基质金属蛋白酶家族调控乳腺癌发展机制研究进展
Advances in the Study of Mechanisms by Which the Matrix Metalloproteinase Family Regulates the Development of Breast Cancer
DOI: 10.12677/acm.2024.1482280, PDF, HTML, XML,   
作者: 李一航*, 王 浩:延安大学附属医院腺体血管外科,陕西 延安
关键词: 乳腺癌基质金属蛋白酶机制研究进展Breast Cancer Matrix Metalloproteinases Mechanism Research Progress
摘要: 目的:了解基质金属蛋白酶(matrix metalloproteinases, MMPs)家族调控乳腺癌发展及其机制研究的进展,以期为乳腺癌的基础研究及临床的诊断和治疗提供借鉴和帮助。方法:对近年来国内外关于MMPs调控乳腺癌发生、发展及其机制研究的相关文献进行综述。结果:MMPs家族中大多数成员的非正常表达均可导致细胞外基质降解、细胞侵袭和附着并显著加速上皮间质转化进程,从而促进HCC的侵袭及转移。目前与乳腺癌发展相关研究较多的MMPs包括MMP-1、2、3、7、9、10、11、13,14、26,其余MMPs家族成员与乳腺癌发展相关的研究还相对较有限。结论:MMPs家族(尤其是MMP-1、2、3、7、9、10、11、13,14、26)在增殖、侵袭、转移等进展过程中起十分重要的作用。进一步探索MMPs家族所有成员与乳腺癌发展可能存在的内在联系,对预测乳腺癌转移潜力和预后情况及开发新的或改进乳腺癌当前靶向抗癌疗法至关重要。
Abstract: Objective: To understand the research progress of the matrix metalloproteinases (MMPs) family regulating breast cancer development and its mechanisms, aiming to provide references and assistance for basic research, clinical diagnosis, and treatment of breast cancer. Methods: Recent domestic and international literature on the regulation of breast cancer occurrence and development by MMPs and their mechanisms was reviewed. Results: The abnormal expression of most members of the MMPs family can lead to extracellular matrix degradation, cell invasion, and attachment, significantly accelerating the epithelial-mesenchymal transition process, thereby promoting the invasion and metastasis of breast cancer. Currently, the MMPs most frequently studied in relation to breast cancer development include MMP-1, 2, 3, 7, 9, 10, 11, 13, 14, and 26, while research on other MMPs family members in relation to breast cancer development is relatively limited. Conclusions: The MMPs family (especially MMP-1, 2, 3, 7, 9, 10, 11, 13, 14, and 26) plays a crucial role in the proliferation, invasion, and metastasis of breast cancer. Further exploration of the potential intrinsic connections between all members of the MMPs family and breast cancer development is essential for predicting metastasis potential and prognosis of breast cancer, as well as for developing new or improved current targeted anti-cancer therapies for breast cancer.
文章引用:李一航, 王浩. 基质金属蛋白酶家族调控乳腺癌发展机制研究进展[J]. 临床医学进展, 2024, 14(8): 765-772. https://doi.org/10.12677/acm.2024.1482280

1. 引言

恶性肿瘤已成为严重威胁我国人群健康的主要疾病之一。根据2022年我国恶性肿瘤发病与年龄分布特征发现乳腺癌发病率位居女性所有恶性肿瘤第二,是中国45~59岁女性中发病率最高的恶性肿瘤类型,其发病年龄也呈年轻化趋势[1]。近年来,随着乳腺癌手术治疗的发展以及多学科协作的背景下乳腺癌的病死率逐年下降[2],但相当一部分患者术后出现器官转移而复发,这已成为导致乳腺癌患者不良预后的关键因素。基质金属蛋白酶(matrix metalloproteinases)在包括乳腺癌等诸多恶性肿瘤的发生与发展中起到了极其重要的作用,它促进广泛的过程,包括细胞增殖和迁移,并且在细胞凋亡、血管生成,组织再生和免疫反应中发挥重要作用[3]。本篇将综述对MMPs家族部分成员与乳腺癌细胞调控乳腺癌发展及其机制研究的进展,以期为乳腺癌的基础研究及临床的诊断和治疗提供借鉴和帮助。

