过渡金属-V-B-MCM-41催化剂的制备及其丙烷氧化脱氢性能
Preparation of Transition Metal-V-B-MCM-41 Catalytic and Their Performance for Oxidative Dehydrogenation of Propane
DOI: 10.12677/ms.2025.154087, PDF, HTML, XML,    科研立项经费支持
作者: 任 静, 王 奖*:内蒙古师范大学化学与环境科学学院,内蒙古自治区绿色催化重点实验室,内蒙古 呼和浩特
关键词: 过渡金属离子MCM-41丙烷氧化脱氢丙烯Transition Metal Ion Boron MCM-41 Oxidative Dehydrogenation of Propane Propene
摘要: 采用水热–焙烧法制备一系列不同过渡金属离子(X = Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+)掺杂的V-B-MCM-41催化剂,对其进行X-射线衍射、N2物理吸附–脱附、紫外–可见漫反射光谱表征,并考察不同过渡金属离子掺杂对其丙烷氧化脱氢(ODHP)制丙烯催化性能的影响。结果表明:掺杂不同过渡金属离子,催化剂仍可保持类似MCM-41的介孔结构。但Cr3+掺杂使催化剂表面缺陷位增多,增加VOx物种的分散性和氧化活性,可明显提升催化剂ODHP催化活性,其起活温度可低至350℃,且其丙烷转化率明显优于其他催化剂,丙烯选择性随反应温度升高无明显降低,550℃时丙烷转化率达32%,丙烯收率为17%。
Abstract: A series of transition metal ion (Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+ or Zn2+)-doped V-B-MCM-41 were prepared via a hydrothermal-calcination method. The catalysts were characterized by X-ray diffraction, N2 physisorption-desorption and UV-Vis diffuse reflectance spectroscopy. The effect of different transition metal ions on their catalytic performance for the oxidative dehydrogenation of propane to propylene were investigated. The results revealed that the catalysts with incorporation of various transition metal ions retained the mesoporous structure analogous to MCM-41. However, the incorporation of Cr3+ significantly increased the surface defect sites of the catalyst and the dispersion and oxidation activity of VOx species, thereby enhancing the catalytic activity for the oxidative dehydrogenation of propane. The Cr-doped catalyst exhibited low activation temperature of 350˚C. Notably, it outperformed other catalysts in propane conversion, achieving 32% at 550˚C with propylene yield of 17%. Moreover, the propylene selectivity showed negligible decline with increasing reaction temperature.
文章引用:任静, 王奖. 过渡金属-V-B-MCM-41催化剂的制备及其丙烷氧化脱氢性能[J]. 材料科学, 2025, 15(4): 825-834. https://doi.org/10.12677/ms.2025.154087

1. 引言

近年来,丙烯(C3H6)作为重要石油化工原料,市场需求持续攀升,炼厂流化催化裂化、石脑油蒸汽裂解和煤制烯烃等传统工艺所需传统化石燃料的供应瓶颈日益凸显[1]。页岩气革命使丙烷(C3H8)的规模化廉价供应成为可能,丙烷直接脱氢(DHP)工艺优势明显提升。然而,DHP作为强吸热反应需在高温条件下(通常 > 600℃)进行,其反应过程受热力学平衡限制显著,存在能耗高、催化剂表面易积碳等问题。相较而言,丙烷氧化脱氢(ODHP)凭借其放热反应特性,在较低温度区间内实现高效转化,同时体系中引入的氧化剂促进表面碳物种氧化清除,有效抑制了催化剂积碳失活现象,展现出显著的应用潜力[2]-[4]。但深度氧化是长期困扰ODHP发展的难题。

目前,ODHP反应常用催化剂体系主要包括两类:金属基催化剂如V基[5]、Cr基[6] [7],Ni基[8]等金属氧化物和以B基催化剂[9]为代表的非金属基催化剂。近年来,B基–金属基复合催化体系因其独特的协同催化机制成为研究热点。Jiang等[10]研究表明VOx分散在BN上有助于BN的氧功能化,产生更多的BO活位点,提升BN的ODHP催化性能。Gao等[11]合成的包覆型Ni@BOX/BN催化剂中亚层Ni纳米粒子可调变BOX层的几何和电子性质,使其具有良好的低温ODHP催化活性。但与V基催化剂类似,丙烯选择性随丙烷转化率提高明显降低的问题在以上复合催化体系中仍未得到有效解决。本课题组在对V, B共掺杂MCM-41催化剂ODHP催化性能的研究中也得到类似结果。

