椭圆负泊松比橡胶材料力学性能研究
Study on Mechanical Properties of Elliptical Negative Poisson’s Ratio Rubber Material
摘要: 负泊松比结构具有特殊规变形行为和吸能特性,是一种具有广阔应用前景的新型结构。然而目前的研究大多仍停留在微观理论层面,对宏观力学性能的研究较少,因此本文提出了一种聚氨酯椭圆负泊松比结构(PES),采用实验模拟与数值模拟的方法,与内凹负泊松比结构(PCS)进行力学对比以及分析长宽比对结构的影响,突出PES在承载吸能方面的优势,同时采用参数分析研究结构形式和材料属性对PES泊松比及弹性模量的影响,结构在高端装备制造、抗震隔振等领域的应用提供科学依据和技术支撑。
Abstract: Negative Poisson’s ratio structure has special deformation behavior and energy absorption characteristics, which is a new structure with broad application prospects. However, most of the current research is still at the micro theoretical level, and there is less research on the macro mechanical properties. Therefore, this paper proposes a polyurethane elliptical negative Poisson’s ratio structure (PES), which uses the methods of experimental simulation and numerical simulation to carry out mechanical comparison with the concave negative Poisson’s ratio structure (PCS) and analyze the influence of length width ratio on the structure, highlighting the advantages of PEs in energy absorption, and using parameter analysis to study the influence of structural form and material properties on the Poisson’s ratio and elastic modulus of PES, so as to provide scientific basis and technical support for the application of the structure in high-end equipment manufacturing, seismic isolation and other fields.
文章引用:武湘栋, 王章东, 尹丽娥. 椭圆负泊松比橡胶材料力学性能研究[J]. 土木工程, 2025, 14(4): 893-905. https://doi.org/10.12677/hjce.2025.144096

1. 引言

随着材料科学与工程技术的飞速发展[1],具有特殊力学性能的材料结构在航空航天[2]、汽车制造[3]、建筑防护[4]及生物医疗[5]等领域展现出巨大的应用潜力。其中,负泊松比(Negative Poisson’s Ratio, NPR)材料因其独特的拉伸时横向膨胀[6]、压缩时横向收缩[7]的特性,为结构设计与优化提供了全新的视角。因此,近年来国内外学者对负泊松比材料及其结构进行了广泛而深入的研究[8],取得了丰硕成果。通过改变微观结构[9],调整其变形模式[10],设计出不同结构类型的负泊松比材料[11],例如内凹六边形[12]、星型[13]、旋转多边形[14]、手性[15]等多种结构。

近年来,人们从橄榄核、鸡蛋外壳结构[16]发现,椭圆结构具有很高的强度和刚度[17],能够在压缩或冲击期间有效地分布应力以抵抗挤压力和压缩力[18],并从这些物体的形状中获得灵感[19],提出了一种新的椭圆负泊松比结构[20]。这种结构逐渐成为这一领域的新兴研究方向,其独特的几何构型不仅赋予了材料优异的能量吸收[21]、抗冲击[22]及隔音隔热[23]性能,同时显著提升了结构的整体稳定性和承载能力[22]。然而,由于这类结构的复杂性和非线性力学行为,其在工程应用中的广泛推广仍面临诸多挑战[24]。因此,深入探究宏观椭圆负泊松比结构的力学性能[25],不仅对于理解其内在机制、优化结构设计至关重要[26],更是减少因材料失效和结构破坏导致的经济损失和人员伤亡的关键所在,具有极高的研究价值和现实意义[27]

在材料特性方面,Poziak等人[28]采用有限元法对椭圆夹杂复合材料的几何和材料特性进行了探究,分析其对力学性能的影响。Ellul等人[29]利用泊松比小于−0.5的各向同性拉胀材料制造的球形、准球形和椭球壳材料结构发现,在承受内部(在环球和椭球的情况下)或外部压力(在所有情况下)下,该材料的抗屈曲能力明显增强。在此基础上,Bezazi等人[30]分析了常规、等密度非负泊松比和负泊松比(负泊松比)热塑性聚氨酯泡沫的循环加载压缩性能,对耗能进行评估。在Yang等人[31]测试了八种不同的材料,发现橡胶表现出最好的负泊松比效应,而金属材料中铜合金表现出最好的效应,泊松比在−0.058~−0.050之间。鉴于不同材料对结构力学性能[32]、抗屈曲能力[33]和耗能[34]具有显著影响的研究发现,本文选择聚氨酯超弹性材料作为研究对象[35],以更深入地分析椭圆负泊松比结构的变形特性。