2. MMPs简介

基质金属蛋白酶(MMPs)是一大类钙依赖性含锌内肽酶,至少有23种在人体组织中表达[4]-[6]。MMPs对组织的稳态有十分重要的意义,并且参与生成血管、胚胎发生和伤口修复等各种生理过程,是组织重塑及再生过程中的关键物质[4]。MMPs在各种细胞中表达,如结缔组织中成纤维细胞中表达,也在嗜中性粒细胞、单核细胞、巨噬细胞和内皮细胞中表达,它们的主要作用是降解细胞外基质(ECM)蛋白、糖蛋白、膜受体、细胞因子和生长因子[7]。此外,心肌梗死、纤维化疾病、骨关节炎和癌症组织的生长、转移和侵袭,此外,它们还可以通过调节免疫细胞的分化和活性以及募集巨噬细胞和中性粒细胞来影响免疫系统。许多疾病的病理生理机制和疾病专归过程都与其有密切关系[8] [9]

MMPs具有共同的功能域和激活机制。根据其底物或类似的结构部分,它们被细分为胶原酶(MMP1、MMP8、MMP13)、明胶酶(MMP2、MMP9)、溶血素(MMP3、MMP10、MMP11)、基质溶血素(MMP7、MMP26)、膜型MMP (MMP14)和其他MMP。

MMPs通常被合成为无活性酶原合成并且以此形式分泌,锌离子可以与其催化位点相结合,产生相互作用与其前肽结构域[10],通过蛋白水解过程,暴露该结构域的蛋活性位点,使酶原被激活为活性酶[11]。在MMP蛋白水解的过程中,金属蛋白酶内源性组织抑制剂(TIMP)是控制该过程的关键因素,因此,MMP实际活性的变化取决于MMPs的产生和激活与TIMP的局部水平之间的平衡[12] [13]

3. MMPs与乳腺癌

MMPs家族各成员由于具有不同的生物学活性,所以在乳腺癌的侵袭、转移等发展过程中也发挥着不同的调控作用,下面乳腺组织中现已发现的MMPs进行阐述。

3.1. MMP-1

MMP-1 (基质金属蛋白酶1),又称间质胶原酶,是最广泛表达的基质金属蛋白酶之一,可以降解I型、II型和III型胶原。MMP-1的异常表达与肿瘤的侵袭和转移密切相关,其在乳腺癌的早期发生及肿瘤生长中可能起重要作用,在晚期乳腺癌中经常被上调,与肿瘤分化相关,有报道指出MMP-1参与ECM降解,迁移,侵袭,从而导致转移[14],被认为是乳腺癌转移的预测标记物以及与不良预后相关[15] [16]。MMP-1可以通过激活G蛋白偶联受体PAR1和释放信号分子前体如pro-TGFα、pro-TGFβ,来促进肿瘤的转移。

3.2. MMP-2与MMP-9

MMP-2与MMP-9分别被称为明胶酶A及明胶酶-B,MMP-9常被认为与MMP 2是一致的肿瘤进展标志物,其共同作用都是推动它是肿瘤细胞分解基底膜,有利于肿瘤细胞的局部浸润和远处转移[17],根据Jeleniewicz等学者研究[18]表明:MMP-2表达的增加与人类多种恶性肿瘤侵袭、转移以及预后紧密相关,是恶性肿瘤进展的标志物之一。LI [19]等学者通过检测80例乳腺癌组织和40例癌旁正常组织标本中MMP-2和MMP-9的表达水平,研究结果表示乳腺癌组织中MMP-2和MMP-9的表达明显高于乳腺癌旁正常组织,癌组织中MMP-2和MMP-9的表达水平与淋巴结转移和肿瘤分期有关,且影响乳腺癌患者的预后。王娜[20]等研究结果也提示MMP-2和MMP-9的表达与乳腺癌的发生、发展,恶性细胞的侵袭、转移密切相关。Ramos等研究结果显示乳腺癌病人中,MMP-2阳性表达者较阴性表达者更差。Aman [21]学者通过对48名乳腺癌患者和13名良性乳腺疾病患者进行对比研究得出MMP-9的表达水平在乳腺癌患者组织中显著升高,乳腺癌患者术前MMP-2和MMP-9表达水平较根治术后显著升高。根据国内学者周梅、周虹等研究[22] [23],乳腺癌组织中MMP-2的表达水平明显高于正常乳腺组织或乳腺良性疾病组织。

