FXR影响结直肠癌发生发展的研究进展
Research Progress on the Effects of FXR on the Development of Colorectal Cancer
DOI: 10.12677/hjbm.2024.144066, PDF, HTML, XML,    科研立项经费支持
作者: 钱奕岑, 王明月, 刘 钰, 方婷婷, 刘胜兵:嘉兴大学医学院,浙江 嘉兴
关键词: 法尼醇X受体结直肠癌胆汁酸激动剂FXR CRC BAs Agonist
摘要: 法尼醇X受体(Farnesoid X receptor, FXR)作为核受体超家族成员,是治疗代谢性疾病的潜在药物靶点。近来研究显示,FXR与结直肠癌(Colorectal cancer, CRC)的发生具有很强的相关性,FXR缺失与CRC进展呈正相关,肠道FXR的选择性激活可以限制异常Lgr5+细胞的生长并抑制CRC的进展,FXR的缺失也可以导致Wnt信号活化。同时,FXR也是胆汁酸(Bile acids, Bas)受体,BAs的结合会产生不同的FXR构象,调节各个FXR靶标的表达。肠选择性FXR激动剂在CRC的治疗中有一定的应用前景。本文就FXR对CRC发生的影响以及FXR激动剂在CRC治疗的相关进展作一综述。
Abstract: Farnesoid X receptor (FXR), as a member of the nuclear receptor superfamily, is a potential drug target for the treatment of metabolic diseases. Recent studies show that FXR has a strong correlation with the occurrence of Colorectal cancer (CRC), and the deletion of FXR is positively correlated with the progression of CRC. Selective activation of FXR in gut can restrict the growth of abnormal Lgr5+ cells and inhibit the progression of CRC. The absence of FXR can also lead to activation of Wnt signaling. FXR is also a receptor for Bile acids (BAs), and the binding of BAs can produce different FXR conformations and regulate the expression of each FXR target. Intestinal selective FXR agonists have a promising application in the treatment of CRC. This article reviews the effect of FXR on the occurrence of CRC and the progress of FXR agonists in the treatment of CRC.
文章引用:钱奕岑, 王明月, 刘钰, 方婷婷, 刘胜兵. FXR影响结直肠癌发生发展的研究进展[J]. 生物医学, 2024, 14(4): 608-615. https://doi.org/10.12677/hjbm.2024.144066

1. 引言

CRC具有很高的发病率和死亡率,而基因遗传、不良饮食习惯和生活方式等因素会影响CRC的发生和发展。目前,手术仍是治疗CRC的首选方案,化、放疗和靶向治疗相结合,可显著延长CRC患者的生存时间[1]。但对于转移性CRC的临床治疗和诊断,效果仍然不理想,转移性CRC患者的5年生存率通常不足20% [2]-[4]。此外,炎症性肠病(Inflammatory bowel diseases, IBD)也与CRC的进展高度相关[5] [6]

FXR蛋白于1995年首次克隆并命名为法尼醇X受体,与维生素D、雄甾烷、孕激素X和肝脏X (αβ)代谢受体同属亚类。FXR的结构由N端区域含有活化功能(AF)-1位点的AB结构域、含有DNA结合位点的C结构域、包含铰链区域的D结构域以及在C端区域含有AF-2活化位点的配体结合E结构域。螺旋12或AF2结构域的激活在FXR功能的激活和调节中起着重要作用。在哺乳动物中,FXR通常以FXRα和FXRβ的形式存在[7] [8]。FXR作为配体激活的转录因子,是核受体(nuclear receptor, NR)超家族的成员,分类为NR1H4 [7] [9]。之前研究显示FXR调节甘油三酯、胆固醇、能量和葡萄糖稳态中发挥重要作用[10] [11]。FXR被认为是治疗代谢性疾病的潜在药物靶点。近年研究显示FXR与CRC的发生和发展有密切联系,FXR缺失与CRC进展呈正相关[12]。本文就FXR在肠道中的表达和FXR对CRC发生的影响作一综述。

