[1]
|
Shinji, S., Yamada, T., Matsuda, A., Sonoda, H., Ohta, R., Iwai, T., et al. (2022) Recent Advances in the Treatment of Colorectal Cancer: A Review. Journal of Nippon Medical School, 89, 246-254. https://doi.org/10.1272/jnms.jnms.2022_89-310
|
[2]
|
Biller, L.H. and Schrag, D. (2021) Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA, 325, 669. https://doi.org/10.1001/jama.2021.0106
|
[3]
|
Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E. and Rodriguez Yoldi, M. (2017) Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. International Journal of Molecular Sciences, 18, Article No. 197. https://doi.org/10.3390/ijms18010197
|
[4]
|
Fan, A., Wang, B., Wang, X., Nie, Y., Fan, D., Zhao, X., et al. (2021) Immunotherapy in Colorectal Cancer: Current Achievements and Future Perspective. International Journal of Biological Sciences, 17, 3837-3849. https://doi.org/10.7150/ijbs.64077
|
[5]
|
Quaglio, A.E.V., Grillo, T.G., Oliveira, E.C.S.D., Stasi, L.C.D. and Sassaki, L.Y. (2022) Gut Microbiota, Inflammatory Bowel Disease and Colorectal Cancer. World Journal of Gastroenterology, 28, 4053-4060. https://doi.org/10.3748/wjg.v28.i30.4053
|
[6]
|
Nagao-Kitamoto, H., Kitamoto, S. and Kamada, N. (2022) Inflammatory Bowel Disease and Carcinogenesis. Cancer and Metastasis Reviews, 41, 301-316. https://doi.org/10.1007/s10555-022-10028-4
|
[7]
|
Wang, Y., Chen, W., Moore, D.D. and Huang, W. (2008) FXR: A Metabolic Regulator and Cell Protector. Cell Research, 18, 1087-1095. https://doi.org/10.1038/cr.2008.289
|
[8]
|
Fiorucci, S., Rizzo, G., Donini, A., Distrutti, E. and Santucci, L. (2007) Targeting Farnesoid X Receptor for Liver and Metabolic Disorders. Trends in Molecular Medicine, 13, 298-309. https://doi.org/10.1016/j.molmed.2007.06.001
|
[9]
|
Lee, F.Y., Lee, H., Hubbert, M.L., Edwards, P.A. and Zhang, Y. (2006) FXR, a Multipurpose Nuclear Receptor. Trends in Biochemical Sciences, 31, 572-580. https://doi.org/10.1016/j.tibs.2006.08.002
|
[10]
|
Modica, S., Gadaleta, R.M. and Moschetta, A. (2010) Deciphering the Nuclear Bile Acid Receptor FXR Paradigm. Nuclear Receptor Signaling, 8, nrs.08005. https://doi.org/10.1621/nrs.08005
|
[11]
|
Mazuy, C., Helleboid, A., Staels, B. and Lefebvre, P. (2014) Nuclear Bile Acid Signaling through the Farnesoid X Receptor. Cellular and Molecular Life Sciences, 72, 1631-1650. https://doi.org/10.1007/s00018-014-1805-y
|
[12]
|
Lax, S., Schauer, G., Prein, K., Kapitan, M., Silbert, D., Berghold, A., et al. (2011) Expression of the Nuclear Bile Acid Receptor/Farnesoid X Receptor Is Reduced in Human Colon Carcinoma Compared to Nonneoplastic Mucosa Independent from Site and May Be Associated with Adverse Prognosis. International Journal of Cancer, 130, 2232-2239. https://doi.org/10.1002/ijc.26293
|
[13]
|
Modica, S., Gofflot, F., Murzilli, S., D'Orazio, A., Salvatore, L., Pellegrini, F., et al. (2010) The Intestinal Nuclear Receptor Signature with Epithelial Localization Patterns and Expression Modulation in Tumors. Gastroenterology, 138, 636-648.e12. https://doi.org/10.1053/j.gastro.2009.09.060
|
[14]
|
