[1]
|
Ruzzene, M. (2004) Vibration and Sound Radiation of Sandwich Beams with Honeycomb Truss Core. Journal of Sound and Vibration, 277, 741-763. https://doi.org/10.1016/j.jsv.2003.09.026
|
[2]
|
Cui, S., Gong, B., Ding, Q., Sun, Y., Ren, F., Liu, X., et al. (2018) Mechanical Metamaterials Foams with Tunable Negative Poisson’s Ratio for Enhanced Energy Absorption and Damage Resistance. Materials, 11, Article No. 1869. https://doi.org/10.3390/ma11101869
|
[3]
|
Carneiro, V.H., Puga, H. and Meireles, J. (2019) Positive, Zero and Negative Poisson’s Ratio Non-Stochastic Metallic Cellular Solids: Dependence between Static and Dynamic Mechanical Properties. Composite Structures, 226, Article ID: 111239. https://doi.org/10.1016/j.compstruct.2019.111239
|
[4]
|
Wang, C., Wang, W., Zhao, W., Li, Y. and Zhou, G. (2017) Reliability Optimization of a Novel Negative Poisson’s Ratio Forepart for Pedestrian Protection. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232, 2998-3012. https://doi.org/10.1177/0954406217730441
|
[5]
|
Lin, C., Zhang, L., Liu, Y., Liu, L. and Leng, J. (2020) 4D Printing of Personalized Shape Memory Polymer Vascular Stents with Negative Poisson’s Ratio Structure: A Preliminary Study. Science China Technological Sciences, 63, 578-588. https://doi.org/10.1007/s11431-019-1468-2
|
[6]
|
Huang, C. and Chen, L. (2016) Negative Poisson’s Ratio in Modern Functional Materials. Advanced Materials, 28, 8079-8096. https://doi.org/10.1002/adma.201601363
|
[7]
|
Saxena, K.K., Das, R. and Calius, E.P. (2016) Three Decades of Auxetics Research—Materials with Negative Poisson’s Ratio: A Review. Advanced Engineering Materials, 18, 1847-1870. https://doi.org/10.1002/adem.201600053
|
[8]
|
Pasternak, E. and Dyskin, A.V. (2012) Materials and Structures with Macroscopic Negative Poisson’s Ratio. International Journal of Engineering Science, 52, 103-114. https://doi.org/10.1016/j.ijengsci.2011.11.006
|
[9]
|
Lu, H., Wang, X. and Chen, T. (2021) In-plane Dynamics Crushing of a Combined Auxetic Honeycomb with Negative Poisson’s Ratio and Enhanced Energy Absorption. Thin-Walled Structures, 160, Article ID: 107366. https://doi.org/10.1016/j.tws.2020.107366
|
[10]
|
Tao, Z., Zhu, C., He, M. and Karakus, M. (2021) A Physical Modeling-Based Study on the Control Mechanisms of Negative Poisson’s Ratio Anchor Cable on the Stratified Toppling Deformation of Anti-Inclined Slopes. International Journal of Rock Mechanics and Mining Sciences, 138, Article ID: 104632. https://doi.org/10.1016/j.ijrmms.2021.104632
|
[11]
|
Jha, A., Cimolai, G. and Dayyani, I. (2024) Crashworthiness and Dimensional Stability Analysis of Zero Poisson’s Ratio Fish Cells Lattice Structures. International Journal of Impact Engineering, 184, Article ID: 104809. https://doi.org/10.1016/j.ijimpeng.2023.104809
|
[12]
|
He, Y., Bi, Z., Wang, T., Wang, L., Lu, G., Cui, Y., et al. (2024) Design and Mechanical Properties Analysis of Hexagonal Perforated Honeycomb Metamaterial. International Journal of Mechanical Sciences, 270, Article ID: 109091. https://doi.org/10.1016/j.ijmecsci.2024.109091
