黑素瘤相关肿瘤浸润淋巴细胞的评价方法及免疫异质性研究进展
Research Progress on Evaluation Methods and Immune Heterogeneity of Tumor Infiltrating Lymphocytes in Melanoma
摘要: 肿瘤浸润淋巴细胞随着免疫治疗的日益兴起,作为一个重要的免疫参数,被证实可以预测免疫治疗的疗效,还可以提示预后。然而迄今为止,没有癌症分期算法包含免疫标记物。重要的是,对TIL浸润的多种成分也缺乏了解。该文综述了肿瘤浸润淋巴细胞在黑素瘤中的评估方法的进展,同时探讨了CD4+T淋巴细胞在黑素瘤中作用的研究进展。
Abstract: With the rise of immunotherapy, tumor-infiltrating lymphocytes, as an important immune param-eter, have been proved to predict the efficacy of immunotherapy and can also indicate the prognosis. To date, however, no cancer staging algorithm has included immune markers. Importantly, there is also a lack of understanding of the multiple components of TIL infiltration. This article reviews the progress of evaluation methods of tumor-infiltrating lymphocytes in melanoma, and discusses the role of CD4+T lymphocytes in melanoma.
文章引用:索雅力·齐齐格, 王丹妮, 万学峰. 黑素瘤相关肿瘤浸润淋巴细胞的评价方法及免疫异质性研究进展[J]. 临床医学进展, 2023, 13(10): 16476-16482. https://doi.org/10.12677/ACM.2023.13102307

1. 前言

浸润淋巴细胞(Tumor Infiltrating Lymphocyte, TIL)是指已经浸润并破坏了恶性肿瘤细胞巢的淋巴细胞 [1] ,与健康的非肿瘤组织一起渗透到肿瘤的中心区域及其边缘。由于它们和癌细胞的关系最为密切,可以更准确地反映肿瘤与宿主的相互作用。TIL密度增加被认为是有效抗肿瘤免疫的标志 [2] ,TIL作为癌症免疫治疗的中心靶点,在肿瘤微环境和环境类型中表现出相当大的异质性和动态性 [3] 。一些研究表明TIL的存在与黑色素瘤预后的改善有显著关联性 [4] [5] [6] [7] [8] ,也有研究认为肿瘤浸润淋巴细胞(TIL)是黑素瘤患者淋巴结转移和总生存率的独立预后因素 [9] 。但上述结论因患者群体、研究方法和使用的TIL分级系统的异质性而难以放在同一标准得出结论。

TIL浸润包括效应T细胞、抑制T细胞、B细胞、巨嗜细胞、树突状细胞、自然杀伤细胞和髓系源性抑制细胞,每种细胞在肿瘤微环境中都具有竞争性免疫刺激或免疫抑制作用。大量研究表明,T细胞在抗肿瘤免疫中的中心作用已得到很好的确立 [10] [11] 。过去十年的研究揭示了CD4+T细胞系日益复杂的生物学特征。这个T细胞亚群最初是根据抗体反应中的辅助活性来定义的,它表达的受体能够识别经过特殊抗原呈递细胞处理和呈递的肽。CD4+T细胞作为适应性免疫反应的核心,能够随着免疫微环境分化为多个亚系,在免疫反应的启动、扩展和记忆阶段起到广泛、协调的效应器活动 [12] [13] 。CD4细胞对宿主抵抗致病性入侵和调节自身免疫的贡献现已得到很好的证实。新的证据表明,CD4+效应细胞不仅积极参与形成抗肿瘤免疫,而且可独立于CD8+T细胞参与抗肿瘤免疫 [14] 。

