[1]
|
Yang, P., Phipps, M.A., Jonathan, S., Newton, A.T., Byun, N., Gore, J.C., et al. (2021) Bidirectional and State-Dependent Modulation of Brain Activity by Transcranial Focused Ultrasound in Non-Human Primates. Brain Stimulation, 14, 261-272. https://doi.org/10.1016/j.brs.2021.01.006
|
[2]
|
Duque, M., Lee-Kubli, C.A., Tufail, Y., Magaram, U., Patel, J., Chakraborty, A., et al. (2022) Sonogenetic Control of Mammalian Cells Using Exogenous Transient Receptor Potential A1 Channels. Nature Communications, 13, Article No. 600. https://doi.org/10.1038/s41467-022-28205-y
|
[3]
|
Liang, D., Chen, J., Zhou, W., Chen, J., Chen, W. and Wang, Y. (2019) Alleviation Effects and Mechanisms of Low‐intensity Focused Ultrasound on Pain Triggered by Soft Tissue Injury. Journal of Ultrasound in Medicine, 39, 997-1005. https://doi.org/10.1002/jum.15185
|
[4]
|
Pang, N., Huang, X., Zhou, H., Xia, X., Liu, X., Wang, Y., et al. (2021) Transcranial Ultrasound Stimulation of Hypothalamus in Aging Mice. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68, 29-37. https://doi.org/10.1109/tuffc.2020.2968479
|
[5]
|
Xu, T., Lu, X., Peng, D., Wang, G., Chen, C., Liu, W., et al. (2020) Ultrasonic Stimulation of the Brain to Enhance the Release of Dopamine—A Potential Novel Treatment for Parkinson’s Disease. Ultrasonics Sonochemistry, 63, Article ID: 104955. https://doi.org/10.1016/j.ultsonch.2019.104955
|
[6]
|
Bobola, M.S., Chen, L., Ezeokeke, C.K., Olmstead, T.A., Nguyen, C., Sahota, A., et al. (2020) Transcranial Focused Ultrasound, Pulsed at 40 Hz, Activates Microglia Acutely and Reduces Aβ Load Chronically, as Demonstrated in Vivo. Brain Stimulation, 13, 1014-1023. https://doi.org/10.1016/j.brs.2020.03.016
|
[7]
|
Chen, S., Tsai, C., Lin, C., Lee, C., Yu, H., Hsieh, T., et al. (2020) Transcranial Focused Ultrasound Pulsation Suppresses Pentylenetetrazol Induced Epilepsy in Vivo. Brain Stimulation, 13, 35-46. https://doi.org/10.1016/j.brs.2019.09.011
|
[8]
|
Jerusalem, A., Al-Rekabi, Z., Chen, H., Ercole, A., Malboubi, M., Tamayo-Elizalde, M., et al. (2019) Electrophysiological-Mechanical Coupling in the Neuronal Membrane and Its Role in Ultrasound Neuromodulation and General Anaesthesia. Acta Biomaterialia, 97, 116-140. https://doi.org/10.1016/j.actbio.2019.07.041
|
[9]
|
Yoo, S., Mittelstein, D.R., Hurt, R.C., Lacroix, J. and Shapiro, M.G. (2022) Focused Ultrasound Excites Cortical Neurons via Mechanosensitive Calcium Accumulation and Ion Channel Amplification. Nature Communications, 13, Article No. 493. https://doi.org/10.1038/s41467-022-28040-1
|
[10]
|
Taylor, G.J., Heberle, F.A., Seinfeld, J.S., Katsaras, J., Collier, C.P. and Sarles, S.A. (2017) Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes. Langmuir, 33, 10016-10026. https://doi.org/10.1021/acs.langmuir.7b02022
|
[11]
|
Rezai, A.R., Ranjan, M., D’Haese, P., Haut, M.W., Carpenter, J., Najib, U., et al. (2020) Noninvasive Hippocampal Blood-Brain Barrier Opening in Alzheimer’s Disease with Focused Ultrasound. Proceedings of the National Academy of Sciences, 117, 9180-9182. https://doi.org/10.1073/pnas.2002571117
