|
[1]
|
Chen, S., Chang, X., Sun, G., Zhang, T., Xu, Y., Wang, Y., et al. (2021) Propane Dehydrogenation: Catalyst Development, New Chemistry, and Emerging Technologies. Chemical Society Reviews, 50, 3315-3354. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Fu, Z., Li, D., Zhou, L., Li, Y., Guo, J., Li, Y., et al. (2023) A Mini Review on Oxidative Dehydrogenation of Propane over Boron Nitride Catalysts. Petroleum Science, 20, 2488-2498. [Google Scholar] [CrossRef]
|
|
[3]
|
Yuan, Y., Porter, W.N. and Chen, J.G. (2023) Comparison of Direct and CO2-Oxidative Dehydrogenation of Propane. Trends in Chemistry, 5, 840-852. [Google Scholar] [CrossRef]
|
|
[4]
|
Zuo, C. and Su, Q. (2023) Research Progress on Propylene Preparation by Propane Dehydrogenation. Molecules, 28, Article 3594. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Carrero, C.A., Schloegl, R., Wachs, I.E. and Schomaecker, R. (2014) Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts. ACS Catalysis, 4, 3357-3380. [Google Scholar] [CrossRef]
|
|
[6]
|
Melnikov, D.P., Novikov, A.A., Glotov, A.P., Reshetina, M.V., Smirnova, E.M., Wang, H.Q., et al. (2022) Dehydrogenation of Light Alkanes (A Review). Petroleum Chemistry, 62, 1027-1046. [Google Scholar] [CrossRef]
|
|
[7]
|
Wang, H., Chen, Y., Yan, X., Lang, W. and Guo, Y. (2019) Cr Doped Mesoporous Silica Spheres for Propane Dehydrogenation in the Presence of CO2: Effect of Cr Adding Time in Sol-Gel Process. Microporous and Mesoporous Materials, 284, 69-77. [Google Scholar] [CrossRef]
|
|
[8]
|
Liu, Z., Wang, J., Wu, K., Xu, A. and Jia, M. (2023) Low-Temperature Oxidative Dehydrogenation of Propane over Niv Mixed Oxides Derived from LDH Precursors. APL Materials, 11, Article ID: 040701. [Google Scholar] [CrossRef]
|
|
[9]
|
Venegas, J.M., McDermott, W.P. and Hermans, I. (2018) Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation. Accounts of Chemical Research, 51, 2556-2564. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jiang, X., Zhang, X., Purdy, S.C., He, Y., Huang, Z., You, R., et al. (2022) Multiple Promotional Effects of Vanadium Oxide on Boron Nitride for Oxidative Dehydrogenation of Propane. JACS Au, 2, 1096-1104. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gao, X., Zhu, L., Yang, F., Zhang, L., Xu, W., Zhou, X., et al. (2023) Subsurface Nickel Boosts the Low-Temperature Performance of a Boron Oxide Overlayer in Propane Oxidative Dehydrogenation. Nature Communications, 14, Article No. 1478. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, Q., Wang, J., Liu, Z., Zhao, R., Xu, A. and Jia, M. (2022) Water-Tolerant Boron-Substituted MCM-41 for Oxidative Dehydrogenation of Propane. ACS Omega, 7, 3083-3092. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., et al. (2015) Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051-1069. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhao, H., Cui, S., Yang, L., Li, G., Li, N. and Li, X. (2018) Synthesis of Hierarchically Meso-Macroporous TiO2/CdS Heterojunction Photocatalysts with Excellent Visible-Light Photocatalytic Activity. Journal of Colloid and Interface Science, 512, 47-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wu, K., Wang, J., Ren, J., Jia, H., Wang, S., Xu, A., et al. (2024) Electrospun Hollow VOx/SiO2 Nanofibers for Oxidative Dehydrogenation of Propane. Catalysis Letters, 154, 5571-5583. [Google Scholar] [CrossRef]
|
|
[16]
|
Bulánek, R., Čičmanec, P., Sheng-Yang, H., Knotek, P., Čapek, L. and Setnička, M. (2012) Effect of Preparation Method on Nature and Distribution of Vanadium Species in Vanadium-Based Hexagonal Mesoporous Silica Catalysts: Impact on Catalytic Behavior in Propane ODH. Applied Catalysis A: General, 415, 29-39. [Google Scholar] [CrossRef]
|
|
[17]
|
Xu, A., Wang, Y., Ge, H., Chen, S., Li, Y. and Lu, W. (2013) An Outstanding CR-Doped Catalyst for Selective Oxidation of Propane to Acrylic Acid. Chinese Journal of Catalysis, 34, 2183-2191. [Google Scholar] [CrossRef]
|
|
[18]
|
Zhang, X.Z., Yue, Y.H. and Gao, Z. (2002) Chromium Oxide Supported on Mesoporous SBA-15 as Propane Dehydrogenation and Oxidative Dehydrogenation Catalysts. Catalysis Letters, 83, 19-25.
|
|
[19]
|
Jibril, B.Y., Al-Kinany, M.C., Al-Khowaiter, S.H., Al-Drees, S.A., Al-Megren, H.A., Al-Dosari, M.A., et al. (2006) Performances of New Kieselguhr-Supported Transition Metal Oxide Catalysts in Propane Oxydehydrogenation. Catalysis Communications, 7, 79-85. [Google Scholar] [CrossRef]
|
|
[20]
|
Al-Zahrani, S.M., Jibril, B.Y. and Abasaeed, A.E. (2000) Propane Oxidative Dehydrogenation over Alumina-Supported Metal Oxides. Industrial & Engineering Chemistry Research, 39, 4070-4074. [Google Scholar] [CrossRef]
|
|
[21]
|
Jiménez-López, A., Rodrı́guez-Castellón, E., Maireles-Torres, P., Dı́az, L. and Mérida-Robles, J. (2001) Chromium Oxide Supported on Zirconium-and Lanthanum-Doped Mesoporous Silica for Oxidative Dehydrogenation of Propane. Applied Catalysis A: General, 218, 295-306. [Google Scholar] [CrossRef]
|
|
[22]
|
Al-Zahrani, S.M., Jibril, B.Y. and Abasaeed, A.E. (2003) Activities of γ-Al2O3-Supported Metal Oxide Catalysts in Propaneoxidative Dehydrogenation. Catalysis Letters, 85, 57-67. [Google Scholar] [CrossRef]
|
|
[23]
|
Cherian, M., Gupta, R., Someswara Rao, M. and Deo, G. (2003) Effect of modifiers on the reactivity of Cr2O3/Al2O3 and Cr2O3/TiO2 Catalysts for the Oxidative Dehydrogenation of Propane. Catalysis Letters, 86, 179-189. [Google Scholar] [CrossRef]
|