[1]
|
Bai, J., Zhu, L., Mi, W., Gao, Z., Ouyang, M., Sheng, W., et al. (2023) Multiscale Integrative Analyses Unveil Immune-Related Diagnostic Signature for the Progression of MASLD. Hepatology Communications, 7, e0298. https://doi.org/10.1097/hc9.0000000000000298
|
[2]
|
Yagüe-Caballero, C., Casas-Deza, D., Pascual-Oliver, A., Espina-Cadena, S., Arbones-Mainar, J.M. and Bernal-Monterde, V. (2024) MASLD-Related Hepatocarcinoma: Special Features and Challenges. Journal of Clinical Medicine, 13, Article 4657. https://doi.org/10.3390/jcm13164657
|
[3]
|
Dai, J., Liu, Y. and Zhang, Z. (2024) Changes in the Etiology of Liver Cirrhosis and the Corresponding Management Strategies. World Journal of Hepatology, 16, 146-151. https://doi.org/10.4254/wjh.v16.i2.146
|
[4]
|
European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) (2024) EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obesity Facts, 17, 374-444. https://doi.org/10.1159/000539371
|
[5]
|
Kimura, Y., Tapia Sosa, R., Soto-Trujillo, D., Kimura Sandoval, Y. and Casian, C. (2020) Liver Transplant Complications Radiologist Can’t Miss. Cureus, 12, e8465. https://doi.org/10.7759/cureus.8465
|
[6]
|
Mellemkjær, A., Kjær, M.B., Haldrup, D., Grønbæk, H. and Thomsen, K.L. (2024) Management of Cardiovascular Risk in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. European Journal of Internal Medicine, 122, 28-34. https://doi.org/10.1016/j.ejim.2023.11.012
|
[7]
|
Targher, G., Byrne, C.D. and Tilg, H. (2024) MASLD: A Systemic Metabolic Disorder with Cardiovascular and Malignant Complications. Gut, 73, 691-702. https://doi.org/10.1136/gutjnl-2023-330595
|
[8]
|
Hagström, H., Vessby, J., Ekstedt, M. and Shang, Y. (2024) 99% of Patients with NAFLD Meet MASLD Criteria and Natural History Is Therefore Identical. Journal of Hepatology, 80, e76-e77. https://doi.org/10.1016/j.jhep.2023.08.026
|
[9]
|
Ossima, A.N., Brzustowski, A., Paradis, V., Van Beers, B., Postic, C., Laouénan, C., et al. (2024) Factors Associated with High Costs of Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: An Observational Study Using the French Constances Cohort. Clinical Diabetes and Endocrinology, 10, Article No. 9. https://doi.org/10.1186/s40842-023-00163-4
|
[10]
|
Ang, S.M., Lim, S.L., Dan, Y.Y., Chan, Y.H., Yap, Q.V. and Chen, J. (2024) Clinical Service Incorporating Mobile Technology on Weight Loss in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Translation from Research Trial. Endocrinology, Diabetes & Metabolism, 7, e00485. https://doi.org/10.1002/edm2.485
|
[11]
|
de Avila, L., Henry, L., Paik, J.M., Ijaz, N., Weinstein, A.A. and Younossi, Z.M. (2023) Nonalcoholic Fatty Liver Disease Is Independently Associated with Higher All-Cause and Cause-Specific Mortality. Clinical Gastroenterology and Hepatology, 21, 2588-2596.e3. https://doi.org/10.1016/j.cgh.2023.01.006
|
[12]
|
Hu, Y., Zai, H., Jiang, W., Ou, Z., Yao, Y. and Zhu, Q. (2021) The Mutual Inhibition of FoxO1 and SREBP-1c Regulated the Progression of Hepatoblastoma by Regulating Fatty Acid Metabolism. Mediators of Inflammation, 2021, Article 5754592. https://doi.org/10.1155/2021/5754592
|
[13]
|
Shreya, S., Grosset, C.F. and Jain, B.P. (2023) Unfolded Protein Response Signaling in Liver Disorders: A 2023 Updated Review. International Journal of Molecular Sciences, 24, Article 14066. https://doi.org/10.3390/ijms241814066
|
[14]
|
Khan, M.S., Lee, C. and Kim, S.G. (2022) Non-Alcoholic Fatty Liver Disease and Liver Secretome. Archives of Pharmacal Research, 45, 938-963. https://doi.org/10.1007/s12272-022-01419-w
|
[15]
|
Liao, M., Zhang, R., Wang, Y., Mao, Z., Wu, J., Guo, H., et al. (2022) Corilagin Prevents Non-Alcoholic Fatty Liver Disease via Improving Lipid Metabolism and Glucose Homeostasis in High Fat Diet-Fed Mice. Frontiers in Nutrition, 9, Article 983450. https://doi.org/10.3389/fnut.2022.983450