2. TIL的评估方法及进展

1989年Clark等 [4] 提出一种TIL分类用于量化肿瘤部位淋巴细胞的存在,该分类甚至沿用至今。可被分为三类包括:缺乏、非活跃和活跃。缺乏定义为是TIL的缺失,或者如果TIL存在,则它们不与肿瘤细胞相邻。其他两组在肿瘤部位提供淋巴细胞,非活跃定义为TIL局部浸润。活跃定义为TIL存在于垂直生长期的整个肿瘤中,或者存在并浸润于垂直生长期的整个基底部。目前仍在应用该分类方法,因其分类简单,但未考虑到瘤周浸润。随后Clemente等 [5] 将“活跃”浸润模式分为具有相同预后意义的弥漫型和周边型弥漫型和周边型。

2012年Azimi等 [9] 制定了新的TIL分级方法即根据TIL密度(轻度、中度、显著)和TIL分布(局灶性、多灶性和弥漫性)分成4级。无TIL浸润的定义为0级;轻度局灶性、中度局灶性或轻度多灶性淋巴细胞浸润定义为1级;有显著的局灶性或中度多灶性定义为2级;有中度弥漫性或显著弥漫性浸润定义为3级。这种新型分级方法优点是考虑到了瘤周浸润,但缺点是大多数黑素瘤细胞位于肿瘤中心部位,而只有一小部分的肿瘤细胞可能与TIL相互作用,故这种分类方法结果仍存在偏差 [15] 。

因AMI分级中TIL密度的轻度、中度、显著的判断存在主观因素,故Saldhana等 [15] 设计了一个测量肿瘤细胞中TIL细胞浸润的百分比的一种简单TIL评分系统。具体如下:百分比为0~100%,精确到10% (但在TIL百分比得分是通过估计被淋巴细极端情况下允许5%和95%)。虽然存在主观因素,但因其简单明了,不需要模式和强度的交叉列表,且该系统具有良好的观察者间一致性。不失为一种新颖、简单的数字TIL评分系统。

Park等 [16] 运用新开发的参数:淋巴细胞评分(LS)用于评估肿瘤间质或细胞巢内的淋巴细胞和肿瘤周围的淋巴细胞的分布和密度。LS = 淋巴细胞分布 + 密度(0~6分)。淋巴细胞分布评分范围为0到3,定义如下:0 = 组织内没有淋巴细胞,1 = 淋巴细胞占组织的比例小于25%,2 = 淋巴细胞占组织的比例为25%到50%,3 = 淋巴细胞占组织的比例大于50%。淋巴细胞密度范围为0到3,定义如下:0 = 缺失,1 = 轻度,2 = 中度,3 = 重度。基于该评分方法,计算肿瘤内和瘤周区的LS。0到2被认为评分较低,3到6被认为评分较高。作者相信这是第一份评估浸润性皮肤黑色素瘤瘤内和瘤周区淋巴细胞作用的报告。该评分方法在借鉴AMI评分的基础上运动了新的参数,同时考虑了肿瘤的位置(瘤周和瘤内)和密度,降低了研究者的主观性,使其更为细致和具体。

国际免疫肿瘤生物标志物工作组(IOBWG)提出了一种更标准化的TIL评估方法 [17] 。同时明确的侵袭性边缘的定义:位于分离宿主组织与恶性巢的边界上的区域,其范围为1 mm。标准的评估方法如下:1) 选择肿瘤区域,不包括肿瘤外的免疫浸润。2) 定义基质和肿瘤内部区域。3) 低倍率扫描。4) 确定炎症浸润的类型(坏死区不包括中性粒细胞)。5) 评估TIL的百分比。然而,这种方法需要在黑色素瘤和其他实体瘤中得到验证,以确定其预后的可行性。

