[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Bianchini, G., De Angelis, C., Licata, L. and Gianni, L. (2021) Treatment Landscape of Triple-Negative Breast Cancer—Expanded Options, Evolving Needs. Nature Reviews Clinical Oncology, 19, 91-113. https://doi.org/10.1038/s41571-021-00565-2
|
[3]
|
Cho, B., Han, Y., Lian, M., Colditz, G.A., Weber, J.D., Ma, C., et al. (2021) Evaluation of Racial/Ethnic Differences in Treatment and Mortality among Women with Triple-Negative Breast Cancer. JAMA Oncology, 7, Article 1016. https://doi.org/10.1001/jamaoncol.2021.1254
|
[4]
|
(2007) American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Human Epidermal Growth Factor Receptor HER2 Testing in Breast Cancer. Journal of Oncology Practice, 3, 48-50.
|
[5]
|
Hammond, M.E.H., Hayes, D.F., Dowsett, M., et al. (2010) American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer (Unabridged Version). Archives of Pathology & Laboratory Medicine, 134, e48-e72.
|
[6]
|
Dass, S.A., Tan, K.L., Selva Rajan, R., Mokhtar, N.F., Mohd Adzmi, E.R., Wan Abdul Rahman, W.F., et al. (2021) Triple Negative Breast Cancer: A Review of Present and Future Diagnostic Modalities. Medicina, 57, Article 62. https://doi.org/10.3390/medicina57010062
|
[7]
|
Shah, S.P., Roth, A., Goya, R., et al. (2012) The Clonal and Mutational Evolution Spectrum of Primary Triple-Negative Breast Cancers. Nature, 486, 395-399.
|
[8]
|
Sørlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001) Gene Expression Patterns of Breast Carcinomas Distinguish Tumor Subclasses with Clinical Implications. Proceedings of the National Academy of Sciences, 98, 10869-10874. https://doi.org/10.1073/pnas.191367098
|
[9]
|
Lehmann, B.D., Bauer, J.A., Chen, X., Sanders, M.E., Chakravarthy, A.B., Shyr, Y., et al. (2011) Identification of Human Triple-Negative Breast Cancer Subtypes and Preclinical Models for Selection of Targeted Therapies. Journal of Clinical Investigation, 121, 2750-2767. https://doi.org/10.1172/jci45014
|
[10]
|
Saha, P. and Nanda, R. (2016) Concepts and Targets in Triple-Negative Breast Cancer: Recent Results and Clinical Implications. Therapeutic Advances in Medical Oncology, 8, 351-359. https://doi.org/10.1177/1758834016657071
|
[11]
|
Burstein, M.D., Tsimelzon, A., Poage, G.M., Covington, K.R., Contreras, A., Fuqua, S.A.W., et al. (2015) Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer. Clinical Cancer Research, 21, 1688-1698. https://doi.org/10.1158/1078-0432.ccr-14-0432
|
[12]
|
Curigliano, G., Romieu, G., Campone, M., Dorval, T., Duck, L., Canon, J., et al. (2016) A Phase I/II Trial of the Safety and Clinical Activity of a HER2-Protein Based Immunotherapeutic for Treating Women with HER2-Positive Metastatic Breast Cancer. Breast Cancer Research and Treatment, 156, 301-310. https://doi.org/10.1007/s10549-016-3750-y
|
[13]
|
Hallett, R.M., Dvorkin-Gheva, A., Bane, A. and Hassell, J.A. (2012) A Gene Signature for Predicting Outcome in Patients with Basal-Like Breast Cancer. Scientific Reports, 2, Article No. 227. https://doi.org/10.1038/srep00227
|
[14]
|
Prat, A., Pineda, E., Adamo, B., Galván, P., Fernández, A., Gaba, L., et al. (2015) Clinical Implications of the Intrinsic Molecular Subtypes of Breast Cancer. The Breast, 24, S26-S35. https://doi.org/10.1016/j.breast.2015.07.008
|
[15]
|
Garrido-Castro, A.C., Lin, N.U. and Polyak, K. (2019) Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Discovery, 9, 176-198. https://doi.org/10.1158/2159-8290.cd-18-1177
|
[16]
|
Staaf, J., Glodzik, D., Bosch, A., Vallon-Christersson, J., Reuterswärd, C., Häkkinen, J., et al. (2019) Whole-Genome Sequencing of Triple-Negative Breast Cancers in a Population-Based Clinical Study. Nature Medicine, 25, 1526-1533. https://doi.org/10.1038/s41591-019-0582-4
|
[17]
|
