胰腺癌循环生物标志物研究进展
Advances in Circulating Biomarkers of Pancreatic Cancer
DOI: 10.12677/ACM.2021.115294, PDF, HTML, XML, 下载: 431  浏览: 693 
作者: 张 一:大连医科大学,辽宁 大连;青岛市市立医院消化内科,山东 青岛;付来琳, 解祥军*:青岛市市立医院消化内科,山东 青岛
关键词: 胰腺癌生物标志物早期诊断Pancreatic Cancer Biomarker Early Diagnosis
摘要: 迄今为止,胰腺癌仍是最具恶性程度的肿瘤之一,其中九成以上为胰腺导管癌(PDAC)。手术切除是能治愈胰腺癌的最佳治疗选择,但由于胰腺癌早期无明显症状,多数患者只能晚期确诊。因此,发现最具临床意义的循环生物标志物对早期胰腺癌的诊断是目前的巨大的难题。血液是最常用的生物标志物来源,具有微创、易获得、价格低廉、可重复获得和易于分析等特点,筛选最佳循环生物标志物,对胰腺癌的早期诊断具有重要的临床意义。
Abstract: Up to now, pancreatic cancer is still one of the most malignant tumors, of which more than 90% are pancreatic ductal carcinoma (PDAC). Surgical resection is the best treatment option to cure pancreatic cancer, but because pancreatic cancer has no obvious symptoms in early stage, most patients can only be diagnosed late. Therefore, finding the most clinically significant circulating biomarkers for the diagnosis of early pancreatic cancer is a huge challenge at present. Blood is the most commonly used source of biomarkers, with the characteristics of minimally invasive, easy to obtain, low cost, reproducible and analysis, etc., screening the best circulating biomarker has important clinical significance for the early diagnosis of pancreatic cancer.
文章引用:张一, 付来琳, 解祥军. 胰腺癌循环生物标志物研究进展[J]. 临床医学进展, 2021, 11(5): 2055-2061. https://doi.org/10.12677/ACM.2021.115294

1. 蛋白质类肿瘤标志物

1.1. CA19-9

CA19-9是目前临床唯一公认的胰腺癌循环生物标志物,CA19-9在胰腺癌中的表达率为70%~80%,敏感性与肿瘤分期和Lewis抗原有关,在5%~10% Lewis抗原阴性的人群中不能检测出 [1]。Z. Huang等 [2] 总结了11项关于CA19-9作为胰腺癌标志物的研究,共1011名胰腺癌患者和1305名健康人,结果提示CA19-9的AUC为0.87,具有良好的诊断意义。尽管在其他非恶性胃肠疾病中,血清中CA19-9的水平可以升高,但其特异性随着年龄的增长而增加 [3],一项研究证明,近2/3的良性胆道梗阻患者CA19-9水平升高,而在这些患者中,血清中浓度经常达到数百或数千(U/ml) [4],这可能由于CA19-9通过肝脏经胆道排除。另外,有研究发现,CA19-9高于300 U/ml的值表明可能是晚期胰腺癌,并且对确定胰腺癌是否可切除和评估预后具有一定的临床意义,术后CA19-9水平是手术切缘阳性和肝、腹膜复发相关的独立预后因素 [5]。CA19-9也可根据肿瘤部位和血清胆红素水平选择不同临界值作为胰腺癌切除率的辅助指标,研究表示,以100 U/ml或1000 U/ml为临界值时,灵敏度分别为68%和41%,特异性分别为98%和99.8% [6]。CA19-9除了是胰腺癌最常用的诊断标志物之一外,还能用于预测胰腺癌患者的肿瘤分期、可切除性、总生存率和治疗反应。

1.2. CEA

CEA是一种酸性糖蛋白,最初被用作结直肠癌的生物标志物,据报道超过60%的胰腺导管腺癌患者的CEA水平升高,目前临床上作为胰腺癌第二常用的生物标志物 [7]。CEA区分胰腺良恶性疾病的敏感性为44.8%,特异性为85.0%,其诊断效能不如CA19-9,但如果对疑似已表现出胰腺癌体征和症状(包括上腹部疼痛,明显的体重减轻,烧心,排便习惯改变和阻塞性黄疸)的患者以5.0 ng/ml作为临界值,有良好的特异性,有助于临床诊断 [8]。另外,CEA在Lewis阴性患者中的敏感性为63.8%,高于在总体胰腺癌的敏感性,可能作为胰CA19-9的补充生物标志物 [9]。当CEA和其他临床常用指标联合后,可获得更好的临床应用价值。Gu等人研究报道 [10],CA19-9、CA242、CA125和CEA四项联合应用后,诊断胰腺癌的最终敏感性为90.4%,特异性为93.8%。另外,CEA对可切除和不可切除胰腺癌的区分意义不大,但联合CA19-9可预测胰腺癌的可切除性 [11]。