Weiss等 [18] 提出定量免疫组织化学(IHC)定量方法。即随机选择占整个队列15%的原发性黑色素瘤进行CD3、CD45免疫组化染色用于TIL鉴定。使用单克隆小鼠抗人Foxp3克隆236A/E7 (检测同一队列中的T调节细胞(Treg)。将CD3和CD45表达定量评分为一个高功率场(HPF)中最密集浸润区内染色的肿瘤内TIL的绝对数量,以及肿瘤–真皮界面外真皮内染色的肿瘤周围TIL的绝对数量。定量评分的截止值设置为TIL计数 > 50个细胞。通过确定抗体染色最密集的区域,并量化淋巴细胞浸润中单个HPF中Foxp3阳性细胞的数量,对Foxp3表达进行评分。估计淋巴细胞浸润中Foxp3染色细胞的百分比。IHC的定量TIL分级只关注一个高功率场,用于检测和计数肿瘤中的主要淋巴细胞亚群,并确定其与患者生存或治疗反应的相关性,旨在为病理学家提供一种简单、快速的测量方法。目前应用于临床和临床前癌症研究,使用IHC和免疫荧光(IF)检测组织病理学组织样品中的许多白细胞亚群 [19] [20] [21] 。

目前文献中的TIL计数主要依赖于主要淋巴细胞亚群的单标记免疫组织化学分析,如常规T细胞(CD3、CD4、CD8)、调节性T细胞(FOXP3)和B细胞(CD20) [22] 。研究也对肿瘤组织进行了基因表达谱分析,以检测免疫细胞特异性转录物 [23] [24] [25] [26] 。这些方法目前可以通过检查肿瘤RNA测序数据集中的免疫细胞特异性转录物来补充,该数据集可在癌症基因组图谱(TCGA)上公开获得 [25] [26] 。除了评估单个基因外,许多“免疫细胞去卷积”算法还试图根据每种细胞类型的独特基因特征来估计肿瘤浸润性白细胞的相对丰度 [24] 。此外,这些特征的高或低表达可能与TCGA中可用的生存数据相比较,以预测各种白细胞亚群的预后价值 [26] 。虽然基因表达特征可以提供肿瘤免疫特征的证据,但最终必须通过流式细胞术或组织病理学来验证这些细胞在TME (肿瘤微环境)中的存在。基因表达谱分析,机器学习图像分析算法的最新进展在其统一和自动化数字病理学的能力,从而产生更一致的结果这方面很有希望。在过去的几年中,基于高通量测序的癌症图谱计划和组学技术的改进将癌症研究带入了一个新的时代,这是我们未来需要关注且持续学习的方向。

3. CD4+T细胞在黑素瘤中的作用

根据功能的不同,T淋巴细胞分为效应、辅助和调节T细胞。TIL由大多数CD3+T细胞表达,包括CD4+和CD8+亚群 [27] 。CD8+亚群是由CD3+和CD3−细胞组成的细胞毒性淋巴细胞,可诱导细胞凋亡,从而杀死肿瘤细胞并诱导黑色素瘤消退,与更好的预后相关 [22] 。CD4+细胞分为两个亚群,CD4+CD25-T细胞(辅助性T细胞),可增强CD8+细胞对抗肿瘤细胞的活性,并与提高存活率相关;CD4+CD25+T细胞(Treg)可下调免疫反应活性,诱导免疫抑制 [28] 。简言之,活化的CD8+T细胞可直接杀伤恶性肿瘤细胞。CD4+T细胞可提高CD8+T反应的有效性,并分泌多种细胞因子以促进免疫反应。此外,CD4+T细胞通过细胞溶解机制也能够直接破坏肿瘤细胞 [18] 。

虽然目前普遍认为CD8+T细胞直接参与抗肿瘤细胞毒性反应,但CD4+T细胞的作用更具争议。CD4+T细胞参与调节抗肿瘤免疫与通过激活APC和通过分泌IFNγ等细胞因子增加主要组织相容性复合物I类(MHC-I)分子的抗原呈递来帮助启动CD8+T细胞有关 [21] [29] 。研究表明,CD4+T细胞有助于优化CTL在细胞毒性效应分子表达、抑制性受体下调和迁移能力增加方面的作用 [30] 。还有相关研究表明CD4+T淋巴细胞的耗竭促进肿瘤进展,而其过继转移与肿瘤消退的改善相关 [31] 。在人类黑色素瘤中也观察到CD4+T细胞对新抗原的频繁识别 [32] 。