3.3. MMP-3

基质金属蛋白酶3 (MMP-3),又称基质分解素-1,可降解层粘连蛋白、I、III、IV和V型纤维连接蛋白,在细胞外基质的降解和重塑过程中起着关键作用,并以此调节促进肿瘤侵袭和转移。MMP-3的合成和活化是MMPs介导的降解过程的第一步,它在激活MMP-1、MMP 7和MMP-9的过程中起着至关重要的作用[24]。MMP-3与乳腺癌细胞的增殖、凋亡、侵袭与转移密切相关,并且在乳腺癌中与高死亡率和晚期肿瘤相关,不仅在肿瘤最初的发展和进展中有都重要作用[25] [26]

3.4. MMP-7

MMP-7也称为母质溶血素,它可切割组成细胞外基质的许多蛋白质成分,包括胶原蛋白、骨桥蛋白、纤连蛋白、层粘蛋白、弹性蛋白和蛋白聚糖[27],研究显示[28],乳腺癌组织中MMP-7蛋白的高表达能促进乳腺癌细胞侵袭和迁移。另研究发现,与正常乳腺组织相比,乳腺浸润性导管癌和导管原位癌MMP-7的阳性表达率显著升高。此外,它与乳腺癌的组织学分型,临床分期和淋巴结转移密切相关,这再次证实MMP-7不仅参与了乳腺癌的发生和发展,同时参加了乳腺癌的转移进程。

3.5. MMP-8

MMP-8,也称为胶原酶-2或中性粒细胞胶原酶,与MMP-1同属于胶原酶家族,其促癌机制主要是通过毛细血管样网络结构的发展在细胞增殖、迁移以及血管生成中发挥作用[29]

MMP-8在炎症刺激下从中性粒细胞颗粒中释放,降低基底膜和组织的连接,帮助中性粒细胞到达炎性部位参与炎症响应,如肺损伤、也血管疾病、关节炎等疾病的炎症反应[30]。然而,癌症中MMP-8的作用不尽相同,其在不同癌症类型和癌症阶段有可能截然相反,需要谨慎辩证看待。有临床研究也显示,乳腺癌病人高表达MMP-8将预示着更低的转移发生和良好预后[31]。

3.6. MMP-10

MMP-10,或称为基质溶质-2,主要存在于上皮细胞中,通过分解细胞外基质成分(如胶原、明胶、弹性蛋白、纤连蛋白、蛋白聚糖和层粘连蛋白)参与肿瘤细胞侵袭和转移[32],除了蛋白水解活性MMP-10还被证明具有催化某些酶原的活性包括MMP-1、MMP-7、MMP-8、MMP-9、MMP-13以及触发胶原酶(如MMP-1)活性的能力。MMP-10通过靶向其他几种MMP催化其酶原的能力被认为是左右激活与抑制平衡的关键[33] [34],在乳腺癌的侵袭转移中发挥协同作用。

3.7. MMP-11

MMP-11,也称为基质溶质-3,其过表达是各种人类癌症预后不良的一个因素,有研究报道这种蛋白酶本身并不在恶性细胞中表达,而是由细胞基质中的间充质细胞分泌[35],然而,一些研究却证实了MMP-11不仅在细胞基质中表达,同时也在肿瘤细胞中表达[36] [37]。MMP-1其在抑制细胞凋亡、增强肿瘤的侵袭和转移活性的能力却被其他研究所证实[38]。MMP-11在乳腺癌组织中显著上调,提示乳腺癌有发展成为浸润性爱的可能性,并且认为MMP-11可能是乳腺癌一个新的标志物。MMP-11除了在侵袭性原发癌中的表达,还被发现在淋巴结转移病灶中表达[39] [40]。在肿瘤细胞中,肿瘤细胞与肿瘤相关的成纤维细胞之间的细胞相互作用过程中能促进MMPs的表达与激活[41]。在乳腺癌肿瘤细胞与基质成纤维细胞中,与乳腺癌预后相关的因子P53,雌激素受体、孕激素受体以及人表皮生长因子HER2与MMP-11的表达具有相关性[42]。这些发现认为MMP-11可能通过某一信号通路或者未知的生物学行为,扮演着比蛋白水解酶更复杂的角色。