Fu, T., Coulter, S., Yoshihara, E., Oh, T.G., Fang, S., Cayabyab, F., et al. (2019) FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell, 176, 1098-1112.e18. https://doi.org/10.1016/j.cell.2019.01.036
|
[15]
|
Maran, R.R.M., Thomas, A., Roth, M., Sheng, Z., Esterly, N., Pinson, D., et al. (2008) Farnesoid X Receptor Deficiency in Mice Leads to Increased Intestinal Epithelial Cell Proliferation and Tumor Development. Journal of Pharmacology and Experimental Therapeutics, 328, 469-477. https://doi.org/10.1124/jpet.108.145409
|
[16]
|
Gottardi, A.D., Touri, F., Maurer, C.A., Perez, A., Maurhofer, O., Ventre, G., et al. (2004) The Bile Acid Nuclear Receptor FXR and the Bile Acid Binding Protein IBABP Are Differently Expressed in Colon Cancer. Digestive Diseases and Sciences, 49, 982-989. https://doi.org/10.1023/b:ddas.0000034558.78747.98
|
[17]
|
Lu, L., Jiang, Y., Liu, X., Jin, J., Gu, W., Luan, X., et al. (2023) FXR Agonist GW4064 Enhances Anti-PD-L1 Immunotherapy in Colorectal Cancer. OncoImmunology, 12, Article ID: 2217024. https://doi.org/10.1080/2162402x.2023.2217024
|
[18]
|
Inagaki, T., Moschetta, A., Lee, Y., Peng, L., Zhao, G., Downes, M., et al. (2006) Regulation of Antibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proceedings of the National Academy of Sciences, 103, 3920-3925. https://doi.org/10.1073/pnas.0509592103
|
[19]
|
Gadaleta, R.M., van Erpecum, K.J., Oldenburg, B., Willemsen, E.C.L., Renooij, W., Murzilli, S., et al. (2011) Farnesoid X Receptor Activation Inhibits Inflammation and Preserves the Intestinal Barrier in Inflammatory Bowel Disease. Gut, 60, 463-472. https://doi.org/10.1136/gut.2010.212159
|
[20]
|
Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., et al. (2019) Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. Journal of Hepatology, 71, 1216-1228. https://doi.org/10.1016/j.jhep.2019.08.005
|
[21]
|
Li, F., Jiang, C., Krausz, K.W., Li, Y., Albert, I., Hao, H., et al. (2013) Microbiome Remodelling Leads to Inhibition of Intestinal Farnesoid X Receptor Signalling and Decreased Obesity. Nature Communications, 4, Article No. 2384. https://doi.org/10.1038/ncomms3384
|
[22]
|
Holm, M., Saraswat, M., Joenväärä, S., Ristimäki, A., Haglund, C. and Renkonen, R. (2018) Colorectal Cancer Patients with Different C-Reactive Protein Levels and 5-Year Survival Times Can Be Differentiated with Quantitative Serum Proteomics. PLOS ONE, 13, e0195354. https://doi.org/10.1371/journal.pone.0195354
|
[23]
|
Yu, J., Li, S., Guo, J., Xu, Z., Zheng, J. and Sun, X. (2020) Farnesoid X Receptor Antagonizes Wnt/β-Catenin Signaling in Colorectal Tumorigenesis. Cell Death & Disease, 11, Article No. 640. https://doi.org/10.1038/s41419-020-02819-w
|
[24]
|
Drost, J., van Jaarsveld, R.H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., et al. (2015) Sequential Cancer Mutations in Cultured Human Intestinal Stem Cells. Nature, 521, 43-47. https://doi.org/10.1038/nature14415
|
[25]
|
Xiao, Q., Werner, J., Venkatachalam, N., Boonekamp, K.E., Ebert, M.P. and Zhan, T. (2022) Cross-Talk between P53 and Wnt Signaling in Cancer. Biomolecules, 12, Article No. 453. https://doi.org/10.3390/biom12030453