在参数设计方面,Gibson和Ashby [36]利用伯努利梁理论精确预测了内凹六边形蜂窝结构的泊松比、屈曲强度和有效弹性模量等力学性能。Zhao等人[37]建立了对内凹六边形结构和星型内凹结构进行了单个胞体的计算方法,研究了参数对该结构泊松比及弹性模量的影响。同时,Yang等人[31]提出了一种两种星型负泊松比结构结合在一起的新型增强复合材料,有效地增加了其压缩性能,同时研究了其泊松比与弹性模量之间的关系。Lakes等人[38]讨论了泊松比在弹性、二维和三维材料、相变、微观结构中的潜在原因以及其他物理性质中的作用。Peng等人[39]通过研究两个六边形蜂窝合并在一起的新型结构,给出了有效弹性模量、泊松比和热膨胀系数的解析表达式,Wei等人[40]研究了蜂窝结构热膨胀系数与泊松比之间的关系,为材料及参数选择提供依据,Cardoso等人[41]在此基础上,提出了一种双椭圆环结构,并研究了该机构泊松比与热膨胀系数之间的关系。基于多篇探讨不同几何结构受力方式及参数对其影响的研究[42],本文进一步分析了椭圆负泊松比结构胞元的设计参数如何影响泊松比与弹性模量之间的关系[43],旨在优化性能参数并为材料选择提供更加完善的指导。

当然,目前现实生活中也有将负泊松比结构应用于现实生活中,Sun等人[44]提出了一种负泊松比结构的运动鞋,可以有效地减震,提高舒适及性能。Ren等人[45]设计、制造和试验研究了第一批负泊松比钉子,能够增强结构的稳定性和承载能力。Ali等人[46]设计并制造了一种用于食道癌缓解治疗和预防患者吞咽困难的聚氨酯薄膜结构食道支架,有效缓解食道癌患者的吞咽困难症状并预防相关并发症。因此本文研究不仅丰富了负泊松比材料力学行为及设计原理方面的相关研究,为学者探索新型功能材料的设计与开发提供了理论依据,也为工程材料领域的实际应用(如冲击防护、减震降噪、轻量化结构设计等)提供了新的思路和方法。

2. 椭圆与内凹结构对比研究

2.1. 实验设计

实验模型采用聚氨酯做为基体材料,这种材料是由多元醇和多异氰酸酯经缩聚反应形成且力学性能优异的高分子材料[47],拥有很好的稳定性、耐化学性、回弹性和力学性能,同时拥有易加工、轻质等特点。利用精度为0.1 mm的JRK-135S高精度激光机,制作尺寸大小与仿真模型相同的椭圆和内凹两种负泊松比结构试块。采用MTS万能试验机对两种结构以2 mm/min的速度施加位移(如图1所示),并在位移分别为0、10、20和30 mm时,使用高速摄像机对压缩变形的样品进行拍照观察其受力情况(如表1~2所示),最终通过对试块顶端受力进行实验数据与模拟数据的对比,使结构的变形趋势更加准确。

Figure 1. Experimental equipment

1. 实验设备图

2.2. 有限元模型设计

本实验使用Solidworks软件进行3D建模。内凹孔负泊松比结构是由内凹单胞元结构并列放置,椭圆孔负泊松比结构是由横向椭圆孔和纵向椭圆孔交替放置所构成。如图2为两种结构几何形状示意图和单胞几何形状示意图,模型长度L和高度H为150 mm、深度为50 mm,并通过调节孔洞的大小控制蜂窝结构孔隙率为50%。将绘制的模型图导入abaqus有限元模拟软件中,通过对试块单轴实验得到应力–应变得到材料属性(如图3所示)。为了减少计算量,模型采用六面体杂交公式(C3D8H)进行计算,上下端面板采用刚性垫板约束,结构置于上下两端刚性板之间,上端刚性板RP-1节点赋予Z方向30 mm的位移,下端刚性板RP-2节点处除了竖直方向外限制其所有方向的位移,刚性板和负泊松比结构网格尺寸分别确定为2.5 mm和5 mm。同时在位移过程中,为了防止结构变形后出现相互穿透的现象,对整个模型采用单面自动接触算法,刚性板与蜂窝结构之间采用通用接触算法,并给它施加法相行为,最终在RP-3处设置耦合,在ODB结果中分析其受力情况。