3.8. MMP-13

MMP-13在肿瘤或间质细胞中的过表达和癌症的演变进展之间存在一定的因果关系。MMP-13作为基质金属蛋白酶家族的一员,主要降解I、II、III、IV、X型胶原纤维以及粘蛋白、纤维连接蛋白、蛋白多糖和原纤维蛋白,在多种恶性肿瘤中表达,如结直肠癌、皮肤癌、乳腺癌、基底细胞癌等,并且与肿瘤的生物学行为和预后有关[43] [44]。研究发现MMP-13在溶骨性骨转移中起着关键作用,主要因为肿瘤细胞诱导的抑癌蛋白M和载脂蛋白SAA3在成骨细胞产生的急性反应中发挥作用,而成骨细胞分泌的胶原酶是MMP-13的主要作用底物,这些胶原酶促进破骨细胞介导的骨吸收,使破骨细胞活化肿瘤发生骨转移[45] [46]因此开发有效的MMP-13抑制剂,阻断其诱导的骨转移,有望为乳腺癌的临床诊治提供新的靶点。早期开发的广谱MMPS抑制剂马立马司他,因严重的不良反应在临床研究中未能取得成功。近年Piecha等[47]发现了两种高效高选择性非Zn2+结合的MMP-13抑制剂ALS 1-0635和ALS 1-1087,在动物模型中可有效抑制软骨细胞的骨转移,但缺少进一步的人体实验;另外新发现的一种MMP-13特异性的抑制剂Cmpd-1 [48]在乳腺癌肿瘤细胞生长及骨转移过程中起抑制性作用,可明显降低溶骨性骨损伤。

3.9. MMP14

MMP-14是为膜型MMP,通过降解细胞外基质,增加MMP-2和MMP-9的分泌以及与TIMP相互作用,是癌症侵袭和转移期间细胞外基质和组织破坏背后的驱动力;同时,MMP-14还通过调节许多质膜锚定和细胞外蛋白的活性来影响细胞间和细胞–基质通讯[49]。有研究表明MMP-14在调节肿瘤细胞生长环境、诱导多种细胞因子表达方面发挥重要作用。该研究认为,MMP-14蛋白和c-myc基因存在内部联系,共同影响乳腺癌的发生,并且实癌组织MMP-14蛋白和c-myc基因阳性表达率显著高于癌旁正常组织(P < 0.05)。提示,MMP-14蛋白和c-myc基因发挥促进肿瘤生长的作用[49]。另有研究表明过表达的miR-584-5p通过下调MMP-14抑制乳腺癌细胞的增殖、迁移和侵袭,提示该机制可能成为乳腺癌治疗的潜在靶点

3.10. MMP-26

MMP-26,也称为基质溶解素-2,可以分解数个细胞外基质组成物质并通过激活MMP-9来发挥其生物学功能[50]。病理状态下,MMP-26主要表达于上皮源性的恶性肿瘤中,Zhao YG等通过免疫组化及PCR技术对乳腺癌组织进行研究时发现,MMP-26在乳腺导管原位癌中mRNA和蛋白的表达量明显升高,其表达水平高于乳腺浸润型导管癌[51]。Strongin等研究也证实,MMP-26在乳腺癌导管原位癌中呈高表达,且雌激素阳性患者的生存期明显高于雌激素阴性患者[52]

4. 总结与展望

乳腺癌已经成为影响广大女性健康的主要疾病之一。目前针对乳腺癌的治疗多种多样,也取得了很大进展,但乳腺癌转移以及治疗耐药严重困扰着临床医师,随着MMPs家族成员不断被发现,MMPs家族成员中大多数成员的非正常表达均可导致细胞外基质分解、细胞侵袭和附着并显著加速上皮细胞间充质化进程,这足以说明MMPs家族在乳腺癌的增殖、侵袭、转移等进展过程中起着十分重要的促进作用。若能进更进一步证实患者血清或肿瘤的细胞外基质中MMPs的表达水平与乳腺癌发生或转移的相关性,可能存在一定临床意义。对于MMPs家族成员与乳腺癌发展的深层机制的探索有望对开发新的或改进乳腺癌当前靶向抗癌疗法提供新的思路和理论依据。