CD4+T分化为不同的辅助性T细胞谱系,这些谱系中研究最多的是TH1、TH2、TH17、CTL-CD4、T卵泡辅助细胞(TFH) [33] 、和CD4+ FOXP3+ Treg。TH1细胞的特征是分泌干扰素-γ (IFN-γ)、TNF-α、单核细胞趋化蛋白-1 (MCP-1或CCL2)和巨噬细胞炎性蛋白-1α (MIP1α或CCL3)等细胞因子,上述细胞因子增强CD8+T细胞反应或者激活巨噬细胞来达到抗肿瘤细胞毒性等免疫反应。有文献证明TH1细胞能增强自身免疫,TH2细胞则通过分泌IL-4、IL-5和IL-13等细胞因子协调肿瘤免疫和促进过敏性炎症反应。先前的研究表明,两种TH细胞都介导抗肿瘤免疫 [13] [34] [35] 。也有研究表面,有效的抗肿瘤免疫似乎是Th1和Th2细胞类型之间平衡合作的结果。

TH17亚群依赖于STAT3和RORgt转录因子的一种表达,其主要特征是产生细胞因子IL-17A和IL-17F [36] 。标志性TH17细胞因子IL-17A诱导多种趋化因子的表达,包括CCL2、CCL7、CXCL1和CCL20以及促进炎症反应的基质金属蛋白酶。对肺癌患者自发产生的肿瘤抗原特异性TH17细胞的分析表明,一些TH17细胞可以进一步分化为分泌IFN-g的效应细胞 [37] 。这些支持开发利用人TH17细胞的分化潜能和可塑性的新免疫治疗方法。

获得细胞溶解能力的CD4 T (CTL-CD4)细胞亚群具有明显的抗肿瘤活性。辐射和抗CTLA-4抗体治疗后,将少量的肿瘤反应性CD4细胞转移到淋巴细胞减少的宿主中,导致IFN和颗粒酶B的扩增和表达,并与既定肿瘤的消退相关 [38] 。CD4 CTL的细胞毒性活性取决于对肿瘤细胞表达的MHC II类的识别(在放疗和抗CTLA-4抗体后被B16黑色素瘤上调),并且独立于FAS-FASL相互作用或TRAIL介导的杀伤。宿主的特殊条件似乎对产生细胞毒性CD4细胞至关重要。最近研究表明OX-40和4-1BB的共刺激活性可以分别在化疗诱导的淋巴细胞减少或FVAX (Flt3配体表达B16细胞)免疫的情况下促进细胞毒性CD4细胞的产生 [36] [37] 。CD4细胞获得细胞溶解活性似乎也与始中胚层蛋白(Eomes)转录因子的表达有关。OX-40参与可诱导Eomes的上调,导致肿瘤反应性CD4细胞获得细胞溶解活性并分泌多种细胞因子,包括IFN-g、TNF-a、IL-4和IL-5 [39] 。在施用4-1BB激动剂抗体后,Eomes也可能有助于诱导细胞毒性CD4细胞 [40] 。这些观察强调了依赖于CD4 CTL激活的治疗方法对人类癌症的临床潜力。早期的研究证明了人CD4克隆体外扩增后的细胞毒性活性,可能为ACT背景下细胞毒性CD4细胞的产生和使用提供了重要指导 [41] 。细胞毒性CD4细胞的体内扩增与抑制分子(如CTLA-4)的阻断相结合,是肿瘤治疗的一种有吸引力的方法。值得注意的是有文献支持CD4+ CTL能够杀死特定的肿瘤细胞,包括非小细胞肺癌(NSCLC)、皮肤T细胞淋巴瘤和黑色素瘤 [42] 。

