|
[1]
|
Shinji, S., Yamada, T., Matsuda, A., Sonoda, H., Ohta, R., Iwai, T., et al. (2022) Recent Advances in the Treatment of Colorectal Cancer: A Review. Journal of Nippon Medical School, 89, 246-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Biller, L.H. and Schrag, D. (2021) Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA, 325, 669. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E. and Rodriguez Yoldi, M. (2017) Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. International Journal of Molecular Sciences, 18, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fan, A., Wang, B., Wang, X., Nie, Y., Fan, D., Zhao, X., et al. (2021) Immunotherapy in Colorectal Cancer: Current Achievements and Future Perspective. International Journal of Biological Sciences, 17, 3837-3849. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Quaglio, A.E.V., Grillo, T.G., Oliveira, E.C.S.D., Stasi, L.C.D. and Sassaki, L.Y. (2022) Gut Microbiota, Inflammatory Bowel Disease and Colorectal Cancer. World Journal of Gastroenterology, 28, 4053-4060. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nagao-Kitamoto, H., Kitamoto, S. and Kamada, N. (2022) Inflammatory Bowel Disease and Carcinogenesis. Cancer and Metastasis Reviews, 41, 301-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, Y., Chen, W., Moore, D.D. and Huang, W. (2008) FXR: A Metabolic Regulator and Cell Protector. Cell Research, 18, 1087-1095. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fiorucci, S., Rizzo, G., Donini, A., Distrutti, E. and Santucci, L. (2007) Targeting Farnesoid X Receptor for Liver and Metabolic Disorders. Trends in Molecular Medicine, 13, 298-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lee, F.Y., Lee, H., Hubbert, M.L., Edwards, P.A. and Zhang, Y. (2006) FXR, a Multipurpose Nuclear Receptor. Trends in Biochemical Sciences, 31, 572-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Modica, S., Gadaleta, R.M. and Moschetta, A. (2010) Deciphering the Nuclear Bile Acid Receptor FXR Paradigm. Nuclear Receptor Signaling, 8, nrs.08005. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Mazuy, C., Helleboid, A., Staels, B. and Lefebvre, P. (2014) Nuclear Bile Acid Signaling through the Farnesoid X Receptor. Cellular and Molecular Life Sciences, 72, 1631-1650. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lax, S., Schauer, G., Prein, K., Kapitan, M., Silbert, D., Berghold, A., et al. (2011) Expression of the Nuclear Bile Acid Receptor/Farnesoid X Receptor Is Reduced in Human Colon Carcinoma Compared to Nonneoplastic Mucosa Independent from Site and May Be Associated with Adverse Prognosis. International Journal of Cancer, 130, 2232-2239. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Modica, S., Gofflot, F., Murzilli, S., D'Orazio, A., Salvatore, L., Pellegrini, F., et al. (2010) The Intestinal Nuclear Receptor Signature with Epithelial Localization Patterns and Expression Modulation in Tumors. Gastroenterology, 138, 636-648.e12. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fu, T., Coulter, S., Yoshihara, E., Oh, T.G., Fang, S., Cayabyab, F., et al. (2019) FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell, 176, 1098-1112.e18. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Maran, R.R.M., Thomas, A., Roth, M., Sheng, Z., Esterly, N., Pinson, D., et al. (2008) Farnesoid X Receptor Deficiency in Mice Leads to Increased Intestinal Epithelial Cell Proliferation and Tumor Development. Journal of Pharmacology and Experimental Therapeutics, 328, 469-477. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Gottardi, A.D., Touri, F., Maurer, C.A., Perez, A., Maurhofer, O., Ventre, G., et al. (2004) The Bile Acid Nuclear Receptor FXR and the Bile Acid Binding Protein IBABP Are Differently Expressed in Colon Cancer. Digestive Diseases and Sciences, 49, 982-989. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lu, L., Jiang, Y., Liu, X., Jin, J., Gu, W., Luan, X., et al. (2023) FXR Agonist GW4064 Enhances Anti-PD-L1 Immunotherapy in Colorectal Cancer. OncoImmunology, 12, Article ID: 2217024. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Inagaki, T., Moschetta, A., Lee, Y., Peng, L., Zhao, G., Downes, M., et al. (2006) Regulation of Antibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proceedings of the National Academy of Sciences, 103, 3920-3925. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Gadaleta, R.M., van Erpecum, K.J., Oldenburg, B., Willemsen, E.C.L., Renooij, W., Murzilli, S., et al. (2011) Farnesoid X Receptor Activation Inhibits Inflammation and Preserves the Intestinal Barrier in Inflammatory Bowel Disease. Gut, 60, 463-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., et al. (2019) Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. Journal of Hepatology, 71, 1216-1228. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, F., Jiang, C., Krausz, K.W., Li, Y., Albert, I., Hao, H., et al. (2013) Microbiome Remodelling Leads to Inhibition of Intestinal Farnesoid X Receptor Signalling and Decreased Obesity. Nature Communications, 4, Article No. 2384. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Holm, M., Saraswat, M., Joenväärä, S., Ristimäki, A., Haglund, C. and Renkonen, R. (2018) Colorectal Cancer Patients with Different C-Reactive Protein Levels and 5-Year Survival Times Can Be Differentiated with Quantitative Serum Proteomics. PLOS ONE, 13, e0195354. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yu, J., Li, S., Guo, J., Xu, Z., Zheng, J. and Sun, X. (2020) Farnesoid X Receptor Antagonizes Wnt/β-Catenin Signaling in Colorectal Tumorigenesis. Cell Death & Disease, 11, Article No. 640. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Drost, J., van Jaarsveld, R.H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., et al. (2015) Sequential Cancer Mutations in Cultured Human Intestinal Stem Cells. Nature, 521, 43-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xiao, Q., Werner, J., Venkatachalam, N., Boonekamp, K.E., Ebert, M.P. and Zhan, T. (2022) Cross-Talk between P53 and Wnt Signaling in Cancer. Biomolecules, 12, Article No. 453. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wellenstein, M.D., Coffelt, S.B., Duits, D.E.M., van Miltenburg, M.H., Slagter, M., de Rink, I., et al. (2019) Loss of P53 Triggers Wnt-Dependent Systemic Inflammation to Drive Breast Cancer Metastasis. Nature, 572, 538-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yang, L., Wang, S., Lee, J.J., Lee, S., Lee, E., Shinbrot, E., et al. (2019) An Enhanced Genetic Model of Colorectal Cancer Progression History. Genome Biology, 20, Article No. 168. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., et al. (2022) Wnt Signaling in Colorectal Cancer: Pathogenic Role and Therapeutic Target. Molecular Cancer, 21, Article No. 144. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mao, J., Chen, X., Wang, C., Li, W. and Li, J. (2020) Effects and Mechanism of the Bile Acid (Farnesoid X) Receptor on the Wnt/β-Catenin Signaling Pathway in Colon Cancer. Oncology Letters, 20, 337-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Peng, Z., Chen, J., Drachenberg, C.B., Raufman, J. and Xie, G. (2019) Farnesoid X Receptor Represses Matrix Metalloproteinase 7 Expression, Revealing This Regulatory Axis as a Promising Therapeutic Target in Colon Cancer. Journal of Biological Chemistry, 294, 8529-8542. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bailey, A.M., Zhan, L., Maru, D., Shureiqi, I., Pickering, C.R., Kiriakova, G., et al. (2014) FXR Silencing in Human Colon Cancer by DNA Methylation and KRAS Signaling. American Journal of Physiology-Gastrointestinal and Liver Physiology, 306, G48-G58. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Selmin, O.I., Fang, C., Lyon, A.M., Doetschman, T.C., Thompson, P.A., Martinez, J.D., et al. (2016) Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr Gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells. The Journal of Nutrition, 146, 236-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gadaleta, R.M., Oldenburg, B., Willemsen, E.C.L., Spit, M., Murzilli, S., Salvatore, L., et al. (2011) Activation of Bile Salt Nuclear Receptor FXR Is Repressed by Pro-Inflammatory Cytokines Activating Nf-κb Signaling in the Intestine. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1812, 851-858. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhou, X., Cao, L., Jiang, C., Xie, Y., Cheng, X., Krausz, K.W., et al. (2014) PPARalpha-UGT Axis Activation Represses Intestinal FXR-FGF15 Feedback Signalling and Exacerbates Experimental Colitis. Nature Communications, 5, Article No. 4573. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, T. and Chiang, J.Y.L. (2023) Bile Acids as Metabolic Regulators: An Update. Current Opinion in Gastroenterology, 39, 249-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Jia, W., Xie, G. and Jia, W. (2017) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 15, 111-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lew, J., Zhao, A., Yu, J., Huang, L., de Pedro, N., Peláez, F., et al. (2004) The Farnesoid X Receptor Controls Gene Expression in a Ligand-and Promoter-Selective Fashion. Journal of Biological Chemistry, 279, 8856-8861. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kliewer, S.A. and Mangelsdorf, D.J. (2015) Bile Acids as Hormones: The FXR-FGF15/19 Pathway. Digestive Diseases, 33, 327-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Guo, X., Okpara, E.S., Hu, W., Yan, C., Wang, Y., Liang, Q., et al. (2022) Interactive Relationships between Intestinal Flora and Bile Acids. International Journal of Molecular Sciences, 23, Article No. 8343. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sun, J., Fan, J., Li, T., Yan, X. and Jiang, Y. (2022) Nuciferine Protects against High-Fat Diet-Induced Hepatic Steatosis via Modulation of Gut Microbiota and Bile Acid Metabolism in Rats. Journal of Agricultural and Food Chemistry, 70, 12014-12028. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Dawson, P.A. and Karpen, S.J. (2015) Intestinal Transport and Metabolism of Bile Acids. Journal of Lipid Research, 56, 1085-1099. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Degirolamo, C., Modica, S., Palasciano, G. and Moschetta, A. (2011) Bile Acids and Colon Cancer: Solving the Puzzle with Nuclear Receptors. Trends in Molecular Medicine, 17, 564-572. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Norlin, M. and Wikvall, K. (2007) Enzymes in the Conversion of Cholesterol into Bile Acids. Current Molecular Medicine, 7, 199-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Goodwin, B., Watson, M.A., Kim, H., Miao, J., Kemper, J.K. and Kliewer, S.A. (2003) Differential Regulation of Rat and Human CYP7A1 by the Nuclear Oxysterol Receptor Liver X Receptor-α. Molecular Endocrinology, 17, 386-394. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Goodwin, B., Jones, S.A., Price, R.R., Watson, M.A., McKee, D.D., Moore, L.B., et al. (2000) A Regulatory Cascade of the Nuclear Receptors FXR, SHP-1, and LRH-1 Represses Bile Acid Biosynthesis. Molecular Cell, 6, 517-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Gadaleta, R.M., Garcia-Irigoyen, O. and Moschetta, A. (2017) Bile Acids and Colon Cancer: Is FXR the Solution of the Conundrum? Molecular Aspects of Medicine, 56, 66-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hanafi, N.I., Mohamed, A.S., Sheikh Abdul Kadir, S.H. and Othman, M.H.D. (2018) Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules, 8, Article No. 159. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., et al. (1999) Identification of a Nuclear Receptor for Bile Acids. Science, 284, 1362-1365. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., et al. (1999) Bile Acids: Natural Ligands for an Orphan Nuclear Receptor. Science, 284, 1365-1368. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wang, H., He, Q., Wang, G., Xu, X. and Hao, H. (2018) FXR Modulators for Enterohepatic and Metabolic Diseases. Expert Opinion on Therapeutic Patents, 28, 765-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zeng, H., Botnen, J.H. and Briske-Anderson, M. (2009) Deoxycholic Acid and Selenium Metabolite Methylselenol Exert Common and Distinct Effects on Cell Cycle, Apoptosis, and MAP Kinase Pathway in HCT116 Human Colon Cancer Cells. Nutrition and Cancer, 62, 85-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., Krausz, K.W., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G‐protein Bile Acid Receptor‐1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Liu, H., Chang, Z., Yang, C., Chang, H. and Lee, T. (2023) Farnesoid X Receptor Agonist GW4064 Protects Lipopolysaccharide-Induced Intestinal Epithelial Barrier Function and Colorectal Tumorigenesis Signaling through the αKlotho/βKlotho/FGFs Pathways in Mice. International Journal of Molecular Sciences, 24, Article No. 16932. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Verbeke, L., Farre, R., Verbinnen, B., Covens, K., Vanuytsel, T., Verhaegen, J., et al. (2015) The FXR Agonist Obeticholic Acid Prevents Gut Barrier Dysfunction and Bacterial Translocation in Cholestatic Rats. The American Journal of Pathology, 185, 409-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Friedman, E.S., Li, Y., Shen, T.D., Jiang, J., Chau, L., Adorini, L., et al. (2018) FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology, 155, 1741-1752.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Fu, T., Li, Y., Oh, T.G., Cayabyab, F., He, N., Tang, Q., et al. (2022) FXR Mediates ILC-Intrinsic Responses to Intestinal Inflammation. Proceedings of the National Academy of Sciences, 119, e2213041119. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Luceri, C., Femia, A.P., D’ambrosio, M. and Caderni, G. (2019) High Sensitivity to Cholic Acid-Induced Colonic Tumorigenesis Makes Female PIRC Rats (F344/NTac-Apcam1137) a Suitable Model for Studying CRC-Promoting Agents. Anticancer Research, 39, 4673-4679. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
van Zutphen, T., Bertolini, A., de Vries, H.D., Bloks, V.W., de Boer, J.F., Jonker, J.W., et al. (2019) Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. In: Fiorucci, S. and Distrutti, E., Eds., Bile Acids and Their Receptors, Springer International Publishing, Berlin, 207-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Yang, F., Hu, Y., Liu, H. and Wan, Y.Y. (2015) MiR-22-Silenced Cyclin a Expression in Colon and Liver Cancer Cells Is Regulated by Bile Acid Receptor. Journal of Biological Chemistry, 290, 6507-6515. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Qiao, P., Li, S., Zhang, H., Yao, L. and Wang, F. (2018) Farnesoid X Receptor Inhibits Proliferation of Human Colorectal Cancer Cells via the miR‑135A1/CCNG2 Signaling Pathway. Oncology Reports, 40, 2067-2078. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Yin, Y., Wang, M., Gu, W. and Chen, L. (2021) Intestine-specific FXR Agonists as Potential Therapeutic Agents for Colorectal Cancer. Biochemical Pharmacology, 186, Article ID: 114430. [Google Scholar] [CrossRef] [PubMed]
|