基于以上研究现状,本文采用水热法制备一系列不同过渡金属离子(X = Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+)掺杂的V-B-MCM-41催化剂,对比研究不同过渡金属离子掺杂对催化剂理化性质和ODHP催化性能的影响。

2. 材料和方法

2.1. 试剂

实验试剂均为分析纯。草酸(H2C2O4),十六烷基三甲基溴化铵(CTAB)购自天津市光复科技发展有限公司;浓氨水(NH3·H2O,25%~28%,天津市鑫铂特化工有限公司);正硅酸四乙酯(TEOS,上海麦克林生化科技股份有限公司);偏钒酸铵(NH4VO3,天津市北联精细化学品开发有限公司);硼酸(H3BO3)、硝酸铬(Cr(NO3)3·9H2O)、氯化锰(MnCl2·4H2O)、硝酸铁(Fe(NO3)2·6H2O)、硝酸钴(Co(NO3)2·6H2O)、硝酸镍(Ni(NO3)2·6H2O)、硝酸铜(Cu(NO3)2·3H2O)和硝酸锌(Zn(NO3)2·6H2O)购自上海阿拉丁生化科技有限公司。

2.2. 样品制备

采用水热法[12]制备X-V-B-MCM-41 (X = Cr3+,Mn2+,Fe3+,Co2+,Ni2+,Cu2+,Zn2+,X:V理论物质的量比 = 1:3)。以Cr-V-B-MCM-41为例,40℃水浴搅拌条件下,将0.9 g CTAB和1.19 g H3BO3溶解在2 mol/L的氨水中,将4.5 g TEOS缓慢滴加到上述水溶液中并搅拌30 min。逐滴加入3.78 mL偏钒酸铵水溶液(0.15 mol/L)和0.30 mL硝酸铬溶液(0.6 mol/L),用2 mol/L氨水调节溶液pH ≈ 11,继续搅拌6 h。将得到的悬浊液转移到水热反应釜中,在100℃下水热处理24 h。自然冷却后离心水洗涤至上清液中性,然后80℃干燥过夜,最后600℃空气气氛焙烧6 h即得Cr,V,B共掺杂MCM-41催化剂(标记为Cr-V-B-M)。采用相同的制备方法,将Cr(NO3)3溶液替换为其他过渡金属盐溶液,制备一系列过渡金属离子掺杂的V-B-M催化剂。作为对照,采用相同步骤制备V,B共掺杂MCM-41催化剂(记为V-B-M)。

2.3. 催化剂表征

采用电感耦合等离子体质谱仪分析(ICP-MS,美国赛默飞世尔科技有限公司,ICAP RQ)分析催化剂中B和金属离子含量。采用多晶X射线衍射仪(XRD,日本理学株式会社RegaKu Uitima IV)分析样品晶相,实验条件:Cu靶,光源波长0.1540 nm,功率40 kV,扫描速度8˚/min,范围5˚~80˚。利用紫外-可见漫反射光谱仪(UV-Vis DRS,日本岛津UV-3600 plus)分析催化剂表面VOx物种聚集状态,以[Ahѵ]2hѵ作图,将曲线段的直线部分外推至与x轴的交点即为禁带宽度Eg值。催化剂H2-TPR程序升温还原测试采用化学吸附分析仪(美国康塔Chem BET TPR/TPD)完成。30 mg催化剂在300℃下用Ar预处理1 h,待温度降至80℃后切换为10 vol% H2/Ar,以10℃/min升温至800℃,TCD检测器记录耗氢信号,得到H2-TPR谱图。

2.4. ODHP性能测试

在微型固定床反应器中对催化剂的ODHP催化性能进行研究。温度实验:催化剂用量50 mg,原料气体积比C3H8:O2:N2 = 1:1:8,总流量40 mL/min, WHSV=9 .4 g C 3 H 8 g cat 1 h 1 ,反应温度为350℃~575℃;空速实验:催化剂用量和原料气体积比不变,反应温度为550℃, WHSV=4.7~14 .1 g C 3 H 8 g cat 1 h 1 。采用岛津GC-2010 Plus气相色谱仪(ShinCarbon ST 80/100 mesh 2 m微填充柱,BID检测器)对反应物和产物进行分析。丙烷转化率、丙烯选择性和碳平衡计算方法如下:

Conv.( % )= N ri A ri f ri N ri A ri f ri + N pi A pi f pi ×100%

Sel.( % )= N pi A pi f pi N pi A pi f pi ×100%

C balance = ( N i A i f i ) in ( N i A i f i ) out

其中N是碳原子的物质的量,A是气相峰面积,f是对应物质的校正因子,rp分别表示反应物和产物,i表示反应中的任一气体。

3. 结果与讨论

3.1. 含量分析

表1可见,不同过渡金属掺杂催化剂中V和B含量基本保持一致,分别为~1.2 wt%和~1.4 wt%。除Fe含量和Ni含量较少外,其他金属离子含量为~0.7 wt%,与V的物质定量比约为1:2~2.5,表明其实际掺杂量稍大于预期理论值。

Table 1. Physical characteristics of samples

1. 样品的理化性质

Samples

SBET (m2·g−1)

Most probable pore

diameter (nm)

Pore volume (cm3·g−1)

Content (wt%)a

nX:nV

Xb

V

B

V-B-M

827.14

3.10

1.07

-

1.20

1.43

-

Cr-V-B-M

876.21

2.98

1.07

0.70

1.22

1.39

1:2

Mn-V-B-M

902.49

3.13

0.92

0.78

1.26

1.38

1:2

Fe-V-B-M

874.12

3.06

0.91

0.02

1.24

1.49

1:100

Co-V-B-M

856.30

3.12

0.92

0.69

1.22

1.48

1:2.5

Ni-V-B-M

823.04

3.07

1.07

0.12

1.21

1.47

1:10

Cu-V-B-M

807.69

3.10

0.81

0.72

1.29

1.31

1:2

Zn-V-B-M

841.49

3.09

0.86

0.72

1.19

1.39

1:2.5

a: Determined by ICP-MS; b: Transition metal ions.

3.2. 晶相分析

催化剂的XRD谱图如图1所示。所有催化剂的XRD谱图相似,仅在2θ为23˚左右出现归属于无定型SiO2的宽衍射峰,未观察到硼氧化物和金属氧化物的特征衍射峰,这与杂原子掺杂量较低的结果是一致的。

Figure 1. XRD patterns of the samples

1. 样品的XRD图

3.3. 表面织构分析

图2(a)图2(b)分别为催化剂的N2吸附–脱附等温曲线和孔径分布图,相应比表面积、孔径和孔容数据见表1。根据IUPAC分类标准[13],所有样品均呈现典型的Ⅳ (b)型吸附等温线特征,表明样品具有相似的介孔结构,孔容和最可几孔径均在1 cm3·g−1和3 nm左右,比表面积在800~900 m2·g1,这是杂原子均匀分散的重要前提条件。除Cr-V-B-M外,其他催化剂吸附等温线与脱附等温线几乎重合,H2型回滞环很窄,呈现单一孔径分布。而Cr-V-B-M则呈现H4型回滞环,出现2.98 nm和3.75 nm双峰孔径分布,表面缺陷增多。以上结果表明,大部分过渡金属离子掺杂对V-B-MCM-41介孔结构无明显影响,Cr3+掺杂在保持其介孔结构基础上出现更大的介孔孔道和更多的表面缺陷位点,这将有利于提升传质效率并提升催化活性位点的分散性[14]

Figure 2. N2 adsorption-desorption isotherms (a) and pore size distribution (b) of samples

2. 样品的N2吸附脱附等温线(a)和孔径分布图(b)