|
[13]
|
Jiao, C. and Yan, G. (2021) Design and Elastic Mechanical Response of a Novel 3D-Printed Hexa-Chiral Helical Structure with Negative Poisson’s Ratio. Materials & Design, 212, Article ID: 110219. https://doi.org/10.1016/j.matdes.2021.110219
|
[14]
|
Peng, X., Cao, X., Wang, Y., Dong, Y., Li, Z., Xu, H., et al. (2023) Design, Microstructure, and Mechanical Property of Negative Poisson’s Ratio Porous Structure Fabricated by LPBF of Alcocrfeni2.1 Eutectic High-Entropy-Alloy. Journal of Materials Research and Technology, 24, 2028-2040. https://doi.org/10.1016/j.jmrt.2023.03.104
|
[15]
|
Afdhal, Jirousek, O., Falta, J., Dwianto, Y.B. and Palar, P.S. (2024) Discovering Chiral Auxetic Structures with Near-Zero Poisson’s Ratio Using an Active Learning Strategy. Materials & Design, 244, Article ID: 113133. https://doi.org/10.1016/j.matdes.2024.113133
|
[16]
|
Cabeza-Lainez, J. (2021) Architectural Characteristics of Different Configurations Based on New Geometric Determinations for the Conoid. Buildings, 12, Article No. 10. https://doi.org/10.3390/buildings12010010
|
[17]
|
Cheng, S. and Zhou, H. (2024) Buildings: Special Issue on Advancement in Research on Structural Dynamics and Health Monitoring. Buildings, 14, Article No. 3833. https://doi.org/10.3390/buildings14123833
|
[18]
|
Choo, J., Mohammed, B.S., Chen, P., Abdulkadir, I. and Yan, X. (2022) Modeling and Optimizing the Effect of 3D Printed Origami Bubble Aggregate on the Mechanical and Deformation Properties of Rubberized ECC. Buildings, 12, Article No. 2201. https://doi.org/10.3390/buildings12122201
|
[19]
|
Zhou, Y., Zhong, Y., Tang, Y. and Liu, R. (2024) Static and Dynamic Characteristics of 3D-Printed Orthogonal Hybrid Honeycomb Panels with Tunable Poisson’s Ratio. Buildings, 14, Article No. 2704. https://doi.org/10.3390/buildings14092704
|
[20]
|
Ju, H., Xu, M., Xu, B., Fu, M., Zeng, K. and Jiang, H. (2024) Stress Analysis of a Concrete Pipeline in a Semi-Infinite Seabed under the Action of Elliptical Cosine Waves Based on the Seepage Equation. Buildings, 14, Article No. 2426. https://doi.org/10.3390/buildings14082426
|
[21]
|
Kamali, A., Sarabian, M. and Laksari, K. (2023) Elasticity Imaging Using Physics-Informed Neural Networks: Spatial Discovery of Elastic Modulus and Poisson’s Ratio. Acta Biomaterialia, 155, 400-409. https://doi.org/10.1016/j.actbio.2022.11.024
|
[22]
|
Suryadi, F., Jonathan, S., Jonatan, K. and Ohyver, M. (2023) Handling Overdispersion in Poisson Regression Using Negative Binomial Regression for Poverty Case in West Java. Procedia Computer Science, 216, 517-523. https://doi.org/10.1016/j.procs.2022.12.164
|
[23]
|
Liu, X., Zhao, H., Tang, Y., Chen, C., Zhu, Y., Song, B., et al. (2024) Few-Shot Learning-Based Generative Design of Metamaterials with Zero Poisson’s Ratio. Materials & Design, 244, Article ID: 113224. https://doi.org/10.1016/j.matdes.2024.113224
|
[24]
|
Chen, P. (2024) Nearly Zero Poisson’s Ratio and Spin-State-Controlled Magnetoelastic Response in an RKKY-Mediated Two-Dimensional Magnetic Metal-Organic Framework. Results in Physics, 61, Article ID: 107726. https://doi.org/10.1016/j.rinp.2024.107726