NOTES

*通讯作者。

参考文献

[1] 王少明, 郑荣寿, 韩冰峰, 李荔, 陈茹, 孙可欣, 曾红梅, 魏文强, 赫捷. 2022年中国人群恶性肿瘤发病与死亡年龄特征分析[J]. 中国肿瘤, 2024, 33(3): 165-174.
[2] 李培, 吴炅. 中国乳腺癌外科治疗现状和新趋势[J]. 中国肿瘤临床, 2022, 49(22): 1151-1155.
[3] Cai, N., Cheng, K., Ma, Y., et al. (2024) Targeting MMP9 in CTNNB1 Mutant Hepatocellular Carcinoma Restores CD8+ T Cell-Mediated Antitumour Immunity and Improves Anti-PD-1 Efficacy. Gut, 73, 985-999.
[4] Laronha, H. and Caldeira, J. (2020) Structure and Function of Human Matrix Metalloproteinases. Cells, 9, Article No. 1076.
https://doi.org/10.3390/cells9051076
[5] Wang, X. and Khalil, R.A. (2018) Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. In: Advances in Pharmacology, Elsevier, Amsterdam, 241-330.
https://doi.org/10.1016/bs.apha.2017.08.002
[6] Molière, S., Jaulin, A., Tomasetto, C. and Dali-Youcef, N. (2023) Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. International Journal of Molecular Sciences, 24, Article No. 10649.
https://doi.org/10.3390/ijms241310649
[7] Cui, N., Hu, M. and Khalil, R.A. (2017) Biochemical and Biological Attributes of Matrix Metalloproteinases. In: Progress in Molecular Biology and Translational Science, Elsevier, Amsterdam, 1-73.
https://doi.org/10.1016/bs.pmbts.2017.02.005
[8] Xu, G., Ou, L., Liu, Y., Wang, X., Liu, K., Li, J., et al. (2020) Upregulated Expression of MMP Family Genes Is Associated with Poor Survival in Patients with Esophageal Squamous Cell Carcinoma via Regulation of Proliferation and Epithelial-Mesenchymal Transition. Oncology Reports, 44, 29-42.
https://doi.org/10.3892/or.2020.7606
[9] Brkic, M., Balusu, S., Libert, C. and Vandenbroucke, R.E. (2015) Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases. Mediators of Inflammation, 2015, Article ID: 620581.
https://doi.org/10.1155/2015/620581
[10] Liu, J. and Khalil, R.A. (2017) Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. In: Progress in Molecular Biology and Translational Science, Elsevier, Amsterdam, 355-420.
https://doi.org/10.1016/bs.pmbts.2017.04.003
[11] Ra, H. and Parks, W.C. (2007) Control of Matrix Metalloproteinase Catalytic Activity. Matrix Biology, 26, 587-596.
https://doi.org/10.1016/j.matbio.2007.07.001
[12] Agarwal, S., Loder, S., Brownley, C., Cholok, D., Mangiavini, L., Li, J., et al. (2015) Inhibition of Hif1α Prevents Both Trauma-Induced and Genetic Heterotopic Ossification. Proceedings of the National Academy of Sciences, 113, E338-E347.
https://doi.org/10.1073/pnas.1515397113
[13] Aroner, S.A., Rosner, B.A., Tamimi, R.M., Tworoger, S.S., Baur, N., Joos, T.O., et al. (2014) Plasma Matrix Metalloproteinase 1, 3, and 7 Levels and Breast Cancer Risk in the Nurses’ Health Study. Cancer Causes & Control, 25, 1717-1723.
https://doi.org/10.1007/s10552-014-0462-7
[14] Kim, D., Kim, J., Kim, E., Na, H., Cha, Y., Chung, J.H., et al. (2009) 15-Deoxy-Δ12,14-Prostaglandin J2 Upregulates the Expression of Heme Oxygenase-1 and Subsequently Matrix Metalloproteinase-1 in Human Breast Cancer Cells: Possible Roles of Iron and ROS. Carcinogenesis, 30, 645-654.
https://doi.org/10.1093/carcin/bgp012
[15] Hotary, K.B., Allen, E.D., Brooks, P.C., Datta, N.S., Long, M.W. and Weiss, S.J. (2003) Membrane Type I Matrix Metalloproteinase Usurps Tumor Growth Control Imposed by the Three-Dimensional Extracellular Matrix. Cell, 114, 33-45.
