dependent Catalytic Activity of Spherical Gold Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 287, Article 122082. https://doi.org/10.1016/j.saa.2022.122082
|
[41]
|
Chen, Z., Tan, L., Hu, L., Zhang, Y., Wang, S. and Lv, F. (2015) Real Colorimetric Thrombin Aptasensor by Masking Surfaces of Catalytically Active Gold Nanoparticles. ACS Applied Materials & Interfaces, 8, 102-108. https://doi.org/10.1021/acsami.5b08975
|
[42]
|
Taghdisi, S.M., Danesh, N.M., Ramezani, M., Emrani, A.S. and Abnous, K. (2018) Novel Colorimetric Aptasensor for Zearalenone Detection Based on Nontarget-Induced Aptamer Walker, Gold Nanoparticles, and Exonuclease-Assisted Recycling Amplification. ACS Applied Materials & Interfaces, 10, 12504-12509. https://doi.org/10.1021/acsami.8b02349
|
[43]
|
Su, Z., Wei, S., Shi, X., Wang, X., Zhang, L., Bu, X., et al. (2023) Smartphone-Assisted Colorimetric Detection of Salmonella Typhimurium Based on the Catalytic Reduction of 4-Nitrophenol by Β-Cyclodextrin-Capped Gold Nanoparticles. Analytica Chimica Acta, 1239, Article 340672. https://doi.org/10.1016/j.aca.2022.340672
|
[44]
|
Abnous, K., Danesh, N.M., Ramezani, M., Alibolandi, M., Nameghi, M.A., Zavvar, T.S., et al. (2021) A Novel Colorimetric Aptasensor for Ultrasensitive Detection of Aflatoxin M1 Based on the Combination of CRISPR-Cas12a, Rolling Circle Amplification and Catalytic Activity of Gold Nanoparticles. Analytica Chimica Acta, 1165, Article 338549. https://doi.org/10.1016/j.aca.2021.338549
|
[45]
|
Posthuma-Trumpie, G.A., Korf, J. and van Amerongen, A. (2008) Lateral Flow (Immuno)Assay: Its Strengths, Weaknesses, Opportunities and Threats. A Literature Survey. Analytical and Bioanalytical Chemistry, 393, 569-582. https://doi.org/10.1007/s00216-008-2287-2
|
[46]
|
Kakkar, S., Gupta, P., Singh Yadav, S.P., Raj, D., Singh, G., Chauhan, S., et al. (2024) Lateral Flow Assays: Progress and Evolution of Recent Trends in Point-of-Care Applications. Materials Today Bio, 28, Article 101188. https://doi.org/10.1016/j.mtbio.2024.101188
|
[47]
|
Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J. and Zhang, F. (2018) Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a, and Csm6. Science, 360, 439-444. https://doi.org/10.1126/science.aaq0179
|
[48]
|
Li, Z., Ding, X., Yin, K., Avery, L., Ballesteros, E. and Liu, C. (2022) Instrument-Free, CRISPR-Based Diagnostics of Sars-Cov-2 Using Self-Contained Microfluidic System. Biosensors and Bioelectronics, 199, Article 113865. https://doi.org/10.1016/j.bios.2021.113865
|
[49]
|
Bhardwaj, P., Nanaware, N.S., Behera, S.P., Kulkarni, S., Deval, H., Kumar, R., et al. (2023) CRISPR/Cas12a-Based Detection Platform for Early and Rapid Diagnosis of Scrub Typhus. Biosensors, 13, Article 1021. https://doi.org/10.3390/bios13121021
|
[50]
|
Zhang, W., Qu, H., Wu, X., Shi, J. and Wang, X. (2024) Rapid, Sensitive, and User-Friendly Detection of Pseudomonas Aeruginosa Using the RPA/CRISPR/Cas12a System. BMC Infectious Diseases, 24, Article No. 458. https://doi.org/10.1186/s12879-024-09348-3
|