2. FXR与CRC的发生

2.1. FXR影响CRC发生

FXR主要在胃肠道、肝脏、肾脏和肾上腺中表达。Modica等[13]研究表明,小鼠和人的FXR在正常近端结肠中均有高水平表达。FXR在正常结肠癌、腺瘤和结肠癌不同分期中的表达已有研究,越来越多的证据也表明FXR是CRC的潜在治疗靶点[14]-[16]。FXR激活与CRC的进展和侵袭呈负相关[17],NR1H4基因的多态性与CRC易感性增加有关。FXR激活可增强参与粘膜防御和肠屏障功能的基因表达[18]-[20]。小肠中特异性激活FXR可以抑制肠道细菌的过度生长和易位[18] [21]。研究也显示FXR在CRC中的表达与肿瘤分期、临床结局、局部复发和转移呈显著负相关。有证据表明,FXR的表达在结肠息肉中受到抑制,在腺癌中更为明显[12]。Holm等[22]的研究提示FXR表达紊乱与结直肠癌患者较低的5年生存率有关。Yu等[23]在2020年进一步证实了这一发现。

2.2. FXR与CRC发生相关通路

APC、肿瘤蛋白53 (TP53,又称P53)和KRAS是三种最常发生突变的CRC基因,这些突变与Wnt信号、TGF-β信号和DNA错配修复紊乱有关[24]-[26]。CRC可分为散发性/遗传性和家族性。导致这种情况的致病机制可分为三种类型,即染色体不稳定性(Chromosomal Instability, CIN)、微卫星不稳定性(Microsatellite Instability, MSI)和CpG岛甲基化表型(CpG island methylator phenotype, CIMP)。在这些类型的CRC中,常见的突变、染色体改变和易位已被报道影响重要的通路(WNT, MAPK/PI3K, TGF-β, TP53)和突变,特别是c-MYC、KRAS、BRAF、PIK3CA、PTEN、SMAD2和SMAD4等基因可以作为患者预后的预测标志物[3]。虽然突变通常发生在不同的基因中,但CRC患者的突变以特定的顺序发生,并表现出腺瘤到癌的进展。CRC的经典遗传模型显示,基因组改变的顺序为APC突变,其次是KRAS和TP53突变[27]。APC突变的后果往往是上调促进肿瘤发生和侵袭的基因的转录,APC突变促进Wnt通路的活化[28],而这背后的潜在机制之一是FXR的缺失导致Wnt信号的持续激活[29],而Wnt通路APC突变激活Wnt通路在CRC发生过程中发挥了关键作用,可以调节干细胞分化和细胞生长[28]

CRC中FXR表达下调与恶性肿瘤分级和临床预后差相关[15] [30]。研究表明,FXR在人结肠癌细胞和动物模型中以Wnt/β-catenin依赖的方式发挥其肿瘤抑制作用[23]。FXR可以减弱Wnt/β-连环蛋白诱导的上皮–间充质转化(Epithelial-Mesenchymal Transition, EMT),从而拮抗HT-29和Caco-2细胞的结直肠肿瘤发生[23],FXR通过抑制基质金属蛋白酶-7(MMP7)的表达来抑制HT-29的增殖,而MMP7是结肠癌转移的重要因素[30]。CRC中FXR沉默的机制可能与DNA甲基化、KRAS信号通路有关,而少数CRC病例也与APC突变引起的CpG甲基化有关[31] [32]。此外,在炎症的结肠组织中,FXR或肠道FXR-FGF15反馈信号的活性可通过核转录因子каppa B (NF-кB)或过氧化物酶体增殖体激活受体α (PPARa)-葡萄糖醛酸转移酶(UGT)轴激活而受到抑制,这与慢性肠道炎症的发生呈正相关[33] [34]

