[1]
|
Wang, M., Liu, H. and Fan, K. (2023) Signal Amplification Strategy Design in Nanozyme‐Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. Small Methods, 7, Article ID: 2301049. https://doi.org/10.1002/smtd.202301049
|
[2]
|
Cheng, Z., Luo, X., Yu, S., Min, D., Zhang, S., Li, X., et al. (2025) Tunable Control of Cas12 Activity Promotes Universal and Fast One-Pot Nucleic Acid Detection. Nature Communications, 16, Article No. 1166. https://doi.org/10.1038/s41467-025-56516-3
|
[3]
|
Ma, H., Hu, L., Ding, F., Liu, J., Su, J., Tu, K., et al. (2024) Introducing High-Performance Star-Shaped Bimetallic Nanotags into SERS Aptasensor: An Ultrasensitive and Interference-Free Method for Chlorpyrifos Detection. Biosensors and Bioelectronics, 263, Article 116577. https://doi.org/10.1016/j.bios.2024.116577
|
[4]
|
Xue, B., Yang, Q., Xia, K., Li, Z., Chen, G.Y., Zhang, D., et al. (2023) An AuNPs/Mesoporous NiO/Nickel Foam Nanocomposite as a Miniaturized Electrode for Heavy Metal Detection in Groundwater. Engineering, 27, 199-208. https://doi.org/10.1016/j.eng.2022.06.005
|
[5]
|
He, X. (2023) Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. Nano-Micro Letters, 15, Article No. 148. https://doi.org/10.1007/s40820-023-01124-3
|
[6]
|
Yuan, Z., Chai, H., Huang, Y., Zhang, Z., Tan, W., Sun, Y., et al. (2025) Porphyrin-Engineered Metal-Organic Frameworks for Photo/Electrochemical Sensing: Preparation and Mechanisms. Coordination Chemistry Reviews, 527, Article 216385. https://doi.org/10.1016/j.ccr.2024.216385
|
[7]
|
Bodedla, G.B., Zhu, X. and Wong, W. (2023) An Overview on Aiegen‐Decorated Porphyrins: Current Status and Applications. Aggregate, 4, e330. https://doi.org/10.1002/agt2.330
|
[8]
|
Montero, J., da Silva Freitas, W., Forchetta, M., Galloni, P., Mecheri, B. and D’Epifanio, A. (2025) Porphyrin-Based Posolytes: A Novel Approach to Advancing Aqueous Organic Redox Flow Battery Technology. Chemical Engineering Journal, 506, Article 159954. https://doi.org/10.1016/j.cej.2025.159954
|
[9]
|
Chen, L., Zhao, X. and Yan, X. (2023) Porphyrinic Metal-Organic Frameworks for Biological Applications. Advanced Sensor and Energy Materials, 2, Article 100045. https://doi.org/10.1016/j.asems.2022.100045
|
[10]
|
Lu, X., Huo, Q., Li, J., Li, B., Yu, X., Sun, X., et al. (2024) Elevating Nonlinear Optical Response through D‐Electron Modulation in Metal-Organic Frameworks. Chemistry—A European Journal, 31, e202403564. https://doi.org/10.1002/chem.202403564
|
[11]
|
Jiao, S., Han, X., Bu, X., Huang, Z., Li, S., Wang, W., et al. (2024) D‐Orbital Induced Electronic Structure Reconfiguration toward Manipulating Electron Transfer Pathways of Metallo‐Porphyrin for Enhanced AlCl2+ Storage. Advanced Materials, 36, Article ID: 2409904. https://doi.org/10.1002/adma.202409904
|
[12]
|
Chen, H., Wang, Y., Wang, W., Cao, T., Zhang, L., Wang, Z., et al. (2024) High-Yield Porphyrin Production through Metabolic Engineering and Biocatalysis. Nature Biotechnology. https://doi.org/10.1038/s41587-024-02267-3
|
[13]
|
Howarth, A.J., Peters, A.W., Vermeulen, N.A., Wang, T.C., Hupp, J.T. and Farha, O.K. (2016) Best Practices for the Synthesis, Activation, and Characterization of Metal-Organic Frameworks. Chemistry of Materials, 29, 26-39. https://doi.org/10.1021/acs.chemmater.6b02626