|
[26]
|
Wellenstein, M.D., Coffelt, S.B., Duits, D.E.M., van Miltenburg, M.H., Slagter, M., de Rink, I., et al. (2019) Loss of P53 Triggers Wnt-Dependent Systemic Inflammation to Drive Breast Cancer Metastasis. Nature, 572, 538-542. https://doi.org/10.1038/s41586-019-1450-6
|
[27]
|
Yang, L., Wang, S., Lee, J.J., Lee, S., Lee, E., Shinbrot, E., et al. (2019) An Enhanced Genetic Model of Colorectal Cancer Progression History. Genome Biology, 20, Article No. 168. https://doi.org/10.1186/s13059-019-1782-4
|
[28]
|
Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., et al. (2022) Wnt Signaling in Colorectal Cancer: Pathogenic Role and Therapeutic Target. Molecular Cancer, 21, Article No. 144. https://doi.org/10.1186/s12943-022-01616-7
|
[29]
|
Mao, J., Chen, X., Wang, C., Li, W. and Li, J. (2020) Effects and Mechanism of the Bile Acid (Farnesoid X) Receptor on the Wnt/β-Catenin Signaling Pathway in Colon Cancer. Oncology Letters, 20, 337-345. https://doi.org/10.3892/ol.2020.11545
|
[30]
|
Peng, Z., Chen, J., Drachenberg, C.B., Raufman, J. and Xie, G. (2019) Farnesoid X Receptor Represses Matrix Metalloproteinase 7 Expression, Revealing This Regulatory Axis as a Promising Therapeutic Target in Colon Cancer. Journal of Biological Chemistry, 294, 8529-8542. https://doi.org/10.1074/jbc.ra118.004361
|
[31]
|
Bailey, A.M., Zhan, L., Maru, D., Shureiqi, I., Pickering, C.R., Kiriakova, G., et al. (2014) FXR Silencing in Human Colon Cancer by DNA Methylation and KRAS Signaling. American Journal of Physiology-Gastrointestinal and Liver Physiology, 306, G48-G58. https://doi.org/10.1152/ajpgi.00234.2013
|
[32]
|
Selmin, O.I., Fang, C., Lyon, A.M., Doetschman, T.C., Thompson, P.A., Martinez, J.D., et al. (2016) Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr Gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells. The Journal of Nutrition, 146, 236-242. https://doi.org/10.3945/jn.115.216580
|
[33]
|
Gadaleta, R.M., Oldenburg, B., Willemsen, E.C.L., Spit, M., Murzilli, S., Salvatore, L., et al. (2011) Activation of Bile Salt Nuclear Receptor FXR Is Repressed by Pro-Inflammatory Cytokines Activating Nf-κb Signaling in the Intestine. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1812, 851-858. https://doi.org/10.1016/j.bbadis.2011.04.005
|
[34]
|
Zhou, X., Cao, L., Jiang, C., Xie, Y., Cheng, X., Krausz, K.W., et al. (2014) PPARalpha-UGT Axis Activation Represses Intestinal FXR-FGF15 Feedback Signalling and Exacerbates Experimental Colitis. Nature Communications, 5, Article No. 4573. https://doi.org/10.1038/ncomms5573
|
[35]
|
Li, T. and Chiang, J.Y.L. (2023) Bile Acids as Metabolic Regulators: An Update. Current Opinion in Gastroenterology, 39, 249-255. https://doi.org/10.1097/mog.0000000000000934
|
[36]
|
Jia, W., Xie, G. and Jia, W. (2017) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 15, 111-128. https://doi.org/10.1038/nrgastro.2017.119
|
[37]
|