3. FXR是BAs的核受体

BAs是胆固醇分解代谢的最终产物。肠道BAs水平升高是结CRC的危险因素。原发性BAs如胆酸(Cholic acid, CA)和鹅脱氧胆酸(Chenodeoxycholic acid, CDCA)在肝脏中合成,而大多数BAs与牛磺酸或甘氨酸结合,以降低毒性并增加溶解度,以便分泌到胆汁中。BAs在食物摄入后被释放到十二指肠,促进肠道消化和吸收亲脂性营养物质,如脂质和脂溶性维生素。在此之后,大多数肠道BAs通过回肠远端转运蛋白(ASBT,也称为SLC10A2)的主动吸收被重吸收,由回肠胆汁酸结合蛋白(IBABP,也称为FABP6)转运到基底外侧膜,并通过门静脉返回肝脏,肠道有机溶质转运蛋白(OSTα/β,也称为SLC51A/B)促进了这一过程[35] [36]。相关配体激活的FXR调节基因转录,反馈调控BAs的合成和分泌[37]。FXR可直接调节BAs转运蛋白如ASBT、IBABP和OSTα/β,通过减少肠道BAs调节BAs稳态[38]。饮食因素(高脂肪饮食)和失调的WNT信号(APC突变)的融合改变了BA谱,从而驱动表达Lgr5 (Lgr5+)的癌症干细胞的恶性转化,并促进腺瘤向腺癌的进展。Fu等[12]发现拮抗FXR功能的BAs,包括牛磺酸-β-鼠胆酸(Tauro-β-muricholic acid, T-βMCA)和脱氧胆酸(Deoxycholic acid, DCA),可诱导Lgr5+细胞增殖和DNA损伤。反之,肠道FXR的选择性激活可以限制异常Lgr5+细胞的生长并抑制CRC的进展。肠道BAs水平的降低和结肠黏膜的修复可以显著改善继发性BAs的损伤作用和肠道内炎症驱动的细菌生态失调[39]。肠道激活FXR诱导FGF15的产生(小鼠为FGF15,人为FGF19),FGF15随后通过结合成纤维细胞生长因子受体4 (FGFR4)通过门静脉进入肝脏,协同抑制BAs合成的肝脏限制酶CYP7A1的表达[40]

BAs进入结肠,在结肠微生物群介导的7α-去羟基化反应中发生生物转化,生成次级BAs,如DCA、石胆酸(Lithocholic acid, LCA)、熊脱氧胆酸(Ursodeoxycholic acid, UDCA)等,最终分泌到粪便中[41] [42]。胆固醇转化为BAs对于维持BAs代谢和消除体内胆固醇至关重要,限速酶CYP7A1通过在肝脏中启动胆固醇的7α-羟基化,在BAs合成的经典途径中起着至关重要的作用[43]。CYP7A1是由转录因子LRH1和LXRα诱导的,BAs与FXR结合区域相互作用,随后激活其靶基因,如SHP,通过与LRH1和LXRα结合抑制CYP7A1的表达[9] [44] [45]。根据BAs疏水尺度(BAs疏水:UDCA < CA < CDCA < DCA < LCA),疏水性与BAs毒性呈正相关。UDCA是最疏脂的BA,LCA是最疏水的BA,这与UDCA经常发挥细胞保护作用,而LCA主要排泄到粪便中,并常与DCA一起促进CRC癌患者的结肠癌变的研究结果一致[46] [47]

CDCA是FXR的内源性配体,而FXR与BAs之间的相关性也有越来越多的研究[48] [49]。CDCA是最有效的FXR内源性激动剂,对小鼠和人FXR的最大有效浓度(ECso)分别为50 μM和10 μM [48]。各种BAs激活FXR的效力顺序为:CDCA > DCA > LCA > CA [50]。UDCA对FXR的影响在不同的实验方法或疾病模型中有所不同。CDCA完全激活FXR,而CA部分激活FXR,DCA和UDCA的激活作用几乎没有,每种BAs的结合会产生不同的 FXR构象,从而差异性地调节各个FXR靶标的表达[37]。在APCmin/+小鼠中,高脂肪饮食(High-fat diet, HFD)驱动CRC的进展[14]。近期对啮齿动物和人类的研究表明,HFDs的促瘤作用与CRC患者结肠和粪便中较高的次级BAs水平有关,主要是DCA和LCA,肠道长期暴露于次级BAs被认为是导致CRC发生的原因之一[46]。Zeng等[51]发现DCA通过激活SAPK/JNK1/2、p38 MAPK和ERK1/2通路刺激HCT116细胞中的丝裂原活化蛋白激酶(MAPK)信号通路。