3.4. VOx物种分散性和还原性分析

紫外–可见漫反射光谱(UV-Vis DRS)可表征表面VOx物种的分散性[15]。催化剂的UV-Vis DRS谱图如图3(a)所示,相应带隙能量如图3(b)所示。由图可见,催化剂带隙能量在3.48~2.96 eV之间,表明VOx物种主要以孤立四面体VOx和二维四面体配位低聚物形式存在。随掺杂过渡金属离子原子序数增大,VOx物种带隙能量值减小,聚合度增加[16]。说明Cr3+掺杂可有效抑制VOx物种的聚合倾向,促进活性组分高度分散。图4为Cr-V-B-M和V-B-M催化剂的H2-TPR谱图。由图可见,催化剂均在500℃左右出现V5+耗氢峰,但适量Cr3+掺杂后催化剂的还原温度降低,催化剂可还原性增强,这可能是因为Cr3+掺杂使VOx物种分散性增强,从而更易被还原,具备更高氧化活性,有助于降低反应温度[17]

Figure 3. UV-Vis DRS (a) and band gap energies (b) of samples

3. 样品的紫外可见漫反射图谱(a)和带隙能量(b)

Figure 4. H2-TPR patterns of Cr-V-B-M and V-B-M

4. Cr-V-B-M和V-B-M的H2-TPR谱图

4. ODHP催化性能评价

为催化剂丙烷转化率和丙烯选择性随反应温度的变化关系。由图5(a)可见,在测试温度范围内,随反应温度的升高,丙烷转化率均增大。575℃,V-B-M上时丙烷转化率为25%。Cr3+掺杂对催化剂丙烷转化率影响明显。在Cr-V-B-M上,丙烷起活温度(350℃)较其他催化剂降低约100℃;反应温度从350℃升高至500℃,其丙烷转化率快速跃升至约30%,随后增速趋缓;相同反应温度时,丙烷转化率明显高于其他催化剂。其他过渡金属离子掺杂对丙烷转化率影响不明显,变化规律与V-B-M相似。由5(b)可见,随反应温度升高V-B-M上丙烯选择性降低。掺杂过渡金属离子后,相同反应温度时丙烯选择性降低,但随反应温度升高变化规律不同,Ni-V-B-M、Cr-V-B-M和Fe-V-B-M上丙烯选择性基本保持不变,Mn-V-B-M和Cu-V-B-M上丙烯选择性增加,Zn-V-B-M上变化趋势与V-B-M基本一致。

Figure 5. Propane conversion (a) and propylene selectivity (b) on catalysts as a function of reaction temperature

5. 催化剂丙烷转化率(a)和丙烯选择性(b)随反应温度的变化关系

Figure 6. The effect of transition metal ion doping on the catalytic performance of catalysts

6. 掺杂过渡金属离子对催化剂催化性能的影响(实验条件:反应温度550℃;催化剂用量50 mg;原料气总流量40 mL/min)

相同反应条件下比较不同过渡金属离子掺杂对催化剂ODHP催化性能的影响,如图6所示。由图可见,掺杂Cr3+虽然使催化剂丙烯选择性有所降低,但可明显提升催化活性,从而使丙烯收率明显增加。

在550℃时考察原料气空速对催化剂ODHP性能的影响规律,如图7所示。空速对Cr-V-B-M影响不大,丙烷转化率在30%左右,丙烯选择性在55%左右,表明其催化活性较高,稳定性较好。

表2对比了几种典型Cr基催化剂的ODHP催化性能,在相同反应温度下Cr-V-B-M表现出较高的丙烯选择性和空时收率。

Figure 7. Propylene selectivity-propane conversion relationship of catalysts

7. 丙烯选择性随丙烷转化率的变化趋势

Table 2. Comparison of the catalytic performance between Cr-V-B-M and other Cr-based catalysts in ODHP

2. Cr-V-B-M和其他Cr基催化剂ODHP催化性能比较

Catalysts

T (ºC)

WHSV ( g C 3 H 8 g cat 1 h 1 )

C3H8 Conv.

(%)

C3H6 Sel.

(%)

STY

( g C 3 H 8 g cat 1 h 1 )

Ref.