Curtis, C., Shah, S.P., Chin, S., Turashvili, G., Rueda, O.M., Dunning, M.J., et al. (2012) The Genomic and Transcriptomic Architecture of 2,000 Breast Tumours Reveals Novel Subgroups. Nature, 486, 346-352. https://doi.org/10.1038/nature10983
|
[18]
|
Bareche, Y., Venet, D., Ignatiadis, M., Aftimos, P., Piccart, M., Rothe, F., et al. (2018) Unravelling Triple-Negative Breast Cancer Molecular Heterogeneity Using an Integrative Multiomic Analysis. Annals of Oncology, 29, 895-902. https://doi.org/10.1093/annonc/mdy024
|
[19]
|
Nik-Zainal, S., Alexandrov, L.B., Wedge, D.C., Van Loo, P., Greenman, C.D., Raine, K., et al. (2012) Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell, 149, 979-993. https://doi.org/10.1016/j.cell.2012.04.024
|
[20]
|
Menghi, F., Inaki, K., Woo, X., Kumar, P.A., Grzeda, K.R., Malhotra, A., et al. (2016) The Tandem Duplicator Phenotype as a Distinct Genomic Configuration in Cancer. Proceedings of the National Academy of Sciences, 113, E2373-E2382. https://doi.org/10.1073/pnas.1520010113
|
[21]
|
Early Breast Cancer Trialists' Collaborative Group (2012) Comparisons between Different Polychemotherapy Regimens for Early Breast Cancer: Meta-Analyses of Long-Term Outcome among 100 000 Women in 123 Randomized Trials. The Lancet, 379, 432-444. https://doi.org/10.1016/s0140-6736(11)61625-5
|
[22]
|
Rastogi, P., Anderson, S.J., Bear, H.D., Geyer, C.E., Kahlenberg, M.S., Robidoux, A., et al. (2008) Preoperative Chemotherapy: Updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. Journal of Clinical Oncology, 26, 778-785. https://doi.org/10.1200/jco.2007.15.0235
|
[23]
|
von Minckwitz, G., Untch, M., Blohmer, J., Costa, S.D., Eidtmann, H., Fasching, P.A., et al. (2012) Definition and Impact of Pathologic Complete Response on Prognosis after Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. Journal of Clinical Oncology, 30, 1796-1804. https://doi.org/10.1200/jco.2011.38.8595
|
[24]
|
Conlin, A.K. and Seidman, A.D. (2007) Taxanes in Breast Cancer: An Update. Current Oncology Reports, 9, 22-30. https://doi.org/10.1007/bf02951422
|
[25]
|
Carlson, R.W., Brown, E., Burstein, H.J., Gradishar, W.J., Hudis, C.A., Loprinzi, C., et al. (2006) NCCN Task Force Report: Adjuvant Therapy for Breast Cancer. Journal of the National Comprehensive Cancer Network, 4, S1-S26. https://doi.org/10.6004/jnccn.2006.2001
|
[26]
|
Nanda, R., Liu, M.C., Yau, C., Shatsky, R., Pusztai, L., Wallace, A., et al. (2020) Effect of Pembrolizumab Plus Neoadjuvant Chemotherapy on Pathologic Complete Response in Women with Early-Stage Breast Cancer. JAMA Oncology, 6, 676-684. https://doi.org/10.1001/jamaoncol.2019.6650
|
[27]
|
de Jong, V.M.T., Wang, Y., ter Hoeve, N.D., Opdam, M., Stathonikos, N., Jóźwiak, K., et al. (2022) Prognostic Value of Stromal Tumor-Infiltrating Lymphocytes in Young, Node-Negative, Triple-Negative Breast Cancer Patients Who Did Not Receive Neoadjuvant Systemic Therapy. Journal of Clinical Oncology, 40, 2361-2374. https://doi.org/10.1200/jco.21.01536
|
[28]
|
Stewart, R.L., Matynia, A.P., Factor, R.E. and Varley, K.E. (2020) Spatially-Resolved Quantification of Proteins in Triple Negative Breast Cancers Reveals Differences in the Immune Microenvironment Associated with Prognosis. Scientific Reports, 10, Article No. 6598. https://doi.org/10.1038/s41598-020-63539-x
|
[29]
|
Gonzalez-Ericsson, P.I., Stovgaard, E.S., Sua, L.F., Reisenbichler, E., Kos, Z., Carter, J.M., et al. (2020) The Path to a Better Biomarker: Application of a Risk Management Framework for the Implementation of PD-L1 and Tils as Immuno-Oncology Biomarkers in Breast Cancer Clinical Trials and Daily Practice. The Journal of Pathology, 250, 667-684. https://doi.org/10.1002/path.5406
|
[30]
|
Ho, A.Y., Barker, C.A., Arnold, B.B., Powell, S.N., Hu, Z.I., Gucalp, A., et al. (2019) A Phase 2 Clinical Trial Assessing the Efficacy and Safety of Pembrolizumab and Radiotherapy in Patients with Metastatic Triple-Negative Breast Cancer. Cancer, 126, 850-860. https://doi.org/10.1002/cncr.32599