4. FXR的肠道激动剂

FXR的全身激活可导致严重的毒性。用CDCA治疗可引起腹泻,这是40%或更多胆结石患者最常见的副作用,它还会引起轻微的高转氨血症。肠道限制的FXR激动剂表现出相同的全身效应,而不会在肝脏中诱导任何FXR靶基因,因此提供了更安全的治疗。肠选择性FXR激动剂在CRC模型中的治疗上显示,可以避免系统性FXR激活引起的副作用。肠道作为组织特异性FXR激活的理想场所,与全身性FXR激动剂相比,肠道选择性FXR激动剂可诱导系统性和局部作用,是有前景且可能更安全的方法,可减少瘙痒、胃肠道问题甚至心血管疾病等副作用[52]。CDCA、奥贝胆酸(Obeticholic acid, OCA)和GW6064是常用的系统性FXR激动剂,对CRC具有化学预防作用[III]。此外,OCA和GW4064可抑制类器官生长,改善肠道环境,缓解CRC症状[53]-[55]。FXR的多效性作用是肠道健康所必需的,相反,肠道FXR信号传导减少在IBD中也可见到。在炎症驱动的IBD模型中,肠道中选择性激活FXR具有保护作用。FXR的预防性激活可恢复促炎细胞因子的稳态水平,尤其是IL17 [56]。Luceri等[57]研究表明,与对照组相比,经CA处理的APC (adenomatous polyposis coli, APC)突变雌性息肉病大鼠的癌前结肠病变和肠道肿瘤显著增加,FXR表达显著下调。在结直肠癌APCmin/+小鼠中,FXR在肿瘤组织中的表达水平与正常肠黏膜相比显著降低,其拮抗剂T-βMCA阻断FXR可促进CRC的进展[12] [14]。但由于生物利用度低,这些激动剂在循环中吸收不良,限制了FXR在肠道中的激活[58]。Yang等人[59]证实,FXR是肿瘤抑制因子miR-22的转录因子,可直接结合位于miR-22对其进行转录调节。细胞周期蛋白A2 (Cyclin A2, CCNA2)是CRC细胞中miR-22的新靶点,FXR可刺激miR-22沉默的CCNA2,这也是FXR在胃肠道发挥其保护作用的新途径。Qiao等认为,miR-135A1/CCNG2通路通过GW4064激活FXR,参与抑制CRC中的细胞增殖,导致细胞周期阻滞,激活的FXR通过靶向miR-135A1/Cyclin G2轴抑制结肠癌细胞增殖并诱导细胞周期阻滞[60]

5. 小结

对于肠道FXR的抗肿瘤活性,今后的进一步研究使其有可能作为CRC恶性程度的标志物。在CRC发生发展过程中,FXR通过调节相关信号通路和作为BAs受体来发挥作用,但FXR与肠道菌群以及BAs之间的关联还需要进一步研究。目前,大多数新开发的限制肠道的FXR激动剂大多用于治疗代谢性疾病,如非酒精性脂肪性肝炎( non-alcoholic steatohepatitis, NASH)、肥胖症和糖尿病和胆汁淤积等,也有实验显示,肠道FXR的选择性激活不仅可以降低BA水平,缓解肠道炎症和生态失调,具有一定的药理作用[61]。虽然部分FXR激动剂在CRC治疗中也发挥一定的作用,但对于FXR的激动剂和拮抗剂在将来CRC治疗中的应用,还需要进一步研究。