Cr2O3/SBA-15

450

0.30

24.2

12.5

0.07

[18]

Cr2O3/ZrO2/SBA-15

450

0.30

26.6

7.2

0.07

[18]

Cr2O3/ZrO2

450

0.30

19.4

1.5

0.05

[18]

Cr- Kieselguhr

450

2.36

6.9

35.5

0.16

[19]

Cr-Al-O

450

2.36

17.0

55.0

0.40

[20]

SiZr5-5Cr

450

6.79

20.8

18.7

1.41

[21]

SiLa5-5Cr

450

6.79

29.7

11.7

2.01

[21]

Cr/γ-Al2O3

450

2.36

16.7

55.0

0.39

[22]

CrAl

450

15.01

2.80

65.0

0.42

[23]

Cr-V-B-M

450

9.4

20.0

54.47

1.88

This work

5. 结论

综上所述,采用水热–焙烧法成功制备了一系列过渡金属离子掺杂的V-B-MCM-41介孔催化剂。实验结果表明,掺杂Cr3+有利于增加催化剂表面缺陷位,增加VOx物种分散性和氧化活性,从而明显提升催化剂ODHP催化活性,其起活温度可低至350℃,丙烷转化率明显高于其他催化剂,丙烯选择性随反应温度升高无明显降低,550℃时丙烷转化率为32%,丙烯收率为17%。

