[1]
|
Sayadi, A.A., Tapia, J.V., Neitzert, T.R. and Clifton, G.C. (2016) Effects of Expanded Polystyrene (EPS) Particles on Fire Resistance, Thermal Conductivity and Compressive Strength of Foamed Concrete. Construction and Building Materials, 112, 716-724. https://doi.org/10.1016/j.conbuildmat.2016.02.218
|
[2]
|
Raj, A., Sathyan, D. and Mini, K.M. (2019) Physical and Functional Characteristics of Foam Concrete: A Review. Construction and Building Materials, 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
|
[3]
|
孙洪军, 赵腾飞. 建筑复合墙板结构组成及试验方法研究综述[J]. 科学技术与工程, 2023, 23(31): 13217-13226.
|
[4]
|
Realinho, V., Antunes, M. and Velasco, J.I. (2016) Enhanced Fire Behavior of Casico-Based Foams. Polymer Degradation and Stability, 128, 260-268. https://doi.org/10.1016/j.polymdegradstab.2016.03.029
|
[5]
|
Khetata, S.M., Piloto, P.A. and Gavilán, A.B. (2020) Fire Resistance of Composite Non-Load Bearing Light Steel Framing Walls. Journal of Fire Sciences, 38, 136-155. https://doi.org/10.1177/0734904119900931
|
[6]
|
杨小芳, 于水军, 高岩, 等. 泡沫混凝土和混凝土耐火极限的比较研究[J]. 火灾科学, 2012, 21(2): 78-83.
|
[7]
|
张立宇, 蔡谙书, 陈振, 等. 泡沫混凝土墙板研究综述[J]. 市政技术, 2022, 40(8): 120-127.
|
[8]
|
Xu, Y., Mao, J., Jiang, J., Chu, H., Li, W., Kang, X., et al. (2024) Research on the Performance of Foamed Concrete Based on Superhydrophobic Bulk Modification. Construction and Building Materials, 438, Article ID: 137231. https://doi.org/10.1016/j.conbuildmat.2024.137231
|
[9]
|
雷东移, 刘承侃, 刘佳鑫, 等. 发泡水泥板应用背景、现状及前景概述[J]. 材料导报, 2024, 38(14): 117-125.
|
[10]
|
Peng, W., Zhou, J., Liu, G., Wang, L., Feng, Z. and Ding, Z. (2024) The Effect of Flame Treatment on the Compressive Strength of Composite Sandwich Panels Made of Pure Epoxy Resin H‐shaped Structures and Hollow Glass Bead/Epoxy Resin Composite Material. Polymer Engineering & Science, 64, 2736-2746. https://doi.org/10.1002/pen.26722
|
[11]
|
罗伊明, 张博, 刘彦钰, 等. 混杂纤维增强超高性能混凝土的高温性能试验研究[J]. 硅酸盐通报, 2024, 43(3): 825-832.
|
[12]
|
程宝军, 康升荣, 麻鹏飞, 等. 高性能纤维增强水泥基复合墙板热力学和耐火性能研究[J]. 新型建筑材料, 2021, 48(1): 116-120.
|
[13]
|
吴佳桐. 玄武岩/聚丙烯复掺纤维对混凝土性能的影响研究[J]. 合成材料老化与应用, 2024, 53(2): 54-56.
|
[14]
|
Amran, Y.H.M., Rashid, R.S.M., Hejazi, F., Safiee, N.A. and Ali, A.A.A. (2016) Response of Precast Foamed Concrete Sandwich Panels to Flexural Loading. Journal of Building Engineering, 7, 143-158. https://doi.org/10.1016/j.jobe.2016.06.006
|
[15]
|
周程涛, 陈波, 张娟, 等. 玄武岩纤维泡沫混凝土的细观结构及损伤特性[J/OL]. 复合材料学报: 1-11. https://doi.org/10.13801/j.cnki.fhclxb.20231109.001, 2024-05-21.
|
[16]
|
郭凌云, 陈波, 高志涵, 等. 基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能[J/OL]. 复合材料学报: 1-14. https://doi.org/10.13801/j.cnki.fhclxb.20240703.002, 2024-05-21.
|
[17]
|
廖荣国. 绿色建筑外墙泡沫混凝土复合墙板传热性能检测[J]. 中国建筑装饰装修, 2023(19): 70-72.
|
[18]
|
吕绕英. 木塑复合材料在绿色建筑中的应用[J]. 塑料工业, 2023, 51(3): 208.
|
[19]
|
金峙. 装配式建筑智能化质量管理综述研究[J]. 城市建设理论研究(电子版), 2023(29): 70-72.
|
[20]
|
姚健. 装配式建筑发展现状及其制约因素与对策研究[J]. 安徽建筑, 2023, 30(11): 185-187.