最近研究中,Kruse B等 [14] 证实CD4+效应T细胞也能够像CD8+溶细胞T细胞一样有效地独立根除已形成的肿瘤。阐述了一种机制:少量的CD4+T细胞就足以根除逃避CD8+T细胞直接靶向的MHC缺陷型肿瘤。极少数CD4+效应T细胞(代表1%的肿瘤浸润性免疫细胞)位于肿瘤浸润边缘,在那里它们与CD11c+ MHC-II+抗原呈递免疫细胞相互作用并间接消除肿瘤。相比之下,大量CD8+溶细胞性T细胞渗入肿瘤中心,在那里它们直接靶向并杀死表达MHC-I的肿瘤细胞。进一步的先天免疫刺激增强了CD4+T细胞的TH1定向分化,增加了未成熟单核细胞向肿瘤微环境的募集,并支持它们的IFN依赖性活化和向抗原呈递和表达iNOS的杀肿瘤效应子表型的分化。CD4+T细胞和IFN激活的单核吞噬细胞共同启动了一个间接的炎性肿瘤细胞死亡过程,该过程从“由外而内”起作用,并可通过中和IFNγ而消除。这种独特的作用模式与NK细胞 [43] 的直接溶细胞活性平行且独立地发挥作用,并能够根除逃避CD8+溶细胞T细胞直接识别和破坏的MHC缺陷型和IFN无反应型肿瘤。

4. 小结与展望

本文综述了TIL在黑素瘤中的评估方法及其免疫异质性(CD4+T淋巴细胞在恶性黑素瘤中的作用)等研究进展。CD4+T细胞和杀肿瘤的髓样细胞一起协调诱导远程炎症细胞死亡,从而间接根除干扰素无反应和MHC缺乏的肿瘤等最新研究进展,为癌症免疫疗法提供了新的临床思路。