Figure 2. Schematic diagram of forces in two structural planes

2. 两种结构面内受力示意图

Figure 3. Material parameters

3. 材料参数

Table 1. PCS stress diagram

1. PCS受力图

ε = 0 mm

ε = 10 mm

ε = 20 mm

ε = 30 mm

TEST

FE

Table 2. PES stress diagram

2. PES受力图

ε = 0 mm

ε = 10 mm

ε = 20 mm

ε = 30 mm

TEST

FE

2.3. 结果分析

正泊松比材料被压缩时沿压力方向向四周扩展,而负泊松比相比于正泊松比,在受到同样的压力时,材料竖向和横向都会发生收缩现象使材料向受力的区域汇集,此时,材料的局部密度增大,具有抵抗压痕的效果。通过分析,发现两种结构均产生负泊松比现象(图4~5),实验和模拟的受力特性结果趋势一致。

在第一阶段初期,内凹结构应力应变呈线性关系,受力处于稳定上升的状态,当应变达到0.07时应力达到了峰值,此时结构各个部分开始发生相互挤压和变形;在第二阶段过程中,随着应力逐渐增大,结构中间部分过于挤压,出现结构失稳、受力分布不均的现象,导致应力大小逐渐减小,没有较好的变形效果。

椭圆结构受力初期,由于结构的负泊松比特性,结构整体开始逐渐下降,横向尺寸开始收缩,这种收缩是均匀的。随着外力作用的持续,结构的横向收缩也变得逐渐明显,使得结构在整体上呈现出更加紧凑的形态,应力变化变缓。直到结构中间部分更加集中,横向收缩更加明显,应力大小呈现出逐渐增大的趋势,表现出稳定的受力和吸能效果。

Figure 4. PCE data analysis diagram

4. PCE数据分析图

Figure 5. PES data analysis diagram

5. PES数据分析图

由结果所示,PES在承载和吸能能力上的稳定性相对于PCS更加优越,这是由于它们各自的形态和受力机制所决定。从形态来看,椭圆是连续、闭合的曲线,其长轴和短轴都是对称的,这种对称性使得椭圆结构在受力时能够更均匀地分布应力,从而保持较好的整体性和稳定性;内凹结构的核心特征则是存在一个或多个向内部凹陷的区域,结构的稳定性可能受到其内凹角度、结构尺寸等因素的影响,当内凹角度过大或结构尺寸过小时,可能会导致结构的承载能力下降。从受力机制来看,椭圆结构类似蛋壳状,蛋壳能够承受较大的压力而不破裂,正是因为其形状能够有效地分散外力,椭圆结构通过这种方式将其受到的外力均匀地分散到整个结构上,从而避免局部应力过大导致的结构破坏;内凹结构在受到外力作用时,其内凹角会发生变化,导致结构发生膨胀或收缩。这种变形机制使得内凹结构在受到外力时能够吸收更多的能量,但是,其承载能力可能受到内凹角度、壁厚等许多因素的影响,内凹角度过大或壁厚尺寸过小,可能会导致结构的承载能力下降,这些因素的影响导致稳定性相对较差。

在采用高精度激光机制作模型试样时,由于内凹结构几何形状的不规则性和内部结构的精细性要求,需要更高的精度和更精细的材料控制,这增加了制作过程中的难度。而椭圆结构通常具有较为平滑和连续的轮廓,没有过多的内部凹陷或凸起,这使得制作过程中的材料流动和层叠相对容易控制,加工过程中通常不需要过多的辅助设备和工艺步骤,从而提高加工效率。因此,PES相比于PCS在实际加工中具有加工难度低、结构稳定性好以及加工效率高等优势,这些优势使得椭圆结构在多个工程领域具有广泛的应用前景。