1.3. 热休克蛋白

热休克蛋白(heat shock protein, HSP)是一种具有强大功能的分子伴侣,保护活细胞免受伤害诱导,在包括癌症在内的各种疾病中都观察到热休克蛋白表达失调 [12]。研究发现,HSP27的表达水平已在多种人类肿瘤中升高,对癌症的诊断、预后或治疗有重要意义 [13]。HSP27在胰腺癌中表达上调,诊断胰腺癌的敏感性为100%,特异性为84% [14]。并且HSP27可能在对吉西他滨的耐药性中起重要作用,可作为预测胰腺癌患者对吉西他滨治疗的反应的可能的生物标志物 [15]。Beatriz等 [16] 研究了57例原发性胰腺导管癌,发现所有样本中均检测到HSP47的表达,并且是胰腺癌化学疗法的潜在分子靶点。Dutta等 [17] 发现胰腺癌患者血清中HSP70升高,且在慢性胰腺炎和健康人群中筛选胰腺癌的敏感性和特异性分别为74%和90%,可作为检测胰腺癌的辅助生物标志物。

1.4. 其他蛋白类标记物

目前质谱技术在各种癌症生物流体和组织进行蛋白质组学中快速发展,大量研究发现了许多肿瘤标记物。Kosanam等 [18] 研究了20例胰腺癌和20例胰腺良性囊肿患者中的四项血清生物标志物DSG2、DSP、GP73和LAMC2,结果显示胰腺癌血清中LAMC2显着升高,LAMC2的诊断能力优于DSG2、DSP和GP73,并且LAMC2与CA19-9具有诊断互补性。基质金属蛋白酶11 (MMP11)在肿瘤血管生成、迁移、存活和结缔组织降解中起关键作用 [19],既往研究发现高水平的MMP11,提示胰腺癌预后不良 [20]。近年来,许多研究证明了载脂蛋白AII (apoAII) [21]、PhoSL-HP (岩藻糖基化斛珠蛋白蛋白) [22]、环细胞间粘附分子-1 (ICAM-1) [23] 和金属蛋白酶-1 (TIMP-1) [23] 等均可能成为胰腺癌的潜在生物标志物,但仍需大量的实验验证与应用。

2. 表观遗传学类标志物

2.1. miRNA

越来越多的研究表明,肿瘤细胞会向血液循环中释放大量RNA (包括miRNA、ncRNA和lncRNA),这些RNA强烈抵抗血液中的RNA酶,血清中的水平足以进行定量分析 [24]。微小RNA (miRNA)是内源性小的单链非编码RNA,其长度约为22 nt [25],可调节超过50%的蛋白质编码基因的表达,在控制细胞增殖,分化和凋亡诱导中起重要作用 [26]。miRNA在血液循环中具有高度稳定性,体积小和丰度高的特点 [27],大量研究证明,miRNA在胰腺癌发生过程中差异表达,可用于评估胰腺癌的诊断、预后和治疗。一项荟萃分析 [28],基于21个胰腺癌的miRNA中(包括905例胰腺癌和449例非癌血液样本)发现四个上调的miRNA (hsa-miR-21-5p、hsa-miR-31-5p、hsa-miR-210-3p和hsa-miR-155-5p)和三个下调的miRNA (hsa-miR-217、hsa-miR-148a-3p和hsa-miR-375)具有重大的诊断潜力,其中hsa-miR-21-5p具有较高的临床诊断准确性。Li等 [29] 发现血清miR-24、miR-134、miR-146a、miR-378、miR-484、miR-628-3p、miR-1290和miR-1825在胰腺癌中升高,AUC值均大于0.7,其中血清miR-1290区分胰腺癌患者与对照组的能力最佳,AUC为0.96,并优于CA19-9。这些血浆miRNA是筛选早期胰腺癌的理想生物标志物。