NOTES

*通讯作者。

参考文献

[1] Zidlik, V., Bezdekova, M. and Brychtova, S. (2020) Tumor Infiltrating Lymphocytes in Malignant Melanoma-Allies or Foes? Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic, 164, 43-48.
https://doi.org/10.5507/bp.2019.048
[2] Fortes, C., Mastroeni, S., Mannooranparampil, T.J., et al. (2015) Tu-mor-Infiltrating Lymphocytes Predict Cutaneous Melanoma Survival. Melanoma Research, 25, 306-311.
https://doi.org/10.1097/CMR.0000000000000164
[3] Li, P., Li, F., Zhang, Y., Yu, X. and Li, J. (2023) Metabolic Diversity of Tumor-Infiltrating T Cells as Target for Anti-Immune Therapeutics. Cancer Immunology, Immunotherapy.
https://doi.org/10.22541/au.168549425.51061738/v1
[4] Clark, W.H., Elder, D.E., Guerry, D., et al. (1989) Model Predicting Survival in Stage I Melanoma Based on Tumor Progression. JNCI: Journal of the National Cancer In-stitute, 81, 1893-1904.
https://doi.org/10.1093/jnci/81.24.1893
[5] Clemente, C.G., Mihm, M.C., Bufalino, R., Zurrida, S., Collini, P. and Cascinelli, N. (1996) Prognostic Value of Tumor Infiltrating Lymphocytes in the Vertical Growth Phase of Primary Cutaneous Melanoma. Cancer, 77, 1303-1310.
https://doi.org/10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5
[6] Taylor, R.C., Patel, A., Panageas, K.S., Busam, K.J. and Brady, M.S. (2007) Tumor-Infiltrating Lymphocytes Predict Sentinel Lymph Node Positivity in Patients with Cutaneous Melanoma. Journal of Clinical Oncology, 25, 869-875.
https://doi.org/10.1200/JCO.2006.08.9755
[7] Mandalà, M., Imberti, G.L., Piazzalunga, D., et al. (2009) Clinical and Histopathological Risk Factors to Predict Sentinel Lymph Node Positivity, Disease-Free and Overall Survival in Clinical Stages I-II AJCC Skin Melanoma: Outcome Analysis from a Single-Institution Prospectively Collected Database. European Journal of Cancer, 45, 2537- 2545.
https://doi.org/10.1016/j.ejca.2009.05.034
[8] Borges de Barros Primo, R., BritoNobre, A., Santos, B.N., et al. (2023) Impact of Clinical and Histopathological Characteristics on the Disease-Free Survival of Stage I-II Acral Melanoma Patients. International Journal of Dermatology, 62, 1281-1288.
https://doi.org/10.1111/ijd.16800
[9] Azimi, F., Scolyer, R.A., Rumcheva, P., et al. (2012) Tumor-Infiltrating Lymphocyte Grade Is an Independent Predictor of Sentinel Lymph Node Status and Survival in Patients with Cutaneous Melanoma. Journal of Clinical Oncology, 30, 2678-2683.
https://doi.org/10.1200/JCO.2011.37.8539
[10] Kishton, R.J., Sukumar, M. and Restifo, N.P. (2017) Metabolic Regulation of T Cell Longevity and Function in Tumor Immuno-therapy. Cell Metabolism, 26, 94-109.
https://doi.org/10.1016/j.cmet.2017.06.016
[11] Piras, F., Colombari, R., Minerba, L., et al. (2005) The Predictive Value of CD8, CD4, CD68, and Human Leukocyte Antigen-D-Related Cells in the Prognosis of Cutaneous Malignant Melanoma with Vertical Growth Phase. Cancer, 104, 1246-1254.
https://doi.org/10.1002/cncr.21283
[12] Xiao, M., Xie, L., Cao, G., et al. (2022) CD4+ T-Cell Epitope-Based Het-erologous Prime-Boost Vaccination Potentiates Anti-Tumor Immunity and PD-1/PD-L1 Immunotherapy. The Journal for ImmunoTherapy of Cancer, 10, e004022.
https://doi.org/10.1136/jitc-2021-004022
[13] Kim, H.J. and Cantor, H. (2014) CD4 T-Cell Subsets and Tumor Immunity: The Helpful and the Not-So-Helpful. Cancer Immunology Research, 2, 91-98.
https://doi.org/10.1158/2326-6066.CIR-13-0216
[14] Kruse, B., Buzzai, A.C., Shridhar, N., et al. (2023) CD4+ T Cell-Induced Inflammatory Cell Death Controls Immune- Evasive Tumours. Nature, 618, 1033-1040.
https://doi.org/10.1038/s41586-023-06199-x