3. 不同长宽比椭圆结构受力分析对比研究

3.1. 模型实验设计

为了更好地研究椭圆孔负泊松比结构在压缩载荷下的变形行为,预测和印证结构参数对其性能的影响,本文通过实验以及Abaqus有限元仿真对长宽比为1.2、1.5、2三种PES试样进行分析,采用与第1节中相同的材料参数以及施加位移方式,在位移分别为0、10、20和30 mm时观察其受力情况(表3~5)最终,通过实验数据与模拟数据的对比,对其不同长宽比结构的应力、吸能变化进行分析。

Table 3. Length width ratio 1.2:1 compression deformation diagram

3. 长宽比1.2:1受压变形图

ε = 0 mm

ε = 10 mm

ε = 20 mm

ε = 30 mm

TEST

FE

Table 4. Compression deformation diagram with length width ratio of 1.5:1

4. 长宽比1.5:1受压变形图

ε = 0 mm

ε = 10 mm

ε = 20 mm

ε = 30 mm

TEST

FE

Table 5. Compression deformation diagram with length width ratio of 2:1

5. 长宽比2:1受压变形图

ε = 0 mm

ε = 10 mm

ε = 20 mm

ε = 30 mm

TEST

FE

3.2. 实验结果分析

图6所示,不同长宽比PES的有限元仿真与实验结果中应力–应变变化趋势相似,由于数值模拟中选用的理想弹塑性模型忽略了加工精度和缺陷对力学性能的影响并且未添加断裂损伤系数,导致模拟曲线高于实际曲线,因此模拟曲线更为光滑(如图7所示)。数据分析显示(表6所示),长宽比为1.2:1、1.5:1和2:1的结构平均应力大小为7.89 MPa、4.9 MPa和3.19 MPa,消耗的能量为175.96 J、125 J和81.24 J,随着应变的增大,应力大小及耗能与长宽比呈现出反比关系。由此结果可以得出,出现这种现象的原因是接近圆形的孔结构在压缩过程中,孔棱受力更加均匀,应力集中的情况减少,导致整个结构的强度得到了提升,因此长宽比为1.2:1的结构相较于长短轴比为2:1的结构表现出更高的压缩强度;而长短轴比为2:1的结构由于孔棱直径较小,孔棱上的应力集中区域所受应力更大,导致在压缩过程中孔棱的最薄弱处更容易发生弯曲和屈曲变形,从而更早地进入屈服状态,压缩强度降低,通过这些特征,因此得出长宽比为1.2的PES为受力及吸能效果最优的结构。并利用MATLAB中Curve Fitting Tool工具对受力和能量变化进行基本拟合得出R2为0.99的最佳预测公式,对椭圆负泊松比结构在未来工程建筑领域优化资源配置进行预测,为结构优化设计提供依据。

Figure 6. Stress strain curves of PES with different aspect ratios

6. 不同PES长宽比受应力–应变曲线

Figure 7. Energy displacement curves of PES with different aspect ratios

7. 不同PES长宽比能量–位移曲线

本文采用型号为IT800的JEOL扫描电镜仪器,对聚氨酯材料试块在受压前后的形态进行扫描分析(如图8所示),初始状态下,聚氨酯试块的表面呈现出较为均匀和平整的结构,其内部孔隙分布均匀,显示出良好的材料致密性和一致性。然而,在经过一定的压力作用后,试块表面出现了明显的拉伸痕迹和凸起区域,这表明聚氨酯材料在受压过程中发生了拉胀效应,但可以看出并未发生较大的裂纹,表现出较高的强度和韧性。未来,我们也将继续深入研究这一现象,继续为聚氨酯材料的性能优化和应用拓展提供科学依据。

Table 6. Variation diagram of strain [0~0.2] interval data

6. 应变[0~0.2]区间数据变化图

aspect ratio

FE (TEST) maximum stress [Mpa]

FE (TEST) average stress [Mpa]

FE (TEST) median stress [Mpa]

Energy [J]

1.2:1

10.49 (10.13)

7.84 (7.89)

9.45 (9.2)

