[1]
|
Brook, C. and Michael, L. (2013) Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals That Reveal, Induce and Normalize Cancer. Journal of Clinical & Experimental Oncology, 1, S1-002.
|
[2]
|
Moreddu, R. (2023) Nanotechnology and Cancer Bioelectricity: Bridging the Gap between Biology and Translational Medicine. Advanced Science, 11, Article 2304110. https://doi.org/10.1002/advs.202304110
|
[3]
|
黄芳, 颜美, 王莉, 等. 浅析纳米材料在医疗领域的应用[J]. 广州化工, 2020, 48(15): 18-20+24.
|
[4]
|
Ni, L., Shaik, R., Xu, R., Zhang, G. and Zhe, J. (2020) A Microfluidic Sensor for Continuous, in Situ Surface Charge Measurement of Single Cells. ACS Sensors, 5, 527-534. https://doi.org/10.1021/acssensors.9b02411
|
[5]
|
Lu, J., Tan, M. and Cai, Q. (2015) The Warburg Effect in Tumor Progression: Mitochondrial Oxidative Metabolism as an Anti-Metastasis Mechanism. Cancer Letters, 356, 156-164. https://doi.org/10.1016/j.canlet.2014.04.001
|
[6]
|
Kaufmann, J.K. and Chiocca, E.A. (2014) Glioma Virus Therapies between Bench and Bedside. Neuro-Oncology, 16, 334-351. https://doi.org/10.1093/neuonc/not310
|
[7]
|
Rizwan, M., Shoukat, A., Ayub, A., Razzaq, B. and Tahir, M.B. (2021) Types and Classification of Nanomaterials. In: Tahir, M.B., Sagir, M. Asiri, A.M., Eds., Nanomaterials: Synthesis, Characterization, Hazards and Safety, Elsevier, 31-54. https://doi.org/10.1016/b978-0-12-823823-3.00001-x
|
[8]
|
What is a Nanomaterial—Definition, Examples and Uses. https://www.twi-global.com/technical-knowledge/faqs/what-is-a-nanomaterial.aspx
|
[9]
|
Buzea, C. and Pacheco, I. (2016) Nanomaterials and Their Classification. In: Shukla, A.K., Ed., EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials, Springer, 3-45. https://doi.org/10.1007/978-81-322-3655-9_1
|
[10]
|
(2019) Nanomaterials Definition Matters. https://www.nature.com/articles/s41565-019-0412-3#citeas
|
[11]
|
Mitragotri, S., Anderson, D.G., Chen, X., Chow, E.K., Ho, D., Kabanov, A.V., et al. (2015) Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 9, 6644-6654. https://doi.org/10.1021/acsnano.5b03569
|
[12]
|
Diez-Pascual, A.M. and Rahdar, A. (2022) Functional Nanomaterials in Biomedicine: Current Uses and Potential Applications. ChemMedChem, 17, e202200142. https://doi.org/10.1002/cmdc.202200142
|
[13]
|
Khursheed, R., Dua, K., Vishwas, S., Gulati, M., Jha, N.K., Aldhafeeri, G.M., et al. (2022) Biomedical Applications of Metallic Nanoparticles in Cancer: Current Status and Future Perspectives. Biomedicine & Pharmacotherapy, 150, Article 112951. https://doi.org/10.1016/j.biopha.2022.112951
|
[14]
|
Niedermeyer, E. and da Silva, F.L. (2005) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 5th Edition, Lippincott Williams & Wilkins.
|
[15]
|
Klem, G.H., Lüders, H.O., Jasper, H.H., et al. (1999) The Ten-Twenty Electrode System of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology Supplement, 52, 3-6.
|
[16]
|
Wesseling, P. and Capper, D. (2018) WHO 2016 Classification of Gliomas. Neuropathology and Applied Neurobiology, 44, 139-150. https://doi.org/10.1111/nan.12432
|
[17]
|
Hanif, F., et al. (2017) Glioblastoma Multiforme: A Review of Its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pacific Journal of Cancer Prevention, 18, 3-9.