|
[25]
|
Guo, A., He, M., Liu, S., Du, Z., Lyu, Z. and Tao, Z. (2024) Negative Poisson’s Ratio Cable Compensation Support for 32 m Super-Large-Span Highway Tunnel: A Case Study. Underground Space, 14, 156-175. https://doi.org/10.1016/j.undsp.2023.07.001
|
[26]
|
Lipsett, A.W. and Beltzer, A.I. (1988) Reexamination of Dynamic Problems of Elasticity for Negative Poisson’s Ratio. The Journal of the Acoustical Society of America, 84, 2179-2186. https://doi.org/10.1121/1.397064
|
[27]
|
Jiang, X., Liu, F. and Wang, L. (2023) Machine Learning-Based Stiffness Optimization of Digital Composite Metamaterials with Desired Positive or Negative Poisson’s Ratio. Theoretical and Applied Mechanics Letters, 13, Article ID: 100485. https://doi.org/10.1016/j.taml.2023.100485
|
[28]
|
Poźniak, A.A., Wojciechowski, K.W., Grima, J.N. and Mizzi, L. (2016) Planar Auxeticity from Elliptic Inclusions. Composites Part B: Engineering, 94, 379-388. https://doi.org/10.1016/j.compositesb.2016.03.003
|
[29]
|
Ellul, B., Muscat, M. and Grima, J.N. (2009) On the Effect of the Poisson’s Ratio (Positive and Negative) on the Stability of Pressure Vessel Heads. Physica Status Solidi (B), 246, 2025-2032. https://doi.org/10.1002/pssb.200982033
|
[30]
|
Bezazi, A. and Scarpa, F. (2007) Mechanical Behaviour of Conventional and Negative Poisson’s Ratio Thermoplastic Polyurethane Foams under Compressive Cyclic Loading. International Journal of Fatigue, 29, 922-930. https://doi.org/10.1016/j.ijfatigue.2006.07.015
|
[31]
|
Yang, L., Ye, M., Huang, Y. and Dong, J. (2023) Mechanics Characteristics of a 3D Star-Shaped Negative Poisson’s Ratio Composite Structure. Materials, 16, Article No. 3950. https://doi.org/10.3390/ma16113950
|
[32]
|
Donadini, R., Roso, M., Covassin, A., Penzo, D., Del Bianco, G., Romagnano, S., et al. (2024) Closing the Loop of Polyurethane Adhesives: Acidolysis Process Optimization. International Journal of Adhesion and Adhesives, 135, Article ID: 103843. https://doi.org/10.1016/j.ijadhadh.2024.103843
|
[33]
|
Gao, H., Liu, L., Yang, W., Dong, Y. and Liu, H. (2024) Experimental Study on Mechanical Properties of Polyurethane-Based Composites. Case Studies in Construction Materials, 21, e03907. https://doi.org/10.1016/j.cscm.2024.e03907
|
[34]
|
Yaseen, A., Umair, M., Rehan, Z.A., Alahmari, L.A. and Fayad, E. (2024) Fabrication of Novel Polyurethane Matrix-Based Functional Composites with Enhanced Mechanical Performance. Results in Engineering, 24, Article ID: 103134. https://doi.org/10.1016/j.rineng.2024.103134
|
[35]
|
Campana, F., Brufani, G., Mauriello, F., Luque, R. and Vaccaro, L. (2024) Green Polyurethanes from Bio-Based Building Blocks: Recent Advances and Applications. Green Synthesis and Catalysis. https://doi.org/10.1016/j.gresc.2024.08.001
|
[36]
|
Gibson, L.J. (2003) Cellular Solids. MRS Bulletin, 28, 270-274. https://doi.org/10.1557/mrs2003.79
|
[37]
|