|
[12]
|
Park, S.H., Baik, K., Jeon, S., Chang, W.S., Ye, B.S. and Chang, J.W. (2021) Extensive Frontal Focused Ultrasound Mediated Blood-Brain Barrier Opening for the Treatment of Alzheimer’s Disease: A Proof-of-Concept Study. Translational Neurodegeneration, 10, Article No. 44. https://doi.org/10.1186/s40035-021-00269-8
|
[13]
|
Rezai, A.R., Ranjan, M., Haut, M.W., Carpenter, J., D’Haese, P., Mehta, R.I., et al. (2023) Focused Ultrasound-Mediated Blood-Brain Barrier Opening in Alzheimer’s Disease: Long-Term Safety, Imaging, and Cognitive Outcomes. Journal of Neurosurgery, 139, 275-283. https://doi.org/10.3171/2022.9.jns221565
|
[14]
|
D’Haese, P., Ranjan, M., Song, A., Haut, M.W., Carpenter, J., Dieb, G., et al. (2020) β-Amyloid Plaque Reduction in the Hippocampus after Focused Ultrasound-Induced Blood-Brain Barrier Opening in Alzheimer’s Disease. Frontiers in Human Neuroscience, 14, Article ID: 593672. https://doi.org/10.3389/fnhum.2020.593672
|
[15]
|
Rezai, A.R., D’Haese, P., Finomore, V., Carpenter, J., Ranjan, M., Wilhelmsen, K., et al. (2024) Ultrasound Blood-Brain Barrier Opening and Aducanumab in Alzheimer’s Disease. New England Journal of Medicine, 390, 55-62. https://doi.org/10.1056/nejmoa2308719
|
[16]
|
Meng, Y., Goubran, M., Rabin, J.S., McSweeney, M., Ottoy, J., Pople, C.B., et al. (2023) Blood-Brain Barrier Opening of the Default Mode Network in Alzheimer’s Disease with Magnetic Resonance-Guided Focused Ultrasound. Brain, 146, 865-872. https://doi.org/10.1093/brain/awac459
|
[17]
|
Jeong, H., Im, J.J., Park, J., Na, S., Lee, W., Yoo, S., et al. (2021) A Pilot Clinical Study of Low-Intensity Transcranial Focused Ultrasound in Alzheimer’s Disease. Ultrasonography, 40, 512-519. https://doi.org/10.14366/usg.20138
|
[18]
|
Zhang, M., Li, B., Lv, X., Liu, S., Liu, Y., Tang, R., et al. (2021) Low-Intensity Focused Ultrasound-Mediated Attenuation of Acute Seizure Activity Based on EEG Brain Functional Connectivity. Brain Sciences, 11, Article No. 711. https://doi.org/10.3390/brainsci11060711
|
[19]
|
Lin, Z., Meng, L., Zou, J., Zhou, W., Huang, X., Xue, S., et al. (2020) Non-Invasive Ultrasonic Neuromodulation of Neuronal Excitability for Treatment of Epilepsy. Theranostics, 10, 5514-5526. https://doi.org/10.7150/thno.40520
|
[20]
|
Robinson, M., Lou, J., Mehrazma, B., Rauk, A., Beazely, M. and Leonenko, Z. (2021) Pseudopeptide Amyloid Aggregation Inhibitors: In Silico, Single Molecule and Cell Viability Studies. International Journal of Molecular Sciences, 22, Article No. 1051. https://doi.org/10.3390/ijms22031051
|
[21]
|
Nicodemus, N.E., Becerra, S., Kuhn, T.P., Packham, H.R., Duncan, J., Mahdavi, K., et al. (2019) Focused Transcranial Ultrasound for Treatment of Neurodegenerative Dementia. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, 374-381. https://doi.org/10.1016/j.trci.2019.06.007
|
[22]
|