基金项目

嘉兴大学SRT项目,浙江省公益技术应用研究项目(LGD22H030004)。

参考文献

[1] Shinji, S., Yamada, T., Matsuda, A., Sonoda, H., Ohta, R., Iwai, T., et al. (2022) Recent Advances in the Treatment of Colorectal Cancer: A Review. Journal of Nippon Medical School, 89, 246-254.
https://doi.org/10.1272/jnms.jnms.2022_89-310
[2] Biller, L.H. and Schrag, D. (2021) Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA, 325, 669.
https://doi.org/10.1001/jama.2021.0106
[3] Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E. and Rodriguez Yoldi, M. (2017) Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. International Journal of Molecular Sciences, 18, Article No. 197.
https://doi.org/10.3390/ijms18010197
[4] Fan, A., Wang, B., Wang, X., Nie, Y., Fan, D., Zhao, X., et al. (2021) Immunotherapy in Colorectal Cancer: Current Achievements and Future Perspective. International Journal of Biological Sciences, 17, 3837-3849.
https://doi.org/10.7150/ijbs.64077
[5] Quaglio, A.E.V., Grillo, T.G., Oliveira, E.C.S.D., Stasi, L.C.D. and Sassaki, L.Y. (2022) Gut Microbiota, Inflammatory Bowel Disease and Colorectal Cancer. World Journal of Gastroenterology, 28, 4053-4060.
https://doi.org/10.3748/wjg.v28.i30.4053
[6] Nagao-Kitamoto, H., Kitamoto, S. and Kamada, N. (2022) Inflammatory Bowel Disease and Carcinogenesis. Cancer and Metastasis Reviews, 41, 301-316.
https://doi.org/10.1007/s10555-022-10028-4
[7] Wang, Y., Chen, W., Moore, D.D. and Huang, W. (2008) FXR: A Metabolic Regulator and Cell Protector. Cell Research, 18, 1087-1095.
https://doi.org/10.1038/cr.2008.289
[8] Fiorucci, S., Rizzo, G., Donini, A., Distrutti, E. and Santucci, L. (2007) Targeting Farnesoid X Receptor for Liver and Metabolic Disorders. Trends in Molecular Medicine, 13, 298-309.
https://doi.org/10.1016/j.molmed.2007.06.001
[9] Lee, F.Y., Lee, H., Hubbert, M.L., Edwards, P.A. and Zhang, Y. (2006) FXR, a Multipurpose Nuclear Receptor. Trends in Biochemical Sciences, 31, 572-580.
https://doi.org/10.1016/j.tibs.2006.08.002
[10] Modica, S., Gadaleta, R.M. and Moschetta, A. (2010) Deciphering the Nuclear Bile Acid Receptor FXR Paradigm. Nuclear Receptor Signaling, 8, nrs.08005.
https://doi.org/10.1621/nrs.08005
[11] Mazuy, C., Helleboid, A., Staels, B. and Lefebvre, P. (2014) Nuclear Bile Acid Signaling through the Farnesoid X Receptor. Cellular and Molecular Life Sciences, 72, 1631-1650.
https://doi.org/10.1007/s00018-014-1805-y
[12] Lax, S., Schauer, G., Prein, K., Kapitan, M., Silbert, D., Berghold, A., et al. (2011) Expression of the Nuclear Bile Acid Receptor/Farnesoid X Receptor Is Reduced in Human Colon Carcinoma Compared to Nonneoplastic Mucosa Independent from Site and May Be Associated with Adverse Prognosis. International Journal of Cancer, 130, 2232-2239.
https://doi.org/10.1002/ijc.26293
[13] Modica, S., Gofflot, F., Murzilli, S., D'Orazio, A., Salvatore, L., Pellegrini, F., et al. (2010) The Intestinal Nuclear Receptor Signature with Epithelial Localization Patterns and Expression Modulation in Tumors. Gastroenterology, 138, 636-648.e12.
https://doi.org/10.1053/j.gastro.2009.09.060
[14] Fu, T., Coulter, S., Yoshihara, E., Oh, T.G., Fang, S., Cayabyab, F., et al. (2019) FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell, 176, 1098-1112.e18.
https://doi.org/10.1016/j.cell.2019.01.036
[15] Maran, R.R.M., Thomas, A., Roth, M., Sheng, Z., Esterly, N., Pinson, D., et al. (2008) Farnesoid X Receptor Deficiency in Mice Leads to Increased Intestinal Epithelial Cell Proliferation and Tumor Development. Journal of Pharmacology and Experimental Therapeutics, 328, 469-477.
https://doi.org/10.1124/jpet.108.145409
[16] Gottardi, A.D., Touri, F., Maurer, C.A., Perez, A., Maurhofer, O., Ventre, G., et al. (2004) The Bile Acid Nuclear Receptor FXR and the Bile Acid Binding Protein IBABP Are Differently Expressed in Colon Cancer. Digestive Diseases and Sciences, 49, 982-989.