|
[14]
|
Yu, K., Chai, H., Sun, H., Xiang, X., Zhao, H., Tian, M., et al. (2024) A Fluorescence Analysis Model for Assessing the Water Stability of Porphyrinic Metal-Organic Frameworks. Sensors and Actuators B: Chemical, 401, Article 135046. https://doi.org/10.1016/j.snb.2023.135046
|
[15]
|
Zi, L., Liu, L., Zhou, M., Liu, L., Xiao, B., Xu, L., et al. (2024) Synthesis of Pyrrole‐Sharing Fused Porphyrinoid Hybrids by Post‐Fabrication of Ni(II) Porphyrins. Angewandte Chemie International Edition, 63, e202319005. https://doi.org/10.1002/anie.202319005
|
[16]
|
Chen, P., Jiang, P., Lin, Q., Zeng, X., Liu, T., Li, M., et al. (2022) Simultaneous Homogeneous Fluorescence Detection of AFP and GPC3 in Hepatocellular Carcinoma Clinical Samples Assisted by Enzyme-Free Catalytic Hairpin Assembly. ACS Applied Materials & Interfaces, 14, 28697-28705. https://doi.org/10.1021/acsami.2c09135
|
[17]
|
Wu, W., Lv, X., He, T., Si, G., Huang, H., Xie, L., et al. (2024) Boosting Structural Variety and Catalytic Activity of Porphyrinic Metal-Organic Frameworks by Harnessing Bifunctional Ligands. Inorganic Chemistry Frontiers, 11, 2281-2289. https://doi.org/10.1039/d4qi00314d
|
[18]
|
Wu, Y., Chau, H., Yeung, Y., Thor, W., Kai, H., Chan, W., et al. (2022) Versatile Synthesis of Multivalent Porphyrin-Peptide Conjugates by Direct Porphyrin Construction on Resin. Angewandte Chemie International Edition, 61, e202207532. https://doi.org/10.1002/anie.202207532
|
[19]
|
Sun, X., He, G., Xiong, C., Wang, C., Lian, X., Hu, L., et al. (2021) One-Pot Fabrication of Hollow Porphyrinic MOF Nanoparticles with Ultrahigh Drug Loading toward Controlled Delivery and Synergistic Cancer Therapy. ACS Applied Materials & Interfaces, 13, 3679-3693. https://doi.org/10.1021/acsami.0c20617
|
[20]
|
Shu, Y., Liu, X., Zhang, M., Liu, B. and Wang, Z. (2024) Deactivation of Porphyrin Metal-Organic Framework in Advanced Oxidation Process: Photobleaching and Underlying Mechanism. Applied Catalysis B: Environment and Energy, 346, Article 123746. https://doi.org/10.1016/j.apcatb.2024.123746
|
[21]
|
Zhou, Q., Dutta, D., Cao, Y. and Ge, Z. (2023) Oxidation-Responsive Polymof Nanoparticles for Combination Photodynamic-Immunotherapy with Enhanced STING Activation. ACS Nano, 17, 9374-9387. https://doi.org/10.1021/acsnano.3c01333
|
[22]
|
Yang, C., Tian, S., Qiu, W., Mo, L. and Lin, W. (2023) Hierarchical MOF@AuNP/Hairpin Nanotheranostic for Enhanced Photodynamic Therapy via O2 Self-Supply and Cancer-Related MicroRNA Imaging in vivo. Analytical Chemistry, 95, 16279-16288. https://doi.org/10.1021/acs.analchem.3c03216
|
[23]
|
Tang, Y., Shi, Y., Su, Y., Cao, S., Hu, J., Zhou, H., et al. (2024) Enhanced Capacitive Deionization of Hollow Mesoporous Carbon Spheres/MOFs Derived Nanocomposites by Interface‐Coating and Space‐Encapsulating Design. Advanced Science, 11, Article ID: 2403802. https://doi.org/10.1002/advs.202403802
|
[24]
|