https://doi.org/10.1016/s0092-8674(03)00513-0
[16] Wang, B., Ding, Y., Fan, P., Wang, B., Xu, J. and Wang, W. (2014) Expression and Significance of MMP2 and Hif-1α in Hepatocellular Carcinoma. Oncology Letters, 8, 539-546.
https://doi.org/10.3892/ol.2014.2189
[17] Dieci, M.V., Barbieri, E., Piacentini, F., Ficarra, G., Bettelli, S., Dominici, M., et al. (2013) Discordance in Receptor Status between Primary and Recurrent Breast Cancer Has a Prognostic Impact: A Single-Institution Analysis. Annals of Oncology, 24, 101-108.
https://doi.org/10.1093/annonc/mds248
[18] Muramatsu, T. (2015) Basigin (CD147), a Multifunctional Transmembrane Glycoprotein with Various Binding Partners. Journal of Biochemistry, 159, 481-490.
https://doi.org/10.1093/jb/mvv127
[19] Yin, H., Shao, Y. and Chen, X. (2016) The Effects of CD147 on the Cell Proliferation, Apoptosis, Invasion, and Angiogenesis in Glioma. Neurological Sciences, 38, 129-136.
https://doi.org/10.1007/s10072-016-2727-2
[20] 唐小乔, 桑剑锋, 张寅, 史先彪, 苏磊. CD147在乳腺癌细胞中的表达及对癌细胞增殖及TGF-β信号通路的影响[J]. 肿瘤学杂志, 2020(5): 413-417.
[21] Dana, P., Kariya, R., Vaeteewoottacharn, K., Sawanyawisuth, K., Seubwai, W., Matsuda, K., et al. (2017) Upregulation of CD147 Promotes Metastasis of Cholangiocarcinoma by Modulating the Epithelial-to-Mesenchymal Transitional Process. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 25, 1047-1059.
https://doi.org/10.3727/096504016x14813899000565
[22] Li, M.H., Hou, C.L., Wang, C. and Sun, A.J. (2016) HER-2, ER, PR Status Concordance in Primary Breast Cancer and Corresponding Metastatic Lesion in Lymph Node in Chinese Women. PathologyResearch and Practice, 212, 252-257.
https://doi.org/10.1016/j.prp.2015.11.019
[23] Van Hove, I., Lemmens, K., Van de Velde, S., Verslegers, M. and Moons, L. (2012) Matrix Metalloproteinase‐3 in the Central Nervous System: A Look on the Bright Side. Journal of Neurochemistry, 123, 203-216.
https://doi.org/10.1111/j.1471-4159.2012.07900.x
[24] Wan, J., Zhang, G., Li, X., Qiu, X., Ouyang, J., Dai, J., et al. (2021) Matrix Metalloproteinase 3: A Promoting and Destabilizing Factor in the Pathogenesis of Disease and Cell Differentiation. Frontiers in Physiology, 12, Article ID: 663978.
https://doi.org/10.3389/fphys.2021.663978
[25] Bourboulia, D. and Stetler-Stevenson, W.G. (2010) Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs): Positive and Negative Regulators in Tumor Cell Adhesion. Seminars in Cancer Biology, 20, 161-168.
https://doi.org/10.1016/j.semcancer.2010.05.002
[26] Yokoyama, Y., Grünebach, F., Schmidt, S.M., Heine, A., Häntschel, M., Stevanovic, S., et al. (2008) Matrilysin (MMP-7) Is a Novel Broadly Expressed Tumor Antigen Recognized by Antigen-Specific T Cells. Clinical Cancer Research, 14, 5503-5511.
https://doi.org/10.1158/1078-0432.ccr-07-4041
[27] Fang, C., Wen, G., Zhang, L., Lin, L., Moore, A., Wu, S., et al. (2013) An Important Role of Matrix Metalloproteinase-8 in Angiogenesis in Vitro and in Vivo. Cardiovascular Research, 99, 146-155.
https://doi.org/10.1093/cvr/cvt060
[28] Dejonckheere, E., Vandenbroucke, R.E. and Libert, C. (2011) Matrix Metalloproteinase8 Has a Central Role in Inflammatory Disorders and Cancer Progression. Cytokine & Growth Factor Reviews, 22, 73-81.