https://doi.org/10.1023/b:ddas.0000034558.78747.98
[17] Lu, L., Jiang, Y., Liu, X., Jin, J., Gu, W., Luan, X., et al. (2023) FXR Agonist GW4064 Enhances Anti-PD-L1 Immunotherapy in Colorectal Cancer. OncoImmunology, 12, Article ID: 2217024.
https://doi.org/10.1080/2162402x.2023.2217024
[18] Inagaki, T., Moschetta, A., Lee, Y., Peng, L., Zhao, G., Downes, M., et al. (2006) Regulation of Antibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proceedings of the National Academy of Sciences, 103, 3920-3925.
https://doi.org/10.1073/pnas.0509592103
[19] Gadaleta, R.M., van Erpecum, K.J., Oldenburg, B., Willemsen, E.C.L., Renooij, W., Murzilli, S., et al. (2011) Farnesoid X Receptor Activation Inhibits Inflammation and Preserves the Intestinal Barrier in Inflammatory Bowel Disease. Gut, 60, 463-472.
https://doi.org/10.1136/gut.2010.212159
[20] Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., et al. (2019) Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. Journal of Hepatology, 71, 1216-1228.
https://doi.org/10.1016/j.jhep.2019.08.005
[21] Li, F., Jiang, C., Krausz, K.W., Li, Y., Albert, I., Hao, H., et al. (2013) Microbiome Remodelling Leads to Inhibition of Intestinal Farnesoid X Receptor Signalling and Decreased Obesity. Nature Communications, 4, Article No. 2384.
https://doi.org/10.1038/ncomms3384
[22] Holm, M., Saraswat, M., Joenväärä, S., Ristimäki, A., Haglund, C. and Renkonen, R. (2018) Colorectal Cancer Patients with Different C-Reactive Protein Levels and 5-Year Survival Times Can Be Differentiated with Quantitative Serum Proteomics. PLOS ONE, 13, e0195354.
https://doi.org/10.1371/journal.pone.0195354
[23] Yu, J., Li, S., Guo, J., Xu, Z., Zheng, J. and Sun, X. (2020) Farnesoid X Receptor Antagonizes Wnt/β-Catenin Signaling in Colorectal Tumorigenesis. Cell Death & Disease, 11, Article No. 640.
https://doi.org/10.1038/s41419-020-02819-w
[24] Drost, J., van Jaarsveld, R.H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., et al. (2015) Sequential Cancer Mutations in Cultured Human Intestinal Stem Cells. Nature, 521, 43-47.
https://doi.org/10.1038/nature14415
[25] Xiao, Q., Werner, J., Venkatachalam, N., Boonekamp, K.E., Ebert, M.P. and Zhan, T. (2022) Cross-Talk between P53 and Wnt Signaling in Cancer. Biomolecules, 12, Article No. 453.
https://doi.org/10.3390/biom12030453
[26] Wellenstein, M.D., Coffelt, S.B., Duits, D.E.M., van Miltenburg, M.H., Slagter, M., de Rink, I., et al. (2019) Loss of P53 Triggers Wnt-Dependent Systemic Inflammation to Drive Breast Cancer Metastasis. Nature, 572, 538-542.
https://doi.org/10.1038/s41586-019-1450-6
[27] Yang, L., Wang, S., Lee, J.J., Lee, S., Lee, E., Shinbrot, E., et al. (2019) An Enhanced Genetic Model of Colorectal Cancer Progression History. Genome Biology, 20, Article No. 168.
https://doi.org/10.1186/s13059-019-1782-4
[28] Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., et al. (2022) Wnt Signaling in Colorectal Cancer: Pathogenic Role and Therapeutic Target. Molecular Cancer, 21, Article No. 144.
https://doi.org/10.1186/s12943-022-01616-7
[29] Mao, J., Chen, X., Wang, C., Li, W. and Li, J. (2020) Effects and Mechanism of the Bile Acid (Farnesoid X) Receptor on the Wnt/β-Catenin Signaling Pathway in Colon Cancer. Oncology Letters, 20, 337-345.
https://doi.org/10.3892/ol.2020.11545
[30] Peng, Z., Chen, J., Drachenberg, C.B., Raufman, J. and Xie, G. (2019) Farnesoid X Receptor Represses Matrix Metalloproteinase 7 Expression, Revealing This Regulatory Axis as a Promising Therapeutic Target in Colon Cancer. Journal of Biological Chemistry, 294, 8529-8542.
https://doi.org/10.1074/jbc.ra118.004361