[15] Saldanha, G., Flatman, K., Teo, K.W. and Bamford, M. (2017) A Novel Numerical Scoring System for Melanoma Tumor-infiltrating Lymphocytes Has Better Prognostic Value than Standard Scoring. The American Journal of Surgical Pathology, 41, 906-914.
https://doi.org/10.1097/PAS.0000000000000848
[16] Park, C.K. and Kim, S.K. (2017) Clinicopathological Signif-icance of Intratumoral and Peritumoral Lymphocytes and Lymphocyte Score Based on the Histologic Subtypes of Cuta-neous Melanoma. Oncotarget, 8, 14759-14769.
https://doi.org/10.18632/oncotarget.14736
[17] Hendry, S., Salgado, R., Gevaert, T., et al. (2017) Assessing Tu-mor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointesti-nal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Advances in Anatomic Pathology, 24, 311-335.
https://doi.org/10.1097/PAP.0000000000000161
[18] Weiss, S.A., Han, S.W., Lui, K., et al. (2016) Immunologic Heterogeneity of Tumor-Infiltrating Lymphocyte Composition in Primary Melanoma. Human Pathology, 57, 116-125.
https://doi.org/10.1016/j.humpath.2016.07.008
[19] Fridman, W.H., Zitvogel, L., Sautès-Fridman, C. and Kroemer, G. (2017) The Immune Contexture in Cancer Prognosis and Treatment. Nature Reviews Clinical Oncology, 14, 717-734.
https://doi.org/10.1038/nrclinonc.2017.101
[20] Lyons, Y.A., Wu, S.Y., Overwijk, W.W., Baggerly, K.A. and Sood, A.K. (2017) Immune Cell Profiling in Cancer: Molecular Approaches to Cell-Specific Identification. NPJ Precision Oncology, 1, Article No. 26.
https://doi.org/10.1038/s41698-017-0031-0
[21] Halse, H., Colebatch, A.J., Petrone, P., et al. (2018) Multiplex Immunohistochemistry Accurately Defines the Immune Context of Metastatic Melanoma. Scientific Reports, 8, Article No. 11158.
https://doi.org/10.1038/s41698-017-0031-0
[22] Maibach, F., Sadozai, H., SeyedJafari, S.M., Hunger, R.E. and Schenk, M. (2020) Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma. Frontiers in Immunology, 11, Article No. 2105.
https://doi.org/10.3389/fimmu.2020.02105
[23] Hutter, C. and Zenklusen, J.C. (2018) The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. Cell, 173, 283-285.
https://doi.org/10.1016/j.cell.2018.03.042
[24] Finotello, F. and Trajanoski, Z. (2018) Quantifying Tu-mor-Infiltrating Immune Cells from Transcriptomics Data. Cancer Immunology, Immunotherapy, 67, 1031-1040.
https://doi.org/10.1007/s00262-018-2150-z
[25] Peng, Q., Ren, B., Xin, K., et al. (2023) CYFIP2 Serves as a Prognostic Biomarker and Correlates with Tumor Immune Microenvironment in Human Cancers. European Journal of Medical Research, 28, Article No. 364.
https://doi.org/10.1186/s40001-023-01366-2
[26] Iglesia, M.D., Parker, J.S., Hoadley, K.A., Serody, J.S., Perou, C.M. and Vincent, B.G. (2016) Genomic Analysis of Immune Cell Infiltrates across 11 Tumor Types. JNCI: Journal of the National Cancer Institute, 108, djw144.
https://doi.org/10.1093/jnci/djw144
[27] Paijens, S.T., Vledder, A., de Bruyn, M. and Nijman, H.W. (2021) Tu-mor-Infiltrating Lymphocytes in the Immunotherapy Era. Cellular & Molecular Immunology, 18, 842-859.
https://doi.org/10.1038/s41423-020-00565-9
[28] Dobrzanski, M.J., Reome, J.B., Hylind, J.C. and Rewers-Felkins, K.A. (2006) CD8-Mediated Type 1 Antitumor Responses Selectively Modulate Endogenous Differentiated and Nondif-ferentiated T Cell Localization, Activation, and Function in Progressive Breast Cancer. The Journal of Immunology, 177, 8191-8201.
https://doi.org/10.4049/jimmunol.177.11.8191
[29] Antony, P.A., Piccirillo, C.A., Akpinarli, A., et al. (2005) CD8+ T Cell Immunity against a Tumor/Self-Antigen Is Augmented by CD4+ T Helper Cells and Hindered by Naturally Occurring T Regulatory Cells. The Journal of Immunology, 174, 2591-2601.