175.96

1.5:1

8.10 (7.2)

5.72 (4.9)

6.72 (5.8)

125

2:1

5.97 (5.07)

3.91 (3.19)

4.44 (3.8)

81.24

Figure 8. Scanning electron microscope of JEOL

8. JEOL电镜扫描图

4. 结论

本文通过系统的研究聚氨酯材料的宏观椭圆负泊松比结构(PES),得到的主要结论有:

(1) 本文研究了PES与PCS两种结构的力学行为。通过对比分析,PES在承受载荷及能量吸收方面,展现出了更为出色的稳定性表现。并且从制造工艺的角度来看,椭圆形状的结构由于其流畅且连续的轮廓设计,不仅降低了加工复杂度,还提升了生产效率,因此在实际应用中更具优势。

(2) 通过对比不同椭圆孔长宽比的有限元仿真结果与实验数据,发现椭圆孔的长宽比越小,结构的承载能力和能量吸收效果越优异,在长宽比为1.2时受力性能最好。并利用MATLAB进行数据分析与拟合,得出了能够预测最佳性能的公式,这一成果为未来材料的优化设计提供了有力的预测依据。

5. 讨论

本研究旨在为未来椭圆负泊松比结构在实际工业生产中的应用奠定理论基础,我们期望利用聚氨酯超弹性材料的可塑性,结合椭圆结构的易加工性、出色的吸能效果以及材料利用率高等特点,可以创新性地应用于工业领域,例如椭圆负泊松比结构的隔振支座或隔振墙等产品。这一项研究不仅有望为工业生产领域带来新的解决方案,同时也将为负泊松比结构的实际应用开辟新的思路与方向。