[31] Bailey, A.M., Zhan, L., Maru, D., Shureiqi, I., Pickering, C.R., Kiriakova, G., et al. (2014) FXR Silencing in Human Colon Cancer by DNA Methylation and KRAS Signaling. American Journal of Physiology-Gastrointestinal and Liver Physiology, 306, G48-G58.
https://doi.org/10.1152/ajpgi.00234.2013
[32] Selmin, O.I., Fang, C., Lyon, A.M., Doetschman, T.C., Thompson, P.A., Martinez, J.D., et al. (2016) Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr Gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells. The Journal of Nutrition, 146, 236-242.
https://doi.org/10.3945/jn.115.216580
[33] Gadaleta, R.M., Oldenburg, B., Willemsen, E.C.L., Spit, M., Murzilli, S., Salvatore, L., et al. (2011) Activation of Bile Salt Nuclear Receptor FXR Is Repressed by Pro-Inflammatory Cytokines Activating Nf-κb Signaling in the Intestine. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1812, 851-858.
https://doi.org/10.1016/j.bbadis.2011.04.005
[34] Zhou, X., Cao, L., Jiang, C., Xie, Y., Cheng, X., Krausz, K.W., et al. (2014) PPARalpha-UGT Axis Activation Represses Intestinal FXR-FGF15 Feedback Signalling and Exacerbates Experimental Colitis. Nature Communications, 5, Article No. 4573.
https://doi.org/10.1038/ncomms5573
[35] Li, T. and Chiang, J.Y.L. (2023) Bile Acids as Metabolic Regulators: An Update. Current Opinion in Gastroenterology, 39, 249-255.
https://doi.org/10.1097/mog.0000000000000934
[36] Jia, W., Xie, G. and Jia, W. (2017) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 15, 111-128.
https://doi.org/10.1038/nrgastro.2017.119
[37] Lew, J., Zhao, A., Yu, J., Huang, L., de Pedro, N., Peláez, F., et al. (2004) The Farnesoid X Receptor Controls Gene Expression in a Ligand-and Promoter-Selective Fashion. Journal of Biological Chemistry, 279, 8856-8861.
https://doi.org/10.1074/jbc.m306422200
[38] Kliewer, S.A. and Mangelsdorf, D.J. (2015) Bile Acids as Hormones: The FXR-FGF15/19 Pathway. Digestive Diseases, 33, 327-331.
https://doi.org/10.1159/000371670
[39] Guo, X., Okpara, E.S., Hu, W., Yan, C., Wang, Y., Liang, Q., et al. (2022) Interactive Relationships between Intestinal Flora and Bile Acids. International Journal of Molecular Sciences, 23, Article No. 8343.
https://doi.org/10.3390/ijms23158343
[40] Sun, J., Fan, J., Li, T., Yan, X. and Jiang, Y. (2022) Nuciferine Protects against High-Fat Diet-Induced Hepatic Steatosis via Modulation of Gut Microbiota and Bile Acid Metabolism in Rats. Journal of Agricultural and Food Chemistry, 70, 12014-12028.
https://doi.org/10.1021/acs.jafc.2c04817
[41] Dawson, P.A. and Karpen, S.J. (2015) Intestinal Transport and Metabolism of Bile Acids. Journal of Lipid Research, 56, 1085-1099.
https://doi.org/10.1194/jlr.r054114
[42] Degirolamo, C., Modica, S., Palasciano, G. and Moschetta, A. (2011) Bile Acids and Colon Cancer: Solving the Puzzle with Nuclear Receptors. Trends in Molecular Medicine, 17, 564-572.
https://doi.org/10.1016/j.molmed.2011.05.010
[43] Norlin, M. and Wikvall, K. (2007) Enzymes in the Conversion of Cholesterol into Bile Acids. Current Molecular Medicine, 7, 199-218.
https://doi.org/10.2174/156652407780059168
[44] Goodwin, B., Watson, M.A., Kim, H., Miao, J., Kemper, J.K. and Kliewer, S.A. (2003) Differential Regulation of Rat and Human CYP7A1 by the Nuclear Oxysterol Receptor Liver X Receptor-α. Molecular Endocrinology, 17, 386-394.
https://doi.org/10.1210/me.2002-0246
[45] Goodwin, B., Jones, S.A., Price, R.R., Watson, M.A., McKee, D.D., Moore, L.B., et al. (2000) A Regulatory Cascade of the Nuclear Receptors FXR, SHP-1, and LRH-1 Represses Bile Acid Biosynthesis. Molecular Cell, 6, 517-526.
https://doi.org/10.1016/s1097-2765(00)00051-4
[46] Gadaleta, R.M., Garcia-Irigoyen, O. and Moschetta, A. (2017) Bile Acids and Colon Cancer: Is FXR the Solution of the Conundrum? Molecular Aspects of Medicine, 56, 66-74.
https://doi.org/10.1016/j.mam.2017.04.002