|
[16]
|
Shin, S., Kim, J., Lee, J.Y., Kim, J. and Oh, C. (2023) Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Journal of Obesity & Metabolic Syndrome, 32, 289-302. https://doi.org/10.7570/jomes23054
|
[17]
|
Koyama, H., Kamogashira, T. and Yamasoba, T. (2024) Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants, 13, Article 76. https://doi.org/10.3390/antiox13010076
|
[18]
|
Liu, S., Ding, H., Li, Y. and Zhang, X. (2022) Molecular Mechanism Underlying Role of the XBP1s in Cardiovascular Diseases. Journal of Cardiovascular Development and Disease, 9, Article 459. https://doi.org/10.3390/jcdd9120459
|
[19]
|
Teuwen, J.T.J., van der Vorst, E.P.C. and Maas, S.L. (2024) Navigating the Maze of Kinases: CaMK-Like Family Protein Kinases and Their Role in Atherosclerosis. International Journal of Molecular Sciences, 25, Article 6213. https://doi.org/10.3390/ijms25116213
|
[20]
|
Yang, J., Zhong, C. and Yu, J. (2023) Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. International Journal of Molecular Sciences, 24, Article 2429. https://doi.org/10.3390/ijms24032429
|
[21]
|
Ni, L., Yang, L. and Lin, Y. (2024) Recent Progress of Endoplasmic Reticulum Stress in the Mechanism of Atherosclerosis. Frontiers in Cardiovascular Medicine, 11, Article 1413441. https://doi.org/10.3389/fcvm.2024.1413441
|
[22]
|
Yanai, H., Adachi, H., Hakoshima, M., Iida, S. and Katsuyama, H. (2023) Metabolic-Dysfunction-Associated Steatotic Liver Disease—Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments. International Journal of Molecular Sciences, 24, Article 15473. https://doi.org/10.3390/ijms242015473
|
[23]
|
Qiu, F., Wang, J., Liu, H. and Zhang, Y. (2019) Mulberry Bark Alleviates Effect of STZ Inducing Diabetic Mice through Negatively Regulating FoxO1. Evidence-Based Complementary and Alternative Medicine, 2019, Article 2182865. https://doi.org/10.1155/2019/2182865
|
[24]
|
Yin, C., Liu, W.H., Liu, Y., Wang, L. and Xiao, Y. (2019) PID1 Alters the Antilipolytic Action of Insulin and Increases Lipolysis via Inhibition of AKT/PKA Pathway Activation. PLOS ONE, 14, e0214606. https://doi.org/10.1371/journal.pone.0214606
|
[25]
|
Kim, M.J., Park, C.H., Kim, D.H., Park, M.H., Park, K.C., Hyun, M.K., et al. (2018) Hepatoprotective Effects of MHY3200 on High-Fat, Diet-Induced, Non-Alcoholic Fatty Liver Disease in Rats. Molecules, 23, Article 2057. https://doi.org/10.3390/molecules23082057
|
[26]
|
Parlevliet, E.T., Wang, Y., Geerling, J.J., Schröder-Van der Elst, J.P., Picha, K., O’Neil, K., et al. (2012) GLP-1 Receptor Activation Inhibits VLDL Production and Reverses Hepatic Steatosis by Decreasing Hepatic Lipogenesis in High-Fat-Fed APOE*3-Leiden Mice. PLOS ONE, 7, e49152. https://doi.org/10.1371/journal.pone.0049152
|
[27]
|
Winarto, J., Song, D. and Pan, C. (2023) The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 24, Article 8203. https://doi.org/10.3390/ijms24098203
|
[28]
|
Drożdż, K., Nabrdalik, K., Hajzler, W., Kwiendacz, H., Gumprecht, J. and Lip, G.Y.H. (2021) Metabolic-Associated Fatty Liver Disease (MAFLD), Diabetes, and Cardiovascular Disease: Associations with Fructose Metabolism and Gut Microbiota. Nutrients, 14, Article 103. https://doi.org/10.3390/nu14010103
|
[29]
|
Chrysavgis, L.G., Kazanas, S., Bafa, K., Rozani, S., Koloutsou, M. and Cholongitas, E. (2024) Glucagon-Like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide, and Glucagon Receptor Agonists in Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Medication in New Liver Disease Nomenclature. International Journal of Molecular Sciences, 25, Article 3832. https://doi.org/10.3390/ijms25073832
|
[30]
|