参考文献

[1] Ruzzene, M. (2004) Vibration and Sound Radiation of Sandwich Beams with Honeycomb Truss Core. Journal of Sound and Vibration, 277, 741-763.
https://doi.org/10.1016/j.jsv.2003.09.026
[2] Cui, S., Gong, B., Ding, Q., Sun, Y., Ren, F., Liu, X., et al. (2018) Mechanical Metamaterials Foams with Tunable Negative Poisson’s Ratio for Enhanced Energy Absorption and Damage Resistance. Materials, 11, Article No. 1869.
https://doi.org/10.3390/ma11101869
[3] Carneiro, V.H., Puga, H. and Meireles, J. (2019) Positive, Zero and Negative Poisson’s Ratio Non-Stochastic Metallic Cellular Solids: Dependence between Static and Dynamic Mechanical Properties. Composite Structures, 226, Article ID: 111239.
https://doi.org/10.1016/j.compstruct.2019.111239
[4] Wang, C., Wang, W., Zhao, W., Li, Y. and Zhou, G. (2017) Reliability Optimization of a Novel Negative Poisson’s Ratio Forepart for Pedestrian Protection. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232, 2998-3012.
https://doi.org/10.1177/0954406217730441
[5] Lin, C., Zhang, L., Liu, Y., Liu, L. and Leng, J. (2020) 4D Printing of Personalized Shape Memory Polymer Vascular Stents with Negative Poisson’s Ratio Structure: A Preliminary Study. Science China Technological Sciences, 63, 578-588.
https://doi.org/10.1007/s11431-019-1468-2
[6] Huang, C. and Chen, L. (2016) Negative Poisson’s Ratio in Modern Functional Materials. Advanced Materials, 28, 8079-8096.
https://doi.org/10.1002/adma.201601363
[7] Saxena, K.K., Das, R. and Calius, E.P. (2016) Three Decades of Auxetics Research—Materials with Negative Poisson’s Ratio: A Review. Advanced Engineering Materials, 18, 1847-1870.
https://doi.org/10.1002/adem.201600053
[8] Pasternak, E. and Dyskin, A.V. (2012) Materials and Structures with Macroscopic Negative Poisson’s Ratio. International Journal of Engineering Science, 52, 103-114.
https://doi.org/10.1016/j.ijengsci.2011.11.006
[9] Lu, H., Wang, X. and Chen, T. (2021) In-plane Dynamics Crushing of a Combined Auxetic Honeycomb with Negative Poisson’s Ratio and Enhanced Energy Absorption. Thin-Walled Structures, 160, Article ID: 107366.
https://doi.org/10.1016/j.tws.2020.107366
[10] Tao, Z., Zhu, C., He, M. and Karakus, M. (2021) A Physical Modeling-Based Study on the Control Mechanisms of Negative Poisson’s Ratio Anchor Cable on the Stratified Toppling Deformation of Anti-Inclined Slopes. International Journal of Rock Mechanics and Mining Sciences, 138, Article ID: 104632.
https://doi.org/10.1016/j.ijrmms.2021.104632
[11] Jha, A., Cimolai, G. and Dayyani, I. (2024) Crashworthiness and Dimensional Stability Analysis of Zero Poisson’s Ratio Fish Cells Lattice Structures. International Journal of Impact Engineering, 184, Article ID: 104809.
https://doi.org/10.1016/j.ijimpeng.2023.104809
[12] He, Y., Bi, Z., Wang, T., Wang, L., Lu, G., Cui, Y., et al. (2024) Design and Mechanical Properties Analysis of Hexagonal Perforated Honeycomb Metamaterial. International Journal of Mechanical Sciences, 270, Article ID: 109091.
https://doi.org/10.1016/j.ijmecsci.2024.109091
[13] Jiao, C. and Yan, G. (2021) Design and Elastic Mechanical Response of a Novel 3D-Printed Hexa-Chiral Helical Structure with Negative Poisson’s Ratio. Materials & Design, 212, Article ID: 110219.
https://doi.org/10.1016/j.matdes.2021.110219
[14] Peng, X., Cao, X., Wang, Y., Dong, Y., Li, Z., Xu, H., et al. (2023) Design, Microstructure, and Mechanical Property of Negative Poisson’s Ratio Porous Structure Fabricated by LPBF of Alcocrfeni2.1 Eutectic High-Entropy-Alloy. Journal of Materials Research and Technology, 24, 2028-2040.
https://doi.org/10.1016/j.jmrt.2023.03.104
[15] Afdhal, Jirousek, O., Falta, J., Dwianto, Y.B. and Palar, P.S. (2024) Discovering Chiral Auxetic Structures with Near-Zero Poisson’s Ratio Using an Active Learning Strategy. Materials & Design, 244, Article ID: 113133.
https://doi.org/10.1016/j.matdes.2024.113133
[16] Cabeza-Lainez, J. (2021) Architectural Characteristics of Different Configurations Based on New Geometric Determinations for the Conoid. Buildings, 12, Article No. 10.