[47] Hanafi, N.I., Mohamed, A.S., Sheikh Abdul Kadir, S.H. and Othman, M.H.D. (2018) Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules, 8, Article No. 159.
https://doi.org/10.3390/biom8040159
[48] Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., et al. (1999) Identification of a Nuclear Receptor for Bile Acids. Science, 284, 1362-1365.
https://doi.org/10.1126/science.284.5418.1362
[49] Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., et al. (1999) Bile Acids: Natural Ligands for an Orphan Nuclear Receptor. Science, 284, 1365-1368.
https://doi.org/10.1126/science.284.5418.1365
[50] Wang, H., He, Q., Wang, G., Xu, X. and Hao, H. (2018) FXR Modulators for Enterohepatic and Metabolic Diseases. Expert Opinion on Therapeutic Patents, 28, 765-782.
https://doi.org/10.1080/13543776.2018.1527906
[51] Zeng, H., Botnen, J.H. and Briske-Anderson, M. (2009) Deoxycholic Acid and Selenium Metabolite Methylselenol Exert Common and Distinct Effects on Cell Cycle, Apoptosis, and MAP Kinase Pathway in HCT116 Human Colon Cancer Cells. Nutrition and Cancer, 62, 85-92.
https://doi.org/10.1080/01635580903191551
[52] Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., Krausz, K.W., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G‐protein Bile Acid Receptor‐1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588.
https://doi.org/10.1002/hep.29857
[53] Liu, H., Chang, Z., Yang, C., Chang, H. and Lee, T. (2023) Farnesoid X Receptor Agonist GW4064 Protects Lipopolysaccharide-Induced Intestinal Epithelial Barrier Function and Colorectal Tumorigenesis Signaling through the αKlotho/βKlotho/FGFs Pathways in Mice. International Journal of Molecular Sciences, 24, Article No. 16932.
https://doi.org/10.3390/ijms242316932
[54] Verbeke, L., Farre, R., Verbinnen, B., Covens, K., Vanuytsel, T., Verhaegen, J., et al. (2015) The FXR Agonist Obeticholic Acid Prevents Gut Barrier Dysfunction and Bacterial Translocation in Cholestatic Rats. The American Journal of Pathology, 185, 409-419.
https://doi.org/10.1016/j.ajpath.2014.10.009
[55] Friedman, E.S., Li, Y., Shen, T.D., Jiang, J., Chau, L., Adorini, L., et al. (2018) FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology, 155, 1741-1752.e5.
https://doi.org/10.1053/j.gastro.2018.08.022
[56] Fu, T., Li, Y., Oh, T.G., Cayabyab, F., He, N., Tang, Q., et al. (2022) FXR Mediates ILC-Intrinsic Responses to Intestinal Inflammation. Proceedings of the National Academy of Sciences, 119, e2213041119.
https://doi.org/10.1073/pnas.2213041119
[57] Luceri, C., Femia, A.P., D’ambrosio, M. and Caderni, G. (2019) High Sensitivity to Cholic Acid-Induced Colonic Tumorigenesis Makes Female PIRC Rats (F344/NTac-Apcam1137) a Suitable Model for Studying CRC-Promoting Agents. Anticancer Research, 39, 4673-4679.
https://doi.org/10.21873/anticanres.13649
[58] van Zutphen, T., Bertolini, A., de Vries, H.D., Bloks, V.W., de Boer, J.F., Jonker, J.W., et al. (2019) Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. In: Fiorucci, S. and Distrutti, E., Eds., Bile Acids and Their Receptors, Springer International Publishing, Berlin, 207-234.
https://doi.org/10.1007/164_2019_233
[59] Yang, F., Hu, Y., Liu, H. and Wan, Y.Y. (2015) MiR-22-Silenced Cyclin a Expression in Colon and Liver Cancer Cells Is Regulated by Bile Acid Receptor. Journal of Biological Chemistry, 290, 6507-6515.
https://doi.org/10.1074/jbc.m114.620369
[60] Qiao, P., Li, S., Zhang, H., Yao, L. and Wang, F. (2018) Farnesoid X Receptor Inhibits Proliferation of Human Colorectal Cancer Cells via the miR‑135A1/CCNG2 Signaling Pathway. Oncology Reports, 40, 2067-2078.
https://doi.org/10.3892/or.2018.6636
[61] Yin, Y., Wang, M., Gu, W. and Chen, L. (2021) Intestine-specific FXR Agonists as Potential Therapeutic Agents for Colorectal Cancer. Biochemical Pharmacology, 186, Article ID: 114430.
https://doi.org/10.1016/j.bcp.2021.114430