基金项目

国家自然科学基金地区基金项目(22262026),内蒙古绿色催化重点实验室重组项目(2060404)。

NOTES

*通讯作者。

参考文献

[1] Chen, S., Chang, X., Sun, G., Zhang, T., Xu, Y., Wang, Y., et al. (2021) Propane Dehydrogenation: Catalyst Development, New Chemistry, and Emerging Technologies. Chemical Society Reviews, 50, 3315-3354.
https://doi.org/10.1039/d0cs00814a
[2] Fu, Z., Li, D., Zhou, L., Li, Y., Guo, J., Li, Y., et al. (2023) A Mini Review on Oxidative Dehydrogenation of Propane over Boron Nitride Catalysts. Petroleum Science, 20, 2488-2498.
https://doi.org/10.1016/j.petsci.2023.03.005
[3] Yuan, Y., Porter, W.N. and Chen, J.G. (2023) Comparison of Direct and CO2-Oxidative Dehydrogenation of Propane. Trends in Chemistry, 5, 840-852.
https://doi.org/10.1016/j.trechm.2023.09.001
[4] Zuo, C. and Su, Q. (2023) Research Progress on Propylene Preparation by Propane Dehydrogenation. Molecules, 28, Article 3594.
https://doi.org/10.3390/molecules28083594
[5] Carrero, C.A., Schloegl, R., Wachs, I.E. and Schomaecker, R. (2014) Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts. ACS Catalysis, 4, 3357-3380.
https://doi.org/10.1021/cs5003417
[6] Melnikov, D.P., Novikov, A.A., Glotov, A.P., Reshetina, M.V., Smirnova, E.M., Wang, H.Q., et al. (2022) Dehydrogenation of Light Alkanes (A Review). Petroleum Chemistry, 62, 1027-1046.
https://doi.org/10.1134/s096554412209006
[7] Wang, H., Chen, Y., Yan, X., Lang, W. and Guo, Y. (2019) Cr Doped Mesoporous Silica Spheres for Propane Dehydrogenation in the Presence of CO2: Effect of Cr Adding Time in Sol-Gel Process. Microporous and Mesoporous Materials, 284, 69-77.
https://doi.org/10.1016/j.micromeso.2019.04.016
[8] Liu, Z., Wang, J., Wu, K., Xu, A. and Jia, M. (2023) Low-Temperature Oxidative Dehydrogenation of Propane over Niv Mixed Oxides Derived from LDH Precursors. APL Materials, 11, Article ID: 040701.
https://doi.org/10.1063/5.0144860
[9] Venegas, J.M., McDermott, W.P. and Hermans, I. (2018) Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation. Accounts of Chemical Research, 51, 2556-2564.
https://doi.org/10.1021/acs.accounts.8b00330
[10] Jiang, X., Zhang, X., Purdy, S.C., He, Y., Huang, Z., You, R., et al. (2022) Multiple Promotional Effects of Vanadium Oxide on Boron Nitride for Oxidative Dehydrogenation of Propane. JACS Au, 2, 1096-1104.
https://doi.org/10.1021/jacsau.1c00542
[11] Gao, X., Zhu, L., Yang, F., Zhang, L., Xu, W., Zhou, X., et al. (2023) Subsurface Nickel Boosts the Low-Temperature Performance of a Boron Oxide Overlayer in Propane Oxidative Dehydrogenation. Nature Communications, 14, Article No. 1478.
https://doi.org/10.1038/s41467-023-37261-x
[12] Liu, Q., Wang, J., Liu, Z., Zhao, R., Xu, A. and Jia, M. (2022) Water-Tolerant Boron-Substituted MCM-41 for Oxidative Dehydrogenation of Propane. ACS Omega, 7, 3083-3092.
https://doi.org/10.1021/acsomega.1c06504
[13] Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., et al. (2015) Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051-1069.
https://doi.org/10.1515/pac-2014-1117
[14] Zhao, H., Cui, S., Yang, L., Li, G., Li, N. and Li, X. (2018) Synthesis of Hierarchically Meso-Macroporous TiO2/CdS Heterojunction Photocatalysts with Excellent Visible-Light Photocatalytic Activity. Journal of Colloid and Interface Science, 512, 47-54.
https://doi.org/10.1016/j.jcis.2017.10.011
[15] Wu, K., Wang, J., Ren, J., Jia, H., Wang, S., Xu, A., et al. (2024) Electrospun Hollow VOx/SiO2 Nanofibers for Oxidative Dehydrogenation of Propane. Catalysis Letters, 154, 5571-5583.
https://doi.org/10.1007/s10562-024-04759-y
[16] Bulánek, R., Čičmanec, P., Sheng-Yang, H., Knotek, P., Čapek, L. and Setnička, M. (2012) Effect of Preparation Method on Nature and Distribution of Vanadium Species in Vanadium-Based Hexagonal Mesoporous Silica Catalysts: Impact on Catalytic Behavior in Propane ODH. Applied Catalysis A: General, 415, 29-39.
https://doi.org/10.1016/j.apcata.2011.11.033
[17] Xu, A., Wang, Y., Ge, H., Chen, S., Li, Y. and Lu, W. (2013) An Outstanding CR-Doped Catalyst for Selective Oxidation of Propane to Acrylic Acid. Chinese Journal of Catalysis, 34, 2183-2191.
https://doi.org/10.1016/s1872-2067(12)60671-8
[18] Zhang, X.Z., Yue, Y.H. and Gao, Z. (2002) Chromium Oxide Supported on Mesoporous SBA-15 as Propane Dehydrogenation and Oxidative Dehydrogenation Catalysts. Catalysis Letters, 83, 19-25.
[19] Jibril, B.Y., Al-Kinany, M.C., Al-Khowaiter, S.H., Al-Drees, S.A., Al-Megren, H.A., Al-Dosari, M.A., et al. (2006) Performances of New Kieselguhr-Supported Transition Metal Oxide Catalysts in Propane Oxydehydrogenation. Catalysis Communications, 7, 79-85.
https://doi.org/10.1016/j.catcom.2005.08.014
[20] Al-Zahrani, S.M., Jibril, B.Y. and Abasaeed, A.E. (2000) Propane Oxidative Dehydrogenation over Alumina-Supported Metal Oxides. Industrial & Engineering Chemistry Research, 39, 4070-4074.
https://doi.org/10.1021/ie000285o
[21] Jiménez-López, A., Rodrı́guez-Castellón, E., Maireles-Torres, P., Dı́az, L. and Mérida-Robles, J. (2001) Chromium Oxide Supported on Zirconium-and Lanthanum-Doped Mesoporous Silica for Oxidative Dehydrogenation of Propane. Applied Catalysis A: General, 218, 295-306.
https://doi.org/10.1016/s0926-860x(01)00656-1
[22] Al-Zahrani, S.M., Jibril, B.Y. and Abasaeed, A.E. (2003) Activities of γ-Al2O3-Supported Metal Oxide Catalysts in Propaneoxidative Dehydrogenation. Catalysis Letters, 85, 57-67.
https://doi.org/10.1023/a:1022116723773
[23] Cherian, M., Gupta, R., Someswara Rao, M. and Deo, G. (2003) Effect of modifiers on the reactivity of Cr2O3/Al2O3 and Cr2O3/TiO2 Catalysts for the Oxidative Dehydrogenation of Propane. Catalysis Letters, 86, 179-189.
https://doi.org/10.1023/a:1022655716275