Elshaer, A., Chascsa, D.M.H. and Lizaola-Mayo, B.C. (2024) Exploring Varied Treatment Strategies for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Life, 14, Article 844. https://doi.org/10.3390/life14070844
|
[31]
|
Zhu, Y., Xu, J., Zhang, D., Mu, X., Shi, Y., Chen, S., et al. (2021) Efficacy and Safety of GLP-1 Receptor Agonists in Patients with Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 12, Article 769069. https://doi.org/10.3389/fendo.2021.769069
|
[32]
|
Liu, J., Kang, R. and Tang, D. (2021) Signaling Pathways and Defense Mechanisms of Ferroptosis. The FEBS Journal, 289, 7038-7050. https://doi.org/10.1111/febs.16059
|
[33]
|
Kalavalapalli, S., Bril, F., Guingab, J., Vergara, A., Garrett, T.J., Sunny, N.E., et al. (2019) Impact of Exenatide on Mitochondrial Lipid Metabolism in Mice with Nonalcoholic Steatohepatitis. Journal of Endocrinology, 241, 293-305. https://doi.org/10.1530/joe-19-0007
|
[34]
|
Zhao, Y., Chen, L., Huang, L., Li, Y., Yang, C., Zhu, Y., et al. (2022) Cardiovascular Protective Effects of GLP-1: A Focus on the MAPK Signaling Pathway. Biochemistry and Cell Biology, 100, 9-16. https://doi.org/10.1139/bcb-2021-0365
|
[35]
|
Delrue, C. and Speeckaert, M.M. (2024) Mechanistic Pathways and Clinical Implications of GLP-1 Receptor Agonists in Type 1 Diabetes Management. International Journal of Molecular Sciences, 25, Article 9351. https://doi.org/10.3390/ijms25179351
|
[36]
|
Okamoto, A., Yokokawa, H., Nagamine, T., Fukuda, H., Hisaoka, T. and Naito, T. (2021) Efficacy and Safety of Semaglutide in Glycemic Control, Body Weight Management, Lipid Profiles and Other Biomarkers among Obese Type 2 Diabetes Patients Initiated or Switched to Semaglutide from Other GLP-1 Receptor Agonists. Journal of Diabetes & Metabolic Disorders, 20, 2121-2128. https://doi.org/10.1007/s40200-021-00899-9
|
[37]
|
Shang, R. and Miao, J. (2023) Mechanisms and Effects of Metformin on Skeletal Muscle Disorders. Frontiers in Neurology, 14, Article 1275266. https://doi.org/10.3389/fneur.2023.1275266
|
[38]
|
Meloni, A.R., DeYoung, M.B., Lowe, C. and Parkes, D.G. (2012) GLP‐1 Receptor Activated Insulin Secretion from Pancreatic β‐Cells: Mechanism and Glucose Dependence. Diabetes, Obesity and Metabolism, 15, 15-27. https://doi.org/10.1111/j.1463-1326.2012.01663.x
|
[39]
|
Guo, C., Huang, T., Chen, A., Chen, X., Wang, L., Shen, F., et al. (2016) Glucagon-Like Peptide 1 Improves Insulin Resistance in Vitro through Anti-Inflammation of Macrophages. Brazilian Journal of Medical and Biological Research, 49, e5826. https://doi.org/10.1590/1414-431x20165826
|
[40]
|
Liu, J., Yang, K., Yang, J., Xiao, W., Le, Y., Yu, F., et al. (2019) Liver-Derived Fibroblast Growth Factor 21 Mediates Effects of Glucagon-Like Peptide-1 in Attenuating Hepatic Glucose Output. EBioMedicine, 41, 73-84. https://doi.org/10.1016/j.ebiom.2019.02.037
|
[41]
|
Gao, H., Song, Z., Zhao, Q., Wu, Y., Tang, S., Alahdal, M., et al. (2018) Pharmacological Effects of EGLP-1, a Novel Analog of Glucagon-Like Peptide-1, on Carbohydrate and Lipid Metabolism. Cellular Physiology and Biochemistry, 48, 1112-1122. https://doi.org/10.1159/000491978
|
[42]
|
Ackeifi, C., Wang, P., Karakose, E., Manning Fox, J.E., González, B.J., Liu, H., et al. (2020) GLP-1 Receptor Agonists Synergize with DYRK1A Inhibitors to Potentiate Functional Human Β Cell Regeneration. Science Translational Medicine, 12, eaaw9996. https://doi.org/10.1126/scitranslmed.aaw9996
|
[43]
|
Nguyen, M., Asgharpour, A., Dixon, D.L., Sanyal, A.J. and Mehta, A. (2024) Emerging Therapies for MASLD and Their Impact on Plasma Lipids. American Journal of Preventive Cardiology, 17, Article 100638. https://doi.org/10.1016/j.ajpc.2024.100638
|
[44]
|
中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版) [J]. 中华肝脏病杂志, 2024, 32(5): 418-434.