Zhao, Y., Wang, Y., Hao, J., Wang, Y., Wang, K. and Tai, S. (2023) Study on Mechanical Properties of Cellular Structures with Negative Poisson’s Ratio Based on the Development of Abaqus Plug-In Tool. Composite Structures, 322, Article ID: 117348. https://doi.org/10.1016/j.compstruct.2023.117348
|
[38]
|
Lakes, R.S. (2017) Negative-Poisson’s-Ratio Materials: Auxetic Solids. Annual Review of Materials Research, 47, 63-81. https://doi.org/10.1146/annurev-matsci-070616-124118
|
[39]
|
Peng, X. and Bargmann, S. (2021) A Novel Hybrid-Honeycomb Structure: Enhanced Stiffness, Tunable Auxeticity and Negative Thermal Expansion. International Journal of Mechanical Sciences, 190, Article ID: 106021. https://doi.org/10.1016/j.ijmecsci.2020.106021
|
[40]
|
Wei, K., Peng, Y., Qu, Z., Pei, Y. and Fang, D. (2018) A Cellular Metastructure Incorporating Coupled Negative Thermal Expansion and Negative Poisson’s Ratio. International Journal of Solids and Structures, 150, 255-267. https://doi.org/10.1016/j.ijsolstr.2018.06.018
|
[41]
|
Cardoso, J.O., Catatão, G., Borges, J.P. and Velhinho, A. (2024) Experimental Study of Double-Elliptic-Ring-Based Thermomechanical Metamaterials’ Behaviour. International Journal of Mechanical Sciences, 281, Article ID: 109552. https://doi.org/10.1016/j.ijmecsci.2024.109552
|
[42]
|
Li, Z., Gao, W., Kessissoglou, N., Oberst, S., Wang, M.Y. and Luo, Z. (2023) Multifunctional Mechanical Metamaterials with Tunable Double-Negative Isotropic Properties. Materials & Design, 232, Article ID: 112146. https://doi.org/10.1016/j.matdes.2023.112146
|
[43]
|
Lepitre, P., Merlet, L., Doudard, C., Dhondt, M., Surand, M. and Calloch, S. (2024) Influence of Shot-Peening on the Self-Heating Behavior and Fatigue Properties of 300M Steel. Mechanics of Materials, 199, Article ID: 105174. https://doi.org/10.1016/j.mechmat.2024.105174
|
[44]
|
Sun, Y., Zhou, Q., Niu, W., Zhang, S., Yick, K., Gu, B., et al. (2024) 3D Printed Sports Shoe Midsoles: Enhancing Comfort and Performance through Finite Element Analysis of Negative Poisson’s Ratio Structures. Materials & Design, 245, Article ID: 113292. https://doi.org/10.1016/j.matdes.2024.113292
|
[45]
|
Ren, L., Zhang, X., Li, Z., Sun, Y. and Tan, Y. (2025) A Novel Negative Poisson’s Ratio Structure with High Poisson’s Ratio and High Compression Resistance and Its Application in Magnetostrictive Sensors. Composite Structures, 351, Article ID: 118599. https://doi.org/10.1016/j.compstruct.2024.118599
|
[46]
|
Ali, M.N. and Rehman, I.U. (2011) An Auxetic Structure Configured as Oesophageal Stent with Potential to Be Used for Palliative Treatment of Oesophageal Cancer; Development and in Vitro Mechanical Analysis. Journal of Materials Science: Materials in Medicine, 22, 2573-2581. https://doi.org/10.1007/s10856-011-4436-y
|
[47]
|
Li, Q., Wang, Z., Mao, X. and Yang, D. (2024) Underwater Cylindrical Sandwich Meta-Structures Composed of Graded Semi Re-Entrant Zero Poisson’s Ratio Metamaterials with Pre-Strained Wave Propagation Properties. Journal of Ocean Engineering and Science, 9, 541-553. https://doi.org/10.1016/j.joes.2023.02.002
|