https://doi.org/10.3390/buildings12010010
[17] Cheng, S. and Zhou, H. (2024) Buildings: Special Issue on Advancement in Research on Structural Dynamics and Health Monitoring. Buildings, 14, Article No. 3833.
https://doi.org/10.3390/buildings14123833
[18] Choo, J., Mohammed, B.S., Chen, P., Abdulkadir, I. and Yan, X. (2022) Modeling and Optimizing the Effect of 3D Printed Origami Bubble Aggregate on the Mechanical and Deformation Properties of Rubberized ECC. Buildings, 12, Article No. 2201.
https://doi.org/10.3390/buildings12122201
[19] Zhou, Y., Zhong, Y., Tang, Y. and Liu, R. (2024) Static and Dynamic Characteristics of 3D-Printed Orthogonal Hybrid Honeycomb Panels with Tunable Poisson’s Ratio. Buildings, 14, Article No. 2704.
https://doi.org/10.3390/buildings14092704
[20] Ju, H., Xu, M., Xu, B., Fu, M., Zeng, K. and Jiang, H. (2024) Stress Analysis of a Concrete Pipeline in a Semi-Infinite Seabed under the Action of Elliptical Cosine Waves Based on the Seepage Equation. Buildings, 14, Article No. 2426.
https://doi.org/10.3390/buildings14082426
[21] Kamali, A., Sarabian, M. and Laksari, K. (2023) Elasticity Imaging Using Physics-Informed Neural Networks: Spatial Discovery of Elastic Modulus and Poisson’s Ratio. Acta Biomaterialia, 155, 400-409.
https://doi.org/10.1016/j.actbio.2022.11.024
[22] Suryadi, F., Jonathan, S., Jonatan, K. and Ohyver, M. (2023) Handling Overdispersion in Poisson Regression Using Negative Binomial Regression for Poverty Case in West Java. Procedia Computer Science, 216, 517-523.
https://doi.org/10.1016/j.procs.2022.12.164
[23] Liu, X., Zhao, H., Tang, Y., Chen, C., Zhu, Y., Song, B., et al. (2024) Few-Shot Learning-Based Generative Design of Metamaterials with Zero Poisson’s Ratio. Materials & Design, 244, Article ID: 113224.
https://doi.org/10.1016/j.matdes.2024.113224
[24] Chen, P. (2024) Nearly Zero Poisson’s Ratio and Spin-State-Controlled Magnetoelastic Response in an RKKY-Mediated Two-Dimensional Magnetic Metal-Organic Framework. Results in Physics, 61, Article ID: 107726.
https://doi.org/10.1016/j.rinp.2024.107726
[25] Guo, A., He, M., Liu, S., Du, Z., Lyu, Z. and Tao, Z. (2024) Negative Poisson’s Ratio Cable Compensation Support for 32 m Super-Large-Span Highway Tunnel: A Case Study. Underground Space, 14, 156-175.
https://doi.org/10.1016/j.undsp.2023.07.001
[26] Lipsett, A.W. and Beltzer, A.I. (1988) Reexamination of Dynamic Problems of Elasticity for Negative Poisson’s Ratio. The Journal of the Acoustical Society of America, 84, 2179-2186.
https://doi.org/10.1121/1.397064
[27] Jiang, X., Liu, F. and Wang, L. (2023) Machine Learning-Based Stiffness Optimization of Digital Composite Metamaterials with Desired Positive or Negative Poisson’s Ratio. Theoretical and Applied Mechanics Letters, 13, Article ID: 100485.
https://doi.org/10.1016/j.taml.2023.100485
[28] Poźniak, A.A., Wojciechowski, K.W., Grima, J.N. and Mizzi, L. (2016) Planar Auxeticity from Elliptic Inclusions. Composites Part B: Engineering, 94, 379-388.
https://doi.org/10.1016/j.compositesb.2016.03.003
[29] Ellul, B., Muscat, M. and Grima, J.N. (2009) On the Effect of the Poisson’s Ratio (Positive and Negative) on the Stability of Pressure Vessel Heads. Physica Status Solidi (B), 246, 2025-2032.
https://doi.org/10.1002/pssb.200982033
[30] Bezazi, A. and Scarpa, F. (2007) Mechanical Behaviour of Conventional and Negative Poisson’s Ratio Thermoplastic Polyurethane Foams under Compressive Cyclic Loading. International Journal of Fatigue, 29, 922-930.
https://doi.org/10.1016/j.ijfatigue.2006.07.015
[31] Yang, L., Ye, M., Huang, Y. and Dong, J. (2023) Mechanics Characteristics of a 3D Star-Shaped Negative Poisson’s Ratio Composite Structure. Materials, 16, Article No. 3950.
https://doi.org/10.3390/ma16113950
[32] Donadini, R., Roso, M., Covassin, A., Penzo, D., Del Bianco, G., Romagnano, S., et al. (2024) Closing the Loop of Polyurethane Adhesives: Acidolysis Process Optimization. International Journal of Adhesion and Adhesives, 135, Article ID: 103843.