https://doi.org/10.1016/j.cytogfr.2011.02.002
[29] Decock, J., Long, J., Laxton, R.C., Shu, X., Hodgkinson, C., Hendrickx, W., et al. (2007) Association of Matrix Metalloproteinase-8 Gene Variation with Breast Cancer Prognosis. Cancer Research, 67, 10214-10221.
https://doi.org/10.1158/0008-5472.can-07-1683
[30] Zhang, G., Miyake, M., Lawton, A., Goodison, S. and Rosser, C.J. (2014) Matrix Metalloproteinase-10 Promotes Tumor Progression through Regulation of Angiogenic and Apoptotic Pathways in Cervical Tumors. BMC Cancer, 14, Article No. 310.
https://doi.org/10.1186/1471-2407-14-310
[31] Barksby, H.E., Milner, J.M., Patterson, A.M., Peake, N.J., Hui, W., Robson, T., et al. (2006) Matrix Metalloproteinase 10 Promotion of Collagenolysis via Procollagenase Activation: Implications for Cartilage Degradation in Arthritis. Arthritis & Rheumatism, 54, 3244-3253.
https://doi.org/10.1002/art.22167
[32] Nakamura, H., Fujii, Y., Ohuchi, E., Yamamoto, E. and Okada, Y. (1998) Activation of the Precursor of Human Stromelysin 2 and Its Interactions with Other Matrix Metalloproteinases. European Journal of Biochemistry, 253, 67-75.
https://doi.org/10.1046/j.1432-1327.1998.2530067.x
[33] Dali-Youcef, N., Hnia, K., Blaise, S., Messaddeq, N., Blanc, S., Postic, C., et al. (2016) Matrix Metalloproteinase 11 Protects from Diabesity and Promotes Metabolic Switch. Scientific Reports, 6, Article No. 25140.
https://doi.org/10.1038/srep25140
[34] von Marschall, Z., Riecken, E.O. and Rosewicz, S. (1998) Stromelysin 3 Is Overexpressed in Human Pancreatic Carcinoma and Regulated by Retinoic Acid in Pancreatic Carcinoma Cell Lines. Gut, 43, 692-698.
https://doi.org/10.1136/gut.43.5.692
[35] Barrasa, J.I., Olmo, N., Santiago-Gómez, A., Lecona, E., Anglard, P., Turnay, J., et al. (2012) Histone Deacetylase Inhibitors Upregulate MMP11 Gene Expression through Sp1/smad Complexes in Human Colon Adenocarcinoma Cells. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1823, 570-581.
https://doi.org/10.1016/j.bbamcr.2011.12.010
[36] Genestie, C., Zafrani, B., Asselain, B., et al. (1998) Comparison of the Prognostic Value of Scarff-Bloom-Richardson and Nottingham-Histological Grades in a Series of 825 Cases of Breast Cancer: Major Importance of the Mitotic Count as a Component of both Grading Systems. Anticancer Research, 18, 571-576.
[37] Egeblad, M. and Werb, Z. (2002) New Functions for the Matrix Metalloproteinases in Cancer Progression. Nature Reviews Cancer, 2, 161-174.
https://doi.org/10.1038/nrc745
[38] Wolf, C., Rouyer, N., Lutz, Y., Adida, C., Loriot, M., Bellocq, J.P., et al. (1993) Stromelysin 3 Belongs to a Subgroup of Proteinases Expressed in Breast Carcinoma Fibroblastic Cells and Possibly Implicated in Tumor Progression. Proceedings of the National Academy of Sciences, 90, 1843-1847.
https://doi.org/10.1073/pnas.90.5.1843
[39] Basset, P., Okada, A., Chenard, M., Kannan, R., Stoll, I., Anglard, P., et al. (1997) Matrix Metalloproteinases as Stromal Effectors of Human Carcinoma Progression: Therapeutic Implications. Matrix Biology, 15, 535-541.
https://doi.org/10.1016/s0945-053x(97)90028-7