|
[18]
|
Gill, B.J., Pisapia, D.J., Malone, H.R., Goldstein, H., Lei, L., Sonabend, A., et al. (2014) MRI-localized Biopsies Reveal Subtype-Specific Differences in Molecular and Cellular Composition at the Margins of Glioblastoma. Proceedings of the National Academy of Sciences, 111, 12550-12555. https://doi.org/10.1073/pnas.1405839111
|
[19]
|
Halpern, C.H., Samadani, U., Litt, B., Jaggi, J.L. and Baltuch, G.H. (2008) Deep Brain Stimulation for Epilepsy. Neurotherapeutics, 5, 59-67. https://doi.org/10.1016/j.nurt.2007.10.065
|
[20]
|
Holder, D.S. (2005) Electrical Impedance Tomography: Methods, History and Applications. Institute of Physics Publish-ing.
|
[21]
|
刘杨, 段小洁. 基于碳纳米材料的神经电极技术[J]. 物理化学学报, 2020, 36(12): 95-107.
|
[22]
|
Kostarelos, K. and Novoselov, K.S. (2014) Exploring the Interface of Graphene and Biology. Science, 344, 261-263. https://doi.org/10.1126/science.1246736
|
[23]
|
李晶, 杨晓英. 新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用[J]. 化学进展, 2013, 25(Z1): 380-396.
|
[24]
|
高越. 美国脑机接口技术研究及应用进展[J]. 信息通信技术与政策, 2020(12): 75-80.
|
[25]
|
“新曼哈顿工程”: 下一代仿生臂[EB/OL]. https://worldscience.cn/c/2008-05-01/601254.shtml, 2024-10-08.
|
[26]
|
Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., et al. (2013) Three-Dimensional Graphene Foam as a Biocompatible and Conductive Scaffold for Neural Stem Cells. Scientific Reports, 3, Article No. 1604. https://doi.org/10.1038/srep01604
|
[27]
|
Haleem, A., Javaid, M., Singh, R.P., Rab, S. and Suman, R. (2023) Applications of Nanotechnology in Medical Field: A Brief Review. Global Health Journal, 7, 70-77. https://doi.org/10.1016/j.glohj.2023.02.008
|
[28]
|
Xia, C., Jin, X., Garalleh, H.A., Garaleh, M., Wu, Y., Hill, J.M., et al. (2023) Optimistic and Possible Contribution of Nanomaterial on Biomedical Applications: A Review. Environmental Research, 218, Article 114921. https://doi.org/10.1016/j.envres.2022.114921
|
[29]
|
Logothetis, N.K. (2008) What We Can Do and What We Cannot Do with fMRI. Nature, 453, 869-878. https://doi.org/10.1038/nature06976
|
[30]
|
Mégevand, P., Groppe, D.M., Goldfinger, M.S., Hwang, S.T., Kingsley, P.B., Davidesco, I., et al. (2014) Seeing Scenes: Topographic Visual Hallucinations Evoked by Direct Electrical Stimulation of the Parahippocampal Place Area. The Journal of Neuroscience, 34, 5399-5405. https://doi.org/10.1523/jneurosci.5202-13.2014
|
[31]
|
Chang, C., Leopold, D.A., Schölvinck, M.L., Mandelkow, H., Picchioni, D., Liu, X., et al. (2016) Tracking Brain Arousal Fluctuations with Fmri. Proceedings of the National Academy of Sciences, 113, 4518-4523. https://doi.org/10.1073/pnas.1520613113
|
[32]
|
Park, D., Cho, Y., Goh, S. and Choi, Y. (2014) Hyaluronic Acid-Polypyrrole Nanoparticles as pH-Responsive Theranostics. Chemical Communications, 50, 15014-15017. https://doi.org/10.1039/c4cc06349j
|
[33]
|