https://doi.org/10.1016/j.ijadhadh.2024.103843
[33] Gao, H., Liu, L., Yang, W., Dong, Y. and Liu, H. (2024) Experimental Study on Mechanical Properties of Polyurethane-Based Composites. Case Studies in Construction Materials, 21, e03907.
https://doi.org/10.1016/j.cscm.2024.e03907
[34] Yaseen, A., Umair, M., Rehan, Z.A., Alahmari, L.A. and Fayad, E. (2024) Fabrication of Novel Polyurethane Matrix-Based Functional Composites with Enhanced Mechanical Performance. Results in Engineering, 24, Article ID: 103134.
https://doi.org/10.1016/j.rineng.2024.103134
[35] Campana, F., Brufani, G., Mauriello, F., Luque, R. and Vaccaro, L. (2024) Green Polyurethanes from Bio-Based Building Blocks: Recent Advances and Applications. Green Synthesis and Catalysis.
https://doi.org/10.1016/j.gresc.2024.08.001
[36] Gibson, L.J. (2003) Cellular Solids. MRS Bulletin, 28, 270-274.
https://doi.org/10.1557/mrs2003.79
[37] Zhao, Y., Wang, Y., Hao, J., Wang, Y., Wang, K. and Tai, S. (2023) Study on Mechanical Properties of Cellular Structures with Negative Poisson’s Ratio Based on the Development of Abaqus Plug-In Tool. Composite Structures, 322, Article ID: 117348.
https://doi.org/10.1016/j.compstruct.2023.117348
[38] Lakes, R.S. (2017) Negative-Poisson’s-Ratio Materials: Auxetic Solids. Annual Review of Materials Research, 47, 63-81.
https://doi.org/10.1146/annurev-matsci-070616-124118
[39] Peng, X. and Bargmann, S. (2021) A Novel Hybrid-Honeycomb Structure: Enhanced Stiffness, Tunable Auxeticity and Negative Thermal Expansion. International Journal of Mechanical Sciences, 190, Article ID: 106021.
https://doi.org/10.1016/j.ijmecsci.2020.106021
[40] Wei, K., Peng, Y., Qu, Z., Pei, Y. and Fang, D. (2018) A Cellular Metastructure Incorporating Coupled Negative Thermal Expansion and Negative Poisson’s Ratio. International Journal of Solids and Structures, 150, 255-267.
https://doi.org/10.1016/j.ijsolstr.2018.06.018
[41] Cardoso, J.O., Catatão, G., Borges, J.P. and Velhinho, A. (2024) Experimental Study of Double-Elliptic-Ring-Based Thermomechanical Metamaterials’ Behaviour. International Journal of Mechanical Sciences, 281, Article ID: 109552.
https://doi.org/10.1016/j.ijmecsci.2024.109552
[42] Li, Z., Gao, W., Kessissoglou, N., Oberst, S., Wang, M.Y. and Luo, Z. (2023) Multifunctional Mechanical Metamaterials with Tunable Double-Negative Isotropic Properties. Materials & Design, 232, Article ID: 112146.
https://doi.org/10.1016/j.matdes.2023.112146
[43] Lepitre, P., Merlet, L., Doudard, C., Dhondt, M., Surand, M. and Calloch, S. (2024) Influence of Shot-Peening on the Self-Heating Behavior and Fatigue Properties of 300M Steel. Mechanics of Materials, 199, Article ID: 105174.
https://doi.org/10.1016/j.mechmat.2024.105174
[44] Sun, Y., Zhou, Q., Niu, W., Zhang, S., Yick, K., Gu, B., et al. (2024) 3D Printed Sports Shoe Midsoles: Enhancing Comfort and Performance through Finite Element Analysis of Negative Poisson’s Ratio Structures. Materials & Design, 245, Article ID: 113292.
https://doi.org/10.1016/j.matdes.2024.113292
[45] Ren, L., Zhang, X., Li, Z., Sun, Y. and Tan, Y. (2025) A Novel Negative Poisson’s Ratio Structure with High Poisson’s Ratio and High Compression Resistance and Its Application in Magnetostrictive Sensors. Composite Structures, 351, Article ID: 118599.
https://doi.org/10.1016/j.compstruct.2024.118599
[46] Ali, M.N. and Rehman, I.U. (2011) An Auxetic Structure Configured as Oesophageal Stent with Potential to Be Used for Palliative Treatment of Oesophageal Cancer; Development and in Vitro Mechanical Analysis. Journal of Materials Science: Materials in Medicine, 22, 2573-2581.
https://doi.org/10.1007/s10856-011-4436-y
[47] Li, Q., Wang, Z., Mao, X. and Yang, D. (2024) Underwater Cylindrical Sandwich Meta-Structures Composed of Graded Semi Re-Entrant Zero Poisson’s Ratio Metamaterials with Pre-Strained Wave Propagation Properties. Journal of Ocean Engineering and Science, 9, 541-553.
https://doi.org/10.1016/j.joes.2023.02.002