[40] Min, K., Kim, D., Do, S., Pyo, J., Kim, K., Chae, S.W., et al. (2012) Diagnostic and Prognostic Relevance of MMP-11 Expression in the Stromal Fibroblast-Like Cells Adjacent to Invasive Ductal Carcinoma of the Breast. Annals of Surgical Oncology, 20, 433-442.
https://doi.org/10.1245/s10434-012-2734-3
[41] Toriseva, M.J., Ala-aho, R., Karvinen, J., Baker, A.H., Marjomäki, V.S., Heino, J., et al. (2007) Collagenase-3 (MMP-13) Enhances Remodeling of Three-Dimensional Collagen and Promotes Survival of Human Skin Fibroblasts. Journal of Investigative Dermatology, 127, 49-59.
https://doi.org/10.1038/sj.jid.5700500
[42] Tardif, G., Reboul, P., Pelletier, J. and Martel-Pelletier, J. (2004) Ten Years in the Life of an Enzyme: The Story of the Human MMP-13 (Collagenase-3). Modern Rheumatology, 14, 197-204.
https://doi.org/10.3109/s10165-004-0292-7
[43] Hsu, C., Shen, G. and Ko, J. (2006) Matrix Metalloproteinase-13 Expression Is Associated with Bone Marrow Microinvolvement and Prognosis in Non-Small Cell Lung Cancer. Lung Cancer, 52, 349-357.
https://doi.org/10.1016/j.lungcan.2006.01.011
[44] Nannuru, K.C., Futakuchi, M., Varney, M.L., Vincent, T.M., Marcusson, E.G. and Singh, R.K. (2010) Matrix Metalloproteinase (MMP)-13 Regulates Mammary Tumor-Induced Osteolysis by Activating MMP9 and Transforming Growth Factor-Β Signaling at the Tumor-Bone Interface. Cancer Research, 70, 3494-3504.
https://doi.org/10.1158/0008-5472.can-09-3251
[45] Morrison, C., Mancini, S., Cipollone, J., Kappelhoff, R., Roskelley, C. and Overall, C. (2011) Microarray and Proteomic Analysis of Breast Cancer Cell and Osteoblast Co-Cultures: Role of Osteoblast Matrix Metalloproteinase (MMP)-13 in Bone Metastasis. Journal of Biological Chemistry, 286, 34271-34285.
https://doi.org/10.1074/jbc.m111.222513
[46] Piecha, D., Weik, J., Kheil, H., Becher, G., Timmermann, A., Jaworski, A., et al. (2009) Novel Selective MMP-13 Inhibitors Reduce Collagen Degradation in Bovine Articular and Human Osteoarthritis Cartilage Explants. Inflammation Research, 59, 379-389.
https://doi.org/10.1007/s00011-009-0112-9
[47] Lynch, C.C. (2011) Matrix Metalloproteinases as Master Regulators of the Vicious Cycle of Bone Metastasis. Bone, 48, 44-53.
https://doi.org/10.1016/j.bone.2010.06.007
[48] Niland, S., Riscanevo, A.X. and Eble, J.A. (2021) Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. International Journal of Molecular Sciences, 23, Article No. 146.
https://doi.org/10.3390/ijms23010146
[49] 王婧, 毛杰, 周蓓, 等. MMP-14和c-myc基因在乳腺癌组织中表达及临床意义[J]. 生物医学工程与临床, 2020, 24(1): 81-86.
[50] 黎联. 基质金属蛋白酶-26在非小细胞肺癌中的表达、临床意义及调控机制[D]: [博士学位论文]. 重庆: 重庆医科大学, 2009.
[51] Marchenko, G.N., Ratnikov, B.I., Rozanov, D.V., Godzik, A., Deryugina, E.I. and Strongin, A.Y. (2001) Characterization of Matrix Metalloproteinase-26, a Novel Metalloproteinase Widely Expressed in Cancer Cells of Epithelial Origin. Biochemical Journal, 356, 705-718.
https://doi.org/10.1042/bj3560705
[52] Zhao, Y., Xiao, A., Newcomer, R.G., Park, H.I., Kang, T., Chung, L.W.K., et al. (2003) Activation of Pro-Gelatinase B by Endometase/Matrilysin-2 Promotes Invasion of Human Prostate Cancer Cells. Journal of Biological Chemistry, 278, 15056-15064.
https://doi.org/10.1074/jbc.m210975200