Lew, J., Zhao, A., Yu, J., Huang, L., de Pedro, N., Peláez, F., et al. (2004) The Farnesoid X Receptor Controls Gene Expression in a Ligand-and Promoter-Selective Fashion. Journal of Biological Chemistry, 279, 8856-8861. https://doi.org/10.1074/jbc.m306422200
|
[38]
|
Kliewer, S.A. and Mangelsdorf, D.J. (2015) Bile Acids as Hormones: The FXR-FGF15/19 Pathway. Digestive Diseases, 33, 327-331. https://doi.org/10.1159/000371670
|
[39]
|
Guo, X., Okpara, E.S., Hu, W., Yan, C., Wang, Y., Liang, Q., et al. (2022) Interactive Relationships between Intestinal Flora and Bile Acids. International Journal of Molecular Sciences, 23, Article No. 8343. https://doi.org/10.3390/ijms23158343
|
[40]
|
Sun, J., Fan, J., Li, T., Yan, X. and Jiang, Y. (2022) Nuciferine Protects against High-Fat Diet-Induced Hepatic Steatosis via Modulation of Gut Microbiota and Bile Acid Metabolism in Rats. Journal of Agricultural and Food Chemistry, 70, 12014-12028. https://doi.org/10.1021/acs.jafc.2c04817
|
[41]
|
Dawson, P.A. and Karpen, S.J. (2015) Intestinal Transport and Metabolism of Bile Acids. Journal of Lipid Research, 56, 1085-1099. https://doi.org/10.1194/jlr.r054114
|
[42]
|
Degirolamo, C., Modica, S., Palasciano, G. and Moschetta, A. (2011) Bile Acids and Colon Cancer: Solving the Puzzle with Nuclear Receptors. Trends in Molecular Medicine, 17, 564-572. https://doi.org/10.1016/j.molmed.2011.05.010
|
[43]
|
Norlin, M. and Wikvall, K. (2007) Enzymes in the Conversion of Cholesterol into Bile Acids. Current Molecular Medicine, 7, 199-218. https://doi.org/10.2174/156652407780059168
|
[44]
|
Goodwin, B., Watson, M.A., Kim, H., Miao, J., Kemper, J.K. and Kliewer, S.A. (2003) Differential Regulation of Rat and Human CYP7A1 by the Nuclear Oxysterol Receptor Liver X Receptor-α. Molecular Endocrinology, 17, 386-394. https://doi.org/10.1210/me.2002-0246
|
[45]
|
Goodwin, B., Jones, S.A., Price, R.R., Watson, M.A., McKee, D.D., Moore, L.B., et al. (2000) A Regulatory Cascade of the Nuclear Receptors FXR, SHP-1, and LRH-1 Represses Bile Acid Biosynthesis. Molecular Cell, 6, 517-526. https://doi.org/10.1016/s1097-2765(00)00051-4
|
[46]
|
Gadaleta, R.M., Garcia-Irigoyen, O. and Moschetta, A. (2017) Bile Acids and Colon Cancer: Is FXR the Solution of the Conundrum? Molecular Aspects of Medicine, 56, 66-74. https://doi.org/10.1016/j.mam.2017.04.002
|
[47]
|
Hanafi, N.I., Mohamed, A.S., Sheikh Abdul Kadir, S.H. and Othman, M.H.D. (2018) Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules, 8, Article No. 159. https://doi.org/10.3390/biom8040159
|
[48]
|
Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., et al. (1999) Identification of a Nuclear Receptor for Bile Acids. Science, 284, 1362-1365. https://doi.org/10.1126/science.284.5418.1362
|
[49]
|
Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., et al. (1999) Bile Acids: Natural Ligands for an Orphan Nuclear Receptor. Science, 284, 1365-1368. https://doi.org/10.1126/science.284.5418.1365
|
[50]
|
Wang, H., He, Q., Wang, G., Xu, X. and Hao, H. (2018) FXR Modulators for Enterohepatic and Metabolic Diseases. Expert Opinion on Therapeutic Patents, 28, 765-782. https://doi.org/10.1080/13543776.2018.1527906
|
[51]
|