|
[45]
|
Lara-Romero, C. and Romero-Gómez, M. (2024) Treatment Options and Continuity of Care in Metabolic-Associated Fatty Liver Disease: A Multidisciplinary Approach. European Cardiology Review, 19, e06. https://doi.org/10.15420/ecr.2023.34
|
[46]
|
Tan, H.C., Dampil, O.A. and Marquez, M.M. (2022) Efficacy and Safety of Semaglutide for Weight Loss in Obesity without Diabetes: A Systematic Review and Meta-Analysis. Journal of the ASEAN Federation of Endocrine Societies, 37, 65-72. https://doi.org/10.15605/jafes.037.02.14
|
[47]
|
Feng, X., Zhang, R., Yang, Z., Zhang, K. and Xing, J. (2024) Mechanism of Metabolic Dysfunction-Associated Steatotic Liver Disease: Important Role of Lipid Metabolism. Journal of Clinical and Translational Hepatology, 12, 815-826. https://doi.org/10.14218/jcth.2024.00019
|
[48]
|
Bjerre Knudsen, L., Madsen, L.W., Andersen, S., Almholt, K., de Boer, A.S., Drucker, D.J., et al. (2010) Glucagon-Like Peptide-1 Receptor Agonists Activate Rodent Thyroid C-Cells Causing Calcitonin Release and C-Cell Proliferation. Endocrinology, 151, 1473-1486. https://doi.org/10.1210/en.2009-1272
|
[49]
|
Sun, Y., Liu, Y., Dian, Y., Zeng, F., Deng, G. and Lei, S. (2024) Association of Glucagon-Like Peptide-1 Receptor Agonists with Risk of Cancers-Evidence from a Drug Target Mendelian Randomization and Clinical Trials. International Journal of Surgery, 110, 4688-4694. https://doi.org/10.1097/js9.0000000000001514
|
[50]
|
Manuel, S.L., Lin, F. and Kutty, S.M. (2023) An Atypical Presentation of Dulaglutide-Induced Pancreatitis Complicated by Superior Mesenteric Vein Thrombosis. Cureus, 15, e50051. https://doi.org/10.7759/cureus.50051
|
[51]
|
Zhu, Y., Xu, J., Zhang, D., Mu, X., Shi, Y., Chen, S., et al. (2021) Efficacy and Safety of GLP-1 Receptor Agonists in Patients with Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 12, Article 769069. https://doi.org/10.3389/fendo.2021.769069
|
[52]
|
Lyu, B., Hwang, Y.J., Selvin, E., Jameson, B.C., Chang, A.R., Grams, M.E., et al. (2023) Glucose-Lowering Agents and the Risk of Hypoglycemia: A Real-World Study. Journal of General Internal Medicine, 38, 107-114. https://doi.org/10.1007/s11606-022-07726-8
|
[53]
|
Yabut, J.M. and Drucker, D.J. (2022) Glucagon-Like Peptide-1 Receptor-Based Therapeutics for Metabolic Liver Disease. Endocrine Reviews, 44, 14-32. https://doi.org/10.1210/endrev/bnac018
|
[54]
|
Kumarathurai, P., Anholm, C., Larsen, B.S., Olsen, R.H., Madsbad, S., Kristiansen, O., et al. (2016) Effects of Liraglutide on Heart Rate and Heart Rate Variability: A Randomized, Double-Blind, Placebo-Controlled Crossover Study. Diabetes Care, 40, 117-124. https://doi.org/10.2337/dc16-1580
|
[55]
|
Romera, I., Cebrián-Cuenca, A., Álvarez-Guisasola, F., Gomez-Peralta, F. and Reviriego, J. (2019) A Review of Practical Issues on the Use of Glucagon-Like Peptide-1 Receptor Agonists for the Management of Type 2 Diabetes. Diabetes Therapy, 10, 5-19. https://doi.org/10.1007/s13300-018-0535-9
|
[56]
|
Smits, M.M., van Raalte, D.H., Tonneijck, L., Muskiet, M.H.A., Kramer, M.H.H. and Cahen, D.L. (2016) GLP-1 Based Therapies: Clinical Implications for Gastroenterologists. Gut, 65, 702-711. https://doi.org/10.1136/gutjnl-2015-310572
|
[57]
|
Begum, F., Chang, K., Kapoor, K., Vij, R., Phadke, G., Hiser, W.M., et al. (2024) Semaglutide-Associated Kidney Injury. Clinical Kidney Journal, 17, sfae250. https://doi.org/10.1093/ckj/sfae250
|
[58]
|
Smits, M.M. and Van Raalte, D.H. (2021) Safety of Semaglutide. Frontiers in Endocrinology, 12, Article 645563. https://doi.org/10.3389/fendo.2021.645563
|
[59]
|
Huynh, D. (2023) Dual Metformin and Glucagon-Like Peptide-1 Receptor Agonist Therapy Reduces Mortality and Hepatic Complications in Cirrhotic Patients with Diabetes Mellitus. Annals of Gastroenterology, 36, 555-563. https://doi.org/10.20524/aog.2023.0814
|