Tan, C., Li, X., Li, Z., Lu, S., Wang, F., Liu, Y., et al. (2024) Near-Infrared-Responsive Nanoplatforms Integrating Dye-Sensitized Upconversion and Heavy-Atom Effect for Enhanced Photodynamic Therapy Efficacy. Nano Today, 54, Article 102089. https://doi.org/10.1016/j.nantod.2023.102089
|
[25]
|
Li, J., Liu, P., Chen, Y., Zhou, J., Li, J., Yang, J., et al. (2023) A Customized Hydrophobic Porous Shell for MOF-5. Journal of the American Chemical Society, 145, 19707-19714. https://doi.org/10.1021/jacs.3c04831
|
[26]
|
Chen, H., Wang, M., Yang, Q., Liu, J., Liu, F., Zhu, X., et al. (2025) Multifunctional Porphyrinic Metal-Organic Framework-Based Nanoplatform Regulating Reactive Oxygen Species Achieves Efficient Imaging-Guided Cascaded Nanocatalytic Therapy. Journal of Colloid and Interface Science, 684, 423-438. https://doi.org/10.1016/j.jcis.2025.01.041
|
[27]
|
Zang, R., Liu, Y., Wang, Y., Feng, L., Ge, Y., Qin, M., et al. (2025) Defect Engineering Zr‐MOF‐Endowed Activity‐dimension Dual‐Sieving Strategy for Anti‐Acid Recognition of Real Phosphoryl Fluoride Nerve Agents. Advanced Functional Materials. https://doi.org/10.1002/adfm.202425082
|
[28]
|
Zhang, Z., Liu, Z., Chen, X., Wei, Y., Yu, H., Zhang, J., et al. (2025) Plasma-Liquid‐Induced Synthesis of Scandium-Metalloporphyrin Frameworks for Boosted Sensing and Photosensitization. Advanced Materials, 37, Article ID: 2412071. https://doi.org/10.1002/adma.202412071
|
[29]
|
Jie, M., Lan, S., Zhu, B., Zhu, A., Yue, X., Xiang, Q., et al. (2024) Europium Functionalized Porphyrin-Based Metal-Organic Framework Heterostructure and Hydrogel for Visual Ratiometric Fluorescence Sensing of Sulfonamides in Foods. Food Chemistry, 458, Article 140304. https://doi.org/10.1016/j.foodchem.2024.140304
|
[30]
|
Chai, H., Yu, K., Zhao, Y., Zhang, Z., Wang, S., Huang, C., et al. (2023) MOF-on-MOF Dual Enzyme-Mimic Nanozyme with Enhanced Cascade Catalysis for Colorimetric/Chemiluminescent Dual-Mode Aptasensing. Analytical Chemistry, 95, 10785-10794. https://doi.org/10.1021/acs.analchem.3c01905
|
[31]
|
Chai, H., Li, Y., Yu, K., Yuan, Z., Guan, J., Tan, W., et al. (2023) Two-Site Enhanced Porphyrinic Metal-Organic Framework Nanozymes and Nano-/Bioenzyme Confined Catalysis for Colorimetric/Chemiluminescent Dual-Mode Visual Biosensing. Analytical Chemistry, 95, 16383-16391. https://doi.org/10.1021/acs.analchem.3c03872
|
[32]
|
Li, Y., Li, J., Zhu, D., Wang, J., Shu, G., Li, J., et al. (2022) 2D Zn‐Porphyrin‐Based Co(II)‐MOF with 2‐Methylimidazole Sitting Axially on the Paddle-Wheel Units: An Efficient Electrochemiluminescence Bioassay for SARS‐CoV‐2. Advanced Functional Materials, 32, Article ID: 2209743. https://doi.org/10.1002/adfm.202209743
|
[33]
|
Zhou, Z., Wang, J., Hou, S., Mukherjee, S. and Fischer, R.A. (2023) Room Temperature Synthesis Mediated Porphyrinic NanoMOF Enables Benchmark Electrochemical Biosensing. Small, 19, Article ID: 2301933. https://doi.org/10.1002/smll.202301933
|
[34]
|
Yan, T., Zhang, G., Yu, K., Chai, H., Tian, M., Qu, L., et al. (2023) Smartphone Light-Driven Zinc Porphyrinic MOF Nanosheets-Based Enzyme-Free Wearable Photoelectrochemical Sensor for Continuous Sweat Vitamin C Detection. Chemical Engineering Journal, 455, Article 140779. https://doi.org/10.1016/j.cej.2022.140779
|