[1]
|
Mozaffarian, D., Benjamin, E.J., Go, A.S., et al. (2016) Heart Disease and Stroke Statistics—2016 Update: A Report from the American Heart Association. Circulation, 133, 447-454. https://doi.org/10.1161/CIR.0000000000000366
|
[2]
|
Young, B.M., Nigogosyan, Z., Remsik, A., et al. (2013) Changes in Functional Connectivity Correlate with Behavioral Gains in Stroke Patients after Therapy Using a Brain-Computer Interface Device. Frontiers in Neuroengineering, 7, Article No. 25. https://doi.org/10.3389/fneng.2014.00025
|
[3]
|
Amartin, J. (2005) Vicarious Function within the Human Primary Motor Cortex? A Longitudinal fMRI Stroke Study. Brain, 128, 1122-1138. https://doi.org/10.1093/brain/awh456
|
[4]
|
Soekadar, S.R., Birbaumer, N., Slutzky, M.W., et al. (2014) Brain-Machine Interfaces in Neurorehabilitation of Stroke. Neurobiology of Disease, 83, 172-179. https://doi.org/10.1016/j.nbd.2014.11.025
|
[5]
|
Thakor, N.V. (2013) Translating the Brain-Machine Interface. Sci-ence Translational Medicine, 5, 210ps17.
https://doi.org/10.1126/scitranslmed.3007303
|
[6]
|
Nicolasalonso, L.F. and Gomezgil, J. (2012) Brain Computer Interfaces, a Review. Sensors, 12, 1211-1279.
https://doi.org/10.3390/s120201211
|
[7]
|
Schwartz, A.B., Cui, X.T., Weber, D.J., et al. (2006) Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics. Neuron, 52, 205-220. https://doi.org/10.1016/j.neuron.2006.09.019
|
[8]
|
Hsu, W.Y., Cheng, C.H., Liao, K.K., et al. (2012) Effects of Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients with Stroke: A Meta-Analysis. Stroke, 43, 1849-1857.
https://doi.org/10.1161/STROKEAHA.111.649756
|
[9]
|
Park, J., Lee, N., Cho, Y., et al. (2015) Modified Con-straint-Induced Movement Therapy for Clients with Chronic Stroke: Interrupted Time Series (ITS) Design. The Journal of Physical Therapy Science, 27, 963-966.
https://doi.org/10.1589/jpts.27.963
|
[10]
|
Gittler, M. and Davis, A.M. (2018) Guidelines for Adult Stroke Rehabili-tation and Recovery. JAMA, 319, 820-821.
https://doi.org/10.1001/jama.2017.22036
|
[11]
|
Wang, W., Collinger, J.L., Perez, M.A., et al. (2010) Neural Inter-face Technology for Rehabilitation: Exploiting and Promoting Neuroplasticity. Physical Medicine and Rehabilitation Clinics of North America, 21, 157-178.
https://doi.org/10.1016/j.pmr.2009.07.003
|
[12]
|
琚芬, 赵晨光, 袁华, 等. 脑机接口在康复医学中的应用进展[J]. 中国康复, 2017, 32(6): 508-511.
|
[13]
|
Stark, A., Meiner, Z., Lefkovitz, R., et al. (2012) Plasticity in Cortical Motor Upper-Limb Representation Following Stroke and Rehabilitation: Two Longitudinal Multi-Joint FMRI Case Studies. Brain Topography, 25, 205-219.
https://doi.org/10.1007/s10548-011-0201-2
|
[14]
|
陈树耿, 贾杰. 脑机接口在脑卒中手功能康复中的应用进展[J]. 中国康复理论与实践, 2017, 23(1): 23-26.
|
[15]
|
Varkuti, B., Guan, C., Pan, Y., et al. (2013) Resting State Chang-es in Functional Connectivity Correlate with Movement Recovery for BCI and Robot-Assisted Upper-Extremity Training after Stroke. Neurorehabilitation and Neural Repair, 27, 53-62. https://doi.org/10.1177/1545968312445910
|
[16]
|
Mcconnell, A.C., Moioli, R.C., Brasil, F.L., et al. (2017) Robotic Devices and Brain-Machine Interfaces for Hand Rehabilitation Post-Stroke. Journal of Rehabilitation Medicine, 49, 449-460. https://doi.org/10.2340/16501977-2229
|
[17]
|
Ang, K.K., Guan, C., Phua, K.S., et al. (2014) Brain-Computer Interface-Based Robotic End Effector System for Wrist and Hand Rehabilitation: Results of a Three-Armed Randomized Controlled Trial for Chronic Stroke. Frontiers in Neuroengineering, 7, Article No. 30. https://doi.org/10.3389/fneng.2014.00030
|
[18]
|
Do, A., Wang, P., King, C.E., et al. (2011) Brain-Computer Inter-face Controlled Functional Electrical Stimulation System for Ankle Movement. Journal of Neuroengineering and Reha-bilitation, 8, 2-14.
https://doi.org/10.1186/1743-0003-8-49
|
[19]
|
方文垚, 刘昊, 杨柳, 等. 脑机接口技术在脑卒中偏瘫患者下肢运动功能康复治疗中的应用[J]. 山东医药, 2018, 58(10): 66-68.
|
[20]
|
Mrachacz-Kersting, N., Jiang, N., Stevenson, A.J., et al. (2016) Efficient Neuroplasticity Induction in Chronic Stroke Patients by an Associative Brain-Computer In-terface. Journal of Neurophysiology, 115, 1410-1421.
https://doi.org/10.1152/jn.00918.2015
|
[21]
|
明东, 安兴伟, 王仲朋, 等. 脑机接口技术的神经康复与新型应用[J]. 科技导报, 2018, 36(12): 31-37.
|
[22]
|
Carmichael, S.T. and Chesselet, M.F. (2002) Synchronous Neuronal Activity Is a Signal for Axonal Sprouting after Cortical Lesions in the Adult. Journal of Neuroscience, 22, 6062-6070.
https://doi.org/10.1523/JNEUROSCI.22-14-06062.2002
|
[23]
|
Johnson, N.N., Carey, J., Edeiman, B.J., et al. (2017) Combined rTMS and Virtual Reality Brain-Computer Interface Training for Motor Recovery after Stroke. Journal of Neural Engineering, 15, Article ID: 016009.
https://doi.org/10.1088/1741-2552/aa8ce3
|
[24]
|
Hong, X., Lu, Z.K., The, I., et al. (2017) Brain Plasticity Following MI BCI Training Combined with tDCS in a Randomized Trial in Chronic Subcortical Stroke Subjects: A Preliminary Study. Scientific Reports, 7, Article No. 9222.
https://doi.org/10.1038/s41598-017-08928-5
|