|
[31]
|
Verma, S., Miles, D., Gianni, L., Krop, I.E., Welslau, M., Baselga, J., et al. (2012) Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. New England Journal of Medicine, 367, 1783-1791. https://doi.org/10.1056/nejmoa1209124
|
[32]
|
Sharma, P., López-Tarruella, S., García-Saenz, J.A., Khan, Q.J., Gómez, H.L., Prat, A., et al. (2018) Pathological Response and Survival in Triple-Negative Breast Cancer Following Neoadjuvant Carboplatin Plus Docetaxel. Clinical Cancer Research, 24, 5820-5829. https://doi.org/10.1158/1078-0432.ccr-18-0585
|
[33]
|
Fehrenbacher, L., Cecchini, R.S., Geyer, Jr., Rastogi, P., Costantino, J.P., Atkins, J.N., et al. (2020) NSABP B-47/NRG Oncology Phase III Randomized Trial Comparing Adjuvant Chemotherapy with or without Trastuzumab in High-Risk Invasive Breast Cancer Negative for HER2 by FISH and with IHC 1+ or 2+. Journal of Clinical Oncology, 38, 444-453. https://doi.org/10.1200/jco.19.01455
|
[34]
|
Tarantino, P., Hamilton, E., Tolaney, S.M., Cortes, J., Morganti, S., Ferraro, E., et al. (2020) HER2-Low Breast Cancer: Pathological and Clinical Landscape. Journal of Clinical Oncology, 38, 1951-1962. https://doi.org/10.1200/jco.19.02488
|
[35]
|
Vera-Badillo, F.E., Templeton, A.J., de Gouveia, P., Diaz-Padilla, I., Bedard, P.L., Al-Mubarak, M., et al. (2013) Androgen Receptor Expression and Outcomes in Early Breast Cancer: A Systematic Review and Meta-Analysis. Journal of the National Cancer Institute, 106, djt319. https://doi.org/10.1093/jnci/djt319
|
[36]
|
Narayanan, R. and Dalton, J. (2016) Androgen Receptor: A Complex Therapeutic Target for Breast Cancer. Cancers, 8, Article 108. https://doi.org/10.3390/cancers8120108
|
[37]
|
Gucalp, A., Tolaney, S., Isakoff, S.J., Ingle, J.N., Liu, M.C., Carey, L.A., et al. (2013) Phase II Trial of Bicalutamide in Patients with Androgen Receptor-Positive, Estrogen Receptor-Negative Metastatic Breast Cancer. Clinical Cancer Research, 19, 5505-5512. https://doi.org/10.1158/1078-0432.ccr-12-3327
|
[38]
|
Ding, L., Gu, H., Xiong, X., Ao, H., Cao, J., Lin, W., et al. (2019) Micrornas Involved in Carcinogenesis, Prognosis, Therapeutic Resistance, and Applications in Human Triple-Negative Breast Cancer. Cells, 8, Article 1492. https://doi.org/10.3390/cells8121492
|
[39]
|
Lee, Y.S. and Dutta, A. (2009) Micrornas in Cancer. Annual Review of Pathology: Mechanisms of Disease, 4, 199-227. https://doi.org/10.1146/annurev.pathol.4.110807.092222
|
[40]
|
Lukianova, N.Y., Borikun, T.V. and Chekhun, V.F. (2023) Tumor Microenvironment-Derived miRNAs as Prognostic Markers of Breast Cancer. Experimental Oncology, 41, 242-247. https://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-3.13615
|
[41]
|
Fan, C., Liu, N., Zheng, D., Du, J. and Wang, K. (2019) MicroRNA-206 Inhibits Metastasis of Triple-Negative Breast Cancer by Targeting Transmembrane 4 L6 Family Member 1. Cancer Management and Research, 11, 6755-6764. https://doi.org/10.2147/cmar.s199027
|
[42]
|
Rupaimoole, R., Calin, G.A., Lopez-Berestein, G. and Sood, A.K. (2016) Mirna Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discovery, 6, 235-246. https://doi.org/10.1158/2159-8290.cd-15-0893
|
[43]
|
Bronisz, A., Godlewski, J., Wallace, J.A., Merchant, A.S., Nowicki, M.O., Mathsyaraja, H., et al. (2011) Reprogramming of the Tumour Microenvironment by Stromal PTEN-Regulated miR-320. Nature Cell Biology, 14, 159-167. https://doi.org/10.1038/ncb2396
|
[44]
|
Qattan, A. (2020) Novel miRNA Targets and Therapies in the Triple-Negative Breast Cancer Microenvironment: An Emerging Hope for a Challenging Disease. International Journal of Molecular Sciences, 21, Article 8905. https://doi.org/10.3390/ijms21238905
|