Zeng, H., Botnen, J.H. and Briske-Anderson, M. (2009) Deoxycholic Acid and Selenium Metabolite Methylselenol Exert Common and Distinct Effects on Cell Cycle, Apoptosis, and MAP Kinase Pathway in HCT116 Human Colon Cancer Cells. Nutrition and Cancer, 62, 85-92. https://doi.org/10.1080/01635580903191551
|
[52]
|
Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., Krausz, K.W., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G‐protein Bile Acid Receptor‐1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588. https://doi.org/10.1002/hep.29857
|
[53]
|
Liu, H., Chang, Z., Yang, C., Chang, H. and Lee, T. (2023) Farnesoid X Receptor Agonist GW4064 Protects Lipopolysaccharide-Induced Intestinal Epithelial Barrier Function and Colorectal Tumorigenesis Signaling through the αKlotho/βKlotho/FGFs Pathways in Mice. International Journal of Molecular Sciences, 24, Article No. 16932. https://doi.org/10.3390/ijms242316932
|
[54]
|
Verbeke, L., Farre, R., Verbinnen, B., Covens, K., Vanuytsel, T., Verhaegen, J., et al. (2015) The FXR Agonist Obeticholic Acid Prevents Gut Barrier Dysfunction and Bacterial Translocation in Cholestatic Rats. The American Journal of Pathology, 185, 409-419. https://doi.org/10.1016/j.ajpath.2014.10.009
|
[55]
|
Friedman, E.S., Li, Y., Shen, T.D., Jiang, J., Chau, L., Adorini, L., et al. (2018) FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology, 155, 1741-1752.e5. https://doi.org/10.1053/j.gastro.2018.08.022
|
[56]
|
Fu, T., Li, Y., Oh, T.G., Cayabyab, F., He, N., Tang, Q., et al. (2022) FXR Mediates ILC-Intrinsic Responses to Intestinal Inflammation. Proceedings of the National Academy of Sciences, 119, e2213041119. https://doi.org/10.1073/pnas.2213041119
|
[57]
|
Luceri, C., Femia, A.P., D’ambrosio, M. and Caderni, G. (2019) High Sensitivity to Cholic Acid-Induced Colonic Tumorigenesis Makes Female PIRC Rats (F344/NTac-Apcam1137) a Suitable Model for Studying CRC-Promoting Agents. Anticancer Research, 39, 4673-4679. https://doi.org/10.21873/anticanres.13649
|
[58]
|
van Zutphen, T., Bertolini, A., de Vries, H.D., Bloks, V.W., de Boer, J.F., Jonker, J.W., et al. (2019) Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. In: Fiorucci, S. and Distrutti, E., Eds., Bile Acids and Their Receptors, Springer International Publishing, Berlin, 207-234. https://doi.org/10.1007/164_2019_233
|
[59]
|
Yang, F., Hu, Y., Liu, H. and Wan, Y.Y. (2015) MiR-22-Silenced Cyclin a Expression in Colon and Liver Cancer Cells Is Regulated by Bile Acid Receptor. Journal of Biological Chemistry, 290, 6507-6515. https://doi.org/10.1074/jbc.m114.620369
|
[60]
|
Qiao, P., Li, S., Zhang, H., Yao, L. and Wang, F. (2018) Farnesoid X Receptor Inhibits Proliferation of Human Colorectal Cancer Cells via the miR‑135A1/CCNG2 Signaling Pathway. Oncology Reports, 40, 2067-2078. https://doi.org/10.3892/or.2018.6636
|
[61]
|
Yin, Y., Wang, M., Gu, W. and Chen, L. (2021) Intestine-specific FXR Agonists as Potential Therapeutic Agents for Colorectal Cancer. Biochemical Pharmacology, 186, Article ID: 114430. https://doi.org/10.1016/j.bcp.2021.114430
|