学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 1 No. 3 (October 2011)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
有限个线段映射的笛卡尔乘积的局部变差增长与局部拓扑熵
Pointwise Variation Growth and Entropy of the Descartes Product of a Few of Interval Maps
DOI:
10.12677/pm.2011.13036
,
PDF
,
HTML
,
,
被引量
科研立项经费支持
作者:
黎日松
,
陈增雄
:
关键词:
乘积
;
有界变差
;
变分原理
;
拓扑熵
;
局部变差增长
;
全局变差增长
Product; Bounded Variation; Variational Principle; Topological Entropy; Local Growth Rate of Variation; Total Growth Rate of Variation
摘要:
暂无
文章引用:
黎日松, 陈增雄. 有限个线段映射的笛卡尔乘积的局部变差增长与局部拓扑熵[J]. 理论数学, 2011, 1(3): 184-188.
http://dx.doi.org/10.12677/pm.2011.13036
参考文献
[
1
]
A. Katok, B. Hasselblatt. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995.
[
2
]
G. Chen, T. Huang and Y. Huang. Chaotic behavior of interval maps and total vaiations of iterates. International Journal of Bifurcation and Chaos, 2004, 14(7): 2161-2186.
[
3
]
M. Misiurewcz, W. Szlenk. Entropy of piecewise monotone maps. Studia Mathematica, 1980, 67: 45-63.
[
4
]
C. Preston. Iterates of piecewise monotone mappings on an interval. Lecture Notes in Mathematics 1347. Berlin, Heidelberg: Springer-Verlag, 1988.
[
5
]
G. Chen, S. B. Hsu and T. Huang. Analyzing displacement term's memory effect in a Vander Pol type boundary condition to prove chaotic vibration of the wave equation. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12(5): 965-981.
[
6
]
G. Chen, T. Huang, J. Juang and D. Ma. Unbounded growth of total variations of snapshots of the ID linear wave equation due to the chaotic behavior of iterates of composite nonlinear boundary reflection relation. In: G. Chen, et al., (Ed.), Control of nonlinear distributed parameter systems. New York: Marcel Dekker Lecture Notes on Pure & Applied Mathematics, 2001: 15-43.
[
7
]
Y. Huang. Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary reflection. International Journal of Bifurcation and Chaos, 2003, 13(5): 1183-1196.
[
8
]
黄煜, 罗俊, 周作领. 线段映射的局部变差增长与局部拓扑熵[J]. 数学学报, 2006, 49(2): 311-316.
[
9
]
P. Walters. An introduction to ergodic theory, graduate texts in mathematics 79. New York: Springer-Verlag, 1982.
投稿
为你推荐
友情链接
科研出版社
开放图书馆