https://doi.org/10.4049/jimmunol.174.5.2591
[30] Barnes, T.A. and Amir, E. (2018) HYPE or HOPE: The Prog-nostic Value of Infiltrating Immune Cells in Cancer. British Journal of Cancer, 118, e5.
https://doi.org/10.1038/bjc.2017.417
[31] Fu, Q., Chen, N., Ge, C., et al. (2019) Prognostic Value of Tu-mor-Infiltrating Lymphocytes in Melanoma: A Systematic Review and Meta-Analysis. Oncoimmunology, 8, Article ID: 1593806.
https://doi.org/10.1080/2162402X.2019.1593806
[32] Becht, E., Giraldo, N.A., Germain, C., et al. (2016) Immune Contexture, Immunoscore, and Malignant Cell Molecular Subgroups for Prognostic and Theranostic Classifications of Cancers. Advances in Immunology, 130, 95-190.
https://doi.org/10.1016/bs.ai.2015.12.002
[33] Qiu, L., Yu, Q., Zhou, Y., et al. (2018) Functionally Impaired Fol-licular Helper T Cells Induce Regulatory B Cells and CD14+ Human Leukocyte Antigen-DR− Cell Differentiation in Non-Small Cell Lung Cancer. Cancer Science, 109, 3751-3761.
[34] Mattes, J., Hulett, M., Xie, W., et al. (2003) Im-munotherapy of Cytotoxic T Cell-Resistant Tumors by T Helper 2 Cells: An Eotaxin and STAT6-Dependent Process. Journal of Experimental Medicine, 197, 387-393.
https://doi.org/10.1084/jem.20021683
[35] Nishimura, T., Iwakabe, K., Sekimoto, M., et al. (1999) Distinct Role of Antigen-Specific T Helper Type 1 (Th1) and Th2 Cells in Tumor Eradication in Vivo. Journal of Experimental Medicine, 190, 617-627.
https://doi.org/10.1084/jem.190.5.617
[36] Bettelli, E., Carrier, Y., Gao, W., et al. (2006) Reciprocal Developmen-tal Pathways for the Generation of Pathogenic Effector TH17 and Regulatory T Cells. Nature, 441, 235-238.
https://doi.org/10.1038/nature04753
[37] Hamaï, A., Pignon, P., Raimbaud, I., et al. (2012) Human T(H)17 Im-mune Cells Specific for the Tumor Antigen MAGE-A3 Convert to IFN-γ-Secreting Cells as They Differentiate into Ef-fector T Cells in Vivo. Cancer Research, 72, 1059-1063.
https://doi.org/10.1158/0008-5472.CAN-11-3432
[38] Quezada, S.A., Simpson, T.R., Peggs, K.S., et al. (2010) Tumor-Reactive CD4(+) T Cells Develop Cytotoxic Activity and Eradicate Large Established Melanoma after Transfer into Lymphopenic Hosts. Journal of Experimental Medicine, 207, 637-650.
https://doi.org/10.1084/jem.20091918
[39] Hirschhorn-Cymerman, D., Budhu, S., Kitano, S., et al. (2012) Induc-tion of Tumoricidal Function in CD4+ T Cells Is Associated with Concomitant Memory and Terminally Differentiated Phenotype. Journal of Experimental Medicine, 209, 2113-2126.
https://doi.org/10.1084/jem.20120532
[40] Curran, M.A., Geiger, T.L., Montalvo, W., et al. (2013) Systemic 4-1BB Activation Induces a Novel T Cell Phenotype Driven by High Expression of Eomesodermin. Journal of Experimental Medicine, 210, 743-755.
https://doi.org/10.1084/jem.20120532
[41] Thomas, W.D. and Hersey, P. (1998) TNF-Related Apoptosis-Inducing Ligand (TRAIL) Induces Apoptosis in Fas Ligand-Resistant Melanoma Cells and Mediates CD4 T Cell Killing of Target Cells. The Journal of Immunology, 161, 2195-2200.
https://doi.org/10.4049/jimmunol.161.5.2195
[42] Durgeau, A., Virk, Y., Corgnac, S. and Mami-Chouaib, F. (2018) Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Frontiers in Immunology, 9, Article No. 14.
https://doi.org/10.3389/fimmu.2018.00014
[43] Busam, K.J., Antonescu, C.R., Marghoob, A.A., et al. (2001) Histologic Classification of Tumor-Infiltrating Lymphocytes in Primary Cutaneous Malignant Melanoma. A Study of In-terobserver Agreement. American Journal of Clinical Pathology, 115, 856-860.
https://doi.org/10.1309/G6EK-Y6EH-0LGY-6D6P