|
[21]
|
高志杰, 郭振雷, 张佳阳, 等. 我国装配式混凝土剪力墙结构体系发展综述[J]. 混凝土与水泥制品, 2023(9): 69-74.
|
[22]
|
任大鹏. 高强度聚丙烯纤维泡沫混凝土的制备及抗蚀性能分析[J]. 功能材料, 2023, 54(10): 10200-10206.
|
[23]
|
Yu, F., Kuang, G., Bu, S. and Chen, L. (2024) Flexural Performance Tests and Numerical Analysis of Fabricated Light-Gauge Steel Reinforced Foam Concrete Filled Steel Mesh Formwork Wallboards. Structures, 66, Article ID: 106813. https://doi.org/10.1016/j.istruc.2024.106813
|
[24]
|
王雪, 陈威威, 艾明星, 等. 蒸压加气混凝土复合保温墙板系统受力性能研究[J]. 建筑科学, 2024, 40(3): 145-153.
|
[25]
|
Chen, J., Hamed, E. and Gilbert, R.I. (2021) Structural Performance of Concrete Sandwich Panels under Fire. Fire Safety Journal, 121, Article ID: 103293. https://doi.org/10.1016/j.firesaf.2021.103293
|
[26]
|
曹婷. 装配式建筑物中轻质高强抗蚀性能研究[J]. 粘接, 2022, 49(2): 120-124.
|
[27]
|
郭孟攀, 陈国新, 张轶琛, 等. 夹心保温复合墙板GFRP-Y型拉结件受力性能研究[J]. 复合材料科学与工程: 1-11. https://link.cnki.net/urlid/10.1683.tu.20240527.1757.022, 2024-05-28.
|
[28]
|
王立军, 刘丁源. 复合夹芯保温墙板抗剪性能研究[J]. 河北建筑工程学院学报, 2023, 41(3): 13-20+31.
|
[29]
|
Vishavkarma, A., Kumar, M. and Harish, K.V. (2024) Influence of Combined Substitution of Slag and Fly Ash in Improving the Pore Structure and Corrosion Resistance of Foam Concrete Mixtures Used for Reinforced Concrete Applications. Case Studies in Construction Materials, 21, e03449. https://doi.org/10.1016/j.cscm.2024.e03449
|
[30]
|
Mugahed Amran, Y.H., Abang Ali, A.A., Rashid, R.S.M., Hejazi, F. and Safiee, N.A. (2016) Structural Behavior of Axially Loaded Precast Foamed Concrete Sandwich Panels. Construction and Building Materials, 107, 307-320. https://doi.org/10.1016/j.conbuildmat.2016.01.020
|
[31]
|
万炜涛, 潘晨, 郭呈毅, 等. 导热复合材料降低填料之间界面热阻研究进展[J]. 高分子材料科学与工程, 2024, 40(5): 170-180.
|
[32]
|
吴可铮. 预制泡沫混凝土条板耐火性能试验研究[D]: [硕士学位论文]. 南京: 东南大学, 2020.
|
[33]
|
周学军, 李慧敏, 刘哲, 等. 新型承重围护保温一体化墙板耐火性能研究[J]. 建筑钢结构进展, 2022, 24(5): 81-91.
|
[34]
|
Proença, M., Garrido, M., Correia, J.R. and Gomes, M.G. (2021) Fire Resistance Behaviour of Gfrp-Polyurethane Composite Sandwich Panels for Building Floors. Composites Part B: Engineering, 224, Article ID: 109171. https://doi.org/10.1016/j.compositesb.2021.109171
|
[35]
|
Mosallam, A., Abdi, F. and Qian, Z. (2008) Fire Resistance Simulation of Loaded Deck Sandwich Panel and Deck-Bulkhead Assembly Structures. Composites Part B: Engineering, 39, 191-195. https://doi.org/10.1016/j.compositesb.2007.02.022
|
[36]
|
史卓鹏, 薛凯, 王雪, 等. 变电站用泡沫混凝土防火外墙板抗弯与耐火性能研究[J]. 建筑科学, 2021, 37(9): 137-143.
|
[37]
|
Kang, J. (2015) Composite and Non-Composite Behaviors of Foam-Insulated Concrete Sandwich Panels. Composites Part B: Engineering, 68, 153-161. https://doi.org/10.1016/j.compositesb.2014.08.034
|
[38]
|
O’Hegarty, R., Reilly, A., West, R. and Kinnane, O. (2020) Thermal Investigation of Thin Precast Concrete Sandwich Panels. Journal of Building Engineering, 27, Article ID: 100937. https://doi.org/10.1016/j.jobe.2019.100937
|
[39]
|
Zhou, T., Liu, X., Liu, H., Li, Y., Zhang, P., Chen, H., et al. (2022) Experimental Study on Fire Resistance Performance of Concrete-Filled Steel Plate Composite Walls. International Journal of Steel Structures, 23, 389-403. https://doi.org/10.1007/s13296-022-00700-4
|