Ahadian, S., et al. (2016) Hybrid Hydrogel-Aligned Carbon Nanotube Scaffolds to Enhance Cardiac Differentiation of Embryoid Bodies-Web of Science Core Collection. https://webofscience.clarivate.cn/wos/woscc/full-record/WOS:000370086100012
|
[34]
|
Du, X., Xiao, R., Fu, H., Yuan, Z., Zhang, W., Yin, L., et al. (2019) Hypericin-Loaded Graphene Oxide Protects Ducks against a Novel Duck Reovirus. Materials Science and Engineering: C, 105, Article 110052. https://doi.org/10.1016/j.msec.2019.110052
|
[35]
|
Varghese, M. and Balachandran, M. (2021) Antibacterial Efficiency of Carbon Dots against Gram-Positive and Gram-Negative Bacteria: A Review. Journal of Environmental Chemical Engineering, 9, Article 106821. https://doi.org/10.1016/j.jece.2021.106821
|
[36]
|
Lira-Díaz, E., Cruz-Márquez, R., González-Pedroza, M.G., Gonzalez-Perez, O., Morales-Luckie, R.A. and Acevedo-Fernández, J.J. (2024) Silver Nanoparticles Based on Annona muricata Peel Reduce Cell Viability in Medulloblastoma and Neuroblastoma Cell Lines. Journal of Nanotechnology. https://doi.org/10.1155/2024/2263514
|
[37]
|
Xie, L., Wang, G., Zhou, H., Zhang, F., Guo, Z., Liu, C., et al. (2016) Functional Long Circulating Single Walled Carbon Nanotubes for Fluorescent/Photoacoustic Imaging-Guided Enhanced Phototherapy. Biomaterials, 103, 219-228. https://doi.org/10.1016/j.biomaterials.2016.06.058
|
[38]
|
Zhang, L., Xia, J., Zhao, Q., Liu, L. and Zhang, Z. (2010) Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small, 6, 537-544. https://doi.org/10.1002/smll.200901680
|
[39]
|
Mieszawska, A.J., Kim, Y., Gianella, A., van Rooy, I., Priem, B., Labarre, M.P., et al. (2013) Synthesis of Polymer–lipid Nanoparticles for Image-Guided Delivery of Dual Modality Therapy. Bioconjugate Chemistry, 24, 1429-1434. https://doi.org/10.1021/bc400166j
|
[40]
|
Weaver, C.L., LaRosa, J.M., Luo, X. and Cui, X.T. (2014) Electrically Controlled Drug Delivery from Graphene Oxide Nanocomposite Films. ACS Nano, 8, 1834-1843. https://doi.org/10.1021/nn406223e
|
[41]
|
Lukianova-Hleb, E.Y., Ren, X., Sawant, R.R., Wu, X., Torchilin, V.P. and Lapotko, D.O. (2014) On-Demand Intracellular Amplification of Chemoradiation with Cancer-Specific Plasmonic Nanobubbles. Nature Medicine, 20, 778-784. https://doi.org/10.1038/nm.3484
|
[42]
|
Okun, M.S. and Tagliati, M. (2006) Deep Brain Stimulation Therapy in the Management of Parkinson’s Disease. Expert Review of Neurotherapeutics, 6, 169-180.
|
[43]
|
Liu, T., Zhou, Y., Zhang, R., Chen, Z., Xiao, Z., Gong, Y., Zhang, X. and Li, J. (2021) Ultrasmall Gold Nanoclusters for Precise Drug Delivery and Synergistic Therapy of Brain Tumors. Advanced Functional Materials, 31, Article 2100074.
|
[44]
|
Dhawan, S. and Patel, R.R. (2021) Radiotherapy for Glioblastoma: Current Concepts and Future Directions. Journal of Neuro-Oncology, 151, 171-185.
|
[45]
|
Ciria, H.M.C., et al. (2013) Antitumor Effects of Electrochemical Treatment. Chinese Journal of Cancer Research, 25, 223-234.