Deveney, C.M., Surya, J.R., Haroon, J.M., Mahdavi, K.D., Hoffman, K.R., Enemuo, K.C., et al. (2024) Transcranial Focused Ultrasound for the Treatment of Tremor: A Preliminary Case Series. Brain Stimulation, 17, 35-38. https://doi.org/10.1016/j.brs.2023.12.007
|
[23]
|
Sung, C., Chiang, P., Tsai, C. and Yang, F. (2021) Low-Intensity Pulsed Ultrasound Enhances Neurotrophic Factors and Alleviates Neuroinflammation in a Rat Model of Parkinson’s Disease. Cerebral Cortex, 32, 176-185. https://doi.org/10.1093/cercor/bhab201
|
[24]
|
Wang, B., Chen, M., Chen, S., Feng, X., Liao, Y., Zhao, Y., et al. (2022) Low-Intensity Focused Ultrasound Alleviates Chronic Neuropathic Pain-Induced Allodynia by Inhibiting Neuroplasticity in the Anterior Cingulate Cortex. Neural Plasticity, 2022, Article ID: 6472475. https://doi.org/10.1155/2022/6472475
|
[25]
|
Liao, Y., Wang, B., Chen, M., Liu, Y. and Ao, L. (2021) LIFU Alleviates Neuropathic Pain by Improving the KCC2 Expression and Inhibiting the CaMKIV-KCC2 Pathway in the L4-L5 Section of the Spinal Cord. Neural Plasticity, 2021, Article ID: 6659668. https://doi.org/10.1155/2021/6659668
|
[26]
|
Wang, F., Cai, Q., Ju, R., Wang, S., Liu, L., Pan, M., et al. (2023) Low-Intensity Focused Ultrasound Ameliorates Depression-Like Behaviors Associated with Improving the Synaptic Plasticity in the Vca1-Mpfc Pathway. Cerebral Cortex, 33, 8024-8034. https://doi.org/10.1093/cercor/bhad095
|
[27]
|
Sanguinetti, J.L., Hameroff, S., Smith, E.E., Sato, T., Daft, C.M.W., Tyler, W.J., et al. (2020) Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans. Frontiers in Human Neuroscience, 14, Article No. 52. https://doi.org/10.3389/fnhum.2020.00052
|
[28]
|
Zou, J., Meng, L., Lin, Z., Qiao, Y., Tie, C., Wang, Y., et al. (2020) Ultrasound Neuromodulation Inhibits Seizures in Acute Epileptic Monkeys. iScience, 23, Article ID: 101066. https://doi.org/10.1016/j.isci.2020.101066
|
[29]
|
Chu, P., Huang, C., Chang, P., Chen, R., Chen, K., Hsieh, T., et al. (2023) Weak Ultrasound Contributes to Neuromodulatory Effects in the Rat Motor Cortex. International Journal of Molecular Sciences, 24, Article No. 2578. https://doi.org/10.3390/ijms24032578
|
[30]
|
Riis, T.S., Webb, T.D. and Kubanek, J. (2022) Acoustic Properties across the Human Skull. Ultrasonics, 119, Article ID: 106591. https://doi.org/10.1016/j.ultras.2021.106591
|
[31]
|
Kong, C., Park, S.H., Shin, J., Baek, H.G., Park, J., Na, Y.C., et al. (2021) Factors Associated with Energy Efficiency of Focused Ultrasound through the Skull: A Study of 3D-Printed Skull Phantoms and Its Comparison with Clinical Experiences. Frontiers in Bioengineering and Biotechnology, 9, Article ID: 783048. https://doi.org/10.3389/fbioe.2021.783048
|
[32]
|
Legon, W., Adams, S., Bansal, P., Patel, P.D., Hobbs, L., Ai, L., et al. (2020) A Retrospective Qualitative Report of Symptoms and Safety from Transcranial Focused Ultrasound for Neuromodulation in Humans. Scientific Reports, 10, Article No. 5573. https://doi.org/10.1038/s41598-020-62265-8
|