学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 10 No. 11 (November 2021)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
次黎曼流形上的次椭圆调和映射梯度估计
Gradient Estimate of Subelliptic Harmonic Maps on Sub-Riemannnian Manifolds
DOI:
10.12677/AAM.2021.1011416
,
PDF
,
HTML
,
,
被引量
作者:
邹文婷
:浙江师范大学,数学与计算机科学学院,浙江 金华
关键词:
次黎曼流形
;
次椭圆调和映射
;
黎曼叶状结构
;
梯度估计
;
Liouville 定理
;
Sub-Riemannian Manifolds
;
Subelliptic Harmonic Maps
;
Riemannian Foliation
;
Gradient Estimate
;
Liouville’s Theorem
摘要:
如果黎曼叶状结构的水平分布满足括号生成条件,则它是—类特殊的次黎曼流形。本文主要研究此类黎曼叶状结构上次椭圆调和映射的梯度估计及Liouville 定理。
Abstract:
The Riemannian foliation is a special class of sub-Riemannian manifolds, if its hori-zontal distribution satisfies the bracket generating condition. In this paper, we study the gradient estimation of the subelliptic harmonic maps and the Liouville-type theorems.
文章引用:
邹文婷. 次黎曼流形上的次椭圆调和映射梯度估计[J]. 应用数学进展, 2021, 10(11): 3912-3922.
https://doi.org/10.12677/AAM.2021.1011416
参考文献
[1]
Yau, S. (1975) Harmonic Functions on Complete Riemannian Manifolds. Communications on Pure and Applied Mathematics, 28, 201-228.
https://doi.org/10.1002/cpa.3160280203
[2]
Cheng, S.Y. (1980) Liouville Theorem for Harmonic Maps. Proceedings of Symposia in Pure Mathematics, 36, 147-151.
https://doi.org/10.1090/pspum/036/573431
[3]
Choi, H.I. (1982) On the Liouville Theorem for Harmonic Maps. Proceedings of the American Mathematical Society, 85, 91-94.
https://doi.org/10.1090/S0002-9939-1982-0647905-3
[4]
Strichartz, R.S. (1986) Sub-Riemannian Geometry. Journal of Differential Geometry, 24, 221- 263.
https://doi.org/10.4310/jdg/1214440436
[5]
Dong, Y. (2021) Eells-Sampson Type Theorems for Subelliptic Harmonic Maps from Sub- Riemannian Manifolds. Journal of Geometric Analysis, 31, 3608-3655.
https://doi.org/10.1007/s12220-020-00408-z
[6]
Baudoin, F. (2016) Sub-Laplacians and Hypoelliptic Operators on Totally Geodesic Rieman- nian Foliations. Geometry, Analysis and Dynamics on Sub-Riemannian Manifolds, 259-321.
https://doi.org/10.4171/162-1/3
[7]
Chong, T., Dong, Y.X., Ren, Y.B., et al. (2020) Pseudo-Harmonic Maps from Complete Non- compact Pseudo-Hermitian Manifolds to Regular Balls. Journal of Geometric Analysis, 30, 3512-3541.
https://doi.org/10.1007/s12220-019-00206-2
投稿
为你推荐
友情链接
科研出版社
开放图书馆