|
[46]
|
Jenkins, E.P.W., Finch, A., Gerigk, M., Triantis, I.F., Watts, C. and Malliaras, G.G. (2021) Electrotherapies for Glioblastoma. Advanced Science, 8, e2100978. https://doi.org/10.1002/advs.202100978
|
[47]
|
Gong, X., Chen, Z., Hu, J.J. and Liu, C. (2022) Advances of Electroporation-Related Therapies and the Synergy with Immunotherapy in Cancer Treatment. Vaccines, 10, Article 1942. https://doi.org/10.3390/vaccines10111942
|
[48]
|
Sprugnoli, G., Monti, L., Lippa, L., Neri, F., Mencarelli, L., Ruffini, G., et al. (2019) Reduction of Intratumoral Brain Perfusion by Noninvasive Transcranial Electrical Stimulation. Science Advances, 5, eaau9309. https://doi.org/10.1126/sciadv.aau9309
|
[49]
|
Transcranial Electrical Stimulation Potential Treatment for Brain Tumours. https://www.medicaldevice-network.com/news/transcranial-electrical-stimulation-brain-tumour/
|
[50]
|
Singh, R., Sharma, A., Saji, J., Umapathi, A., Kumar, S. and Daima, H.K. (2022) Smart Nanomaterials for Cancer Diagnosis and Treatment. Nano Convergence, 9, Article No. 21. https://doi.org/10.1186/s40580-022-00313-x
|
[51]
|
Cheng, Z., Li, M., Dey, R. and Chen, Y. (2021) Nanomaterials for Cancer Therapy: Current Progress and Perspectives. Journal of Hematology & Oncology, 14, Article No. 85. https://doi.org/10.1186/s13045-021-01096-0
|
[52]
|
Yu, Z., Gao, L., Chen, K., Zhang, W., Zhang, Q., Li, Q., et al. (2021) Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. Nanoscale Research Letters, 16, Article No. 88. https://doi.org/10.1186/s11671-021-03489-z
|
[53]
|
Kashyap, B.K., Singh, V.V., Solanki, M.K., Kumar, A., Ruokolainen, J. and Kesari, K.K. (2023) Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS Omega, 8, 14290-14320. https://doi.org/10.1021/acsomega.2c07840
|
[54]
|
Caffo, M., Curcio, A., Rajiv, K., Caruso, G., Venza, M. and Germanò, A. (2023) Potential Role of Carbon Nanomaterials in the Treatment of Malignant Brain Gliomas. Cancers, 15, Article 2575. https://doi.org/10.3390/cancers15092575
|
[55]
|
Ale, Y. and Nainwal, N. (2023) Progress and Challenges in the Diagnosis and Treatment of Brain Cancer Using Nanotechnology. Molecular Pharmaceutics, 20, 4893-4921. https://doi.org/10.1021/acs.molpharmaceut.3c00554
|
[56]
|
Zottel, A., Videtič Paska, A. and Jovčevska, I. (2019) Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy. Materials, 12, Article 1588. https://doi.org/10.3390/ma12101588
|
[57]
|
Gusmão, L.A., Matsuo, F.S., Barbosa, H.F.G. and Tedesco, A.C. (2022) Advances in Nano-Based Materials for Glioblastoma Multiforme Diagnosis: A Mini-Review. Frontiers in Nanotechnology, 4, Article 836802. https://doi.org/10.3389/fnano.2022.836802
|
[58]
|
Yu, S., Chen, L., Xu, H., Long, S., Jiang, J., Wei, W., et al. (2022) Application of Nanomaterials in Diagnosis and Treatment of Glioblastoma. Frontiers in Chemistry, 10, Article 1063152. https://doi.org/10.3389/fchem.2022.1063152
|
[59]
|
Waris, A., Ali, A., Khan, A.U., Asim, M., Zamel, D., Fatima, K., et al. (2022) Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. Nanomaterials, 12, Article 2140. https://doi.org/10.3390/nano12132140
|
[60]
|
Neganova, M.E., Aleksandrova, Y.R., Sukocheva, O.A. and Klochkov, S.G. (2022) Benefits and Limitations of Nanomedicine Treatment of Brain Cancers and Age-Dependent Neurodegenerative Disorders. Seminars in Cancer Biology, 86, 805-833. https://doi.org/10.1016/j.semcancer.2022.06.011
|