2.2. DNA甲基化

DNA甲基化是一种基因修饰,肿瘤的发生可能与CpG岛甲基化引起的抑癌基因失活有关,循环DNA可能从原发肿瘤中脱落,并且受到保护免于降解,使其成为糖核蛋白复合物 [30]。最近研究发现,ADAMTS1和BNC1可能作为早期诊断胰腺导管癌的生物标志物。一项研究显示 [31],诊断胰腺癌时,ADAMTS1的敏感性为48%,BNC1敏感性为79%,特异性均为81%,BNC1可作为新的筛查早期胰腺癌患者的生物标志物。最近研究结果显示 [32],血清ADAMTS1诊断胰腺癌的敏感性为87.2%,特异性为95.8%;BNC1敏感性为64.1%,特异性为93.7%;联合两者后敏感性可达到97.4%,特异性增至91.6%,具有良好的诊断价值。Li等 [33] 发现八个无细胞DNA甲基化可以将胰腺癌患者与健康人区分开,包括TRIM73,FAM150A,EPB41L3,SIX3,MIR663,MAPT,LOC100128977和LOC100130148。此外,MUC2 [34]、SEPT9 [35]、p16、RARβ和TNFRSF10C [36] 等在也促进胰腺癌的发生和发展。DNA甲基化影响基因表达而不影响DNA序列,表观遗传变化发生在肿瘤发生的最早阶段,因此为早期胰腺癌提供了检测和诊断疾病的新方法,血清DNA甲基化状态的测定具有早期发现胰腺癌的强大潜力。

3. 外泌体

外泌体是一种大小约50~150 nm的许多细胞分泌的囊泡细胞器,它们从健康细胞和癌细胞中脱落到血液和其他体液中,参与信号转导、免疫应答、肿瘤发生、发展、侵袭和转移等一系列生理和病理过程 [37]。glypican-1 (GPC1)蛋白是由GPC1基因编码,在许多癌症组织中高度表达,包括PC、卵巢癌和胶质瘤等 [38],下调GPC1蛋白的表达可以抑制癌细胞的生长,对胰腺的早期诊断有一定作用 [39]。Dong [40] 等人,GPC1对76例胰腺癌患者的诊断效果,结果提示AUC为0.885。另外,GPC-1、CA19-9和EUS-FNA的联合可以进一步将诊断胰腺癌的准确性提高到84% [41]。Plectin-1是一种大的500 kDa蛋白,仅与线粒体有关,可以结合特定的肽,胰腺癌中表达上调,可能有助于检测癌前病变和胰腺癌 [14]。此外,CKAP4与外泌体一起从胰腺癌细胞中释放,在胰腺癌血清中水平高于健康对照组,有作为胰腺癌生物标志物的潜力 [42]。另一项研究发现 [43],来自外泌体的原癌基因间充质–上皮转化因子(c-Met)诊断胰腺癌的灵敏度为70%,特异性为85%,且c-Met阳性患者的术后生存时间显著缩短。另外,许多来自外泌体,如miR-21,miR-155,miR-17-5p和miR-196a,miR-10b和miR-1246等,均可作为胰腺癌的循环生物标志物 [44]。

4. 循环肿瘤细胞

循环肿瘤细胞(circulating tumor cells, CTC)是指从原发肿瘤脱落进入脉管系统的恶性细胞,胰腺癌患者所有阶段的血液中均能发现CTC,以及CTC的存在与存活率差之间有明显关联,与没有CTC的患者相比,具有CTC的患者预后更差 [45]。CTC目前已获得美国食品药品监督管理局(FDA)的批准,可作为许多癌症治疗过程的辅助性预后指标 [46]。Colin等 [47],采用NanoVelcro/LCM对12例胰腺癌患者的单个CTC的KRAS突变测序,发现100%患者存在的CTC,并证实了92%的患者中至少一个CTC中存在KRAS突变。有学者在胰腺上皮内瘤变的小鼠模型中发现了CTC,这表明在胰腺癌的早期阶段已有CTC存在,这意味着CTC可能作为胰腺癌早期诊断标志物 [48]。但由于目前检测技术限制,难以应用于临床,随着技术的发展,CTC有望成为胰腺癌的循环生物标志物。

5. 炎症因子

炎症因子包括趋化因子、生长因子和细胞因子。目前越来越多的证据表明白介素(interleukin, IL)是胰腺癌的潜在生物标志物。Feng等 [49] 检测68例胰腺癌患者的血清IL-1b、IL-2、IL-6、IL-8、IL-10、IL-13、IL -15和IL-23的水平,结果显示IL-6、IL-8和IL-10的水平与预后明显相关。联合IP-10、IL-6、PDGF和CA19-9区分胰腺癌和良性疾病的能力优于CA19-9 [50]。另外,血清CRP、IL-6、可溶性肿瘤坏死因子受体II型(sTNF-RII)和巨噬细胞抑制性细胞因子1 (MIC-1)水平与胰腺癌患者生存呈负相关 [51]。胰腺癌患者的血清CXCL8水平显着高于慢性和急性胰腺炎以及其他消化系统肿瘤患者,诊断能力可能优于CA19-9和CEA [52]。此外,血清CXCL-16和IL-1B有更好的预测胰腺癌恶病质的能力 [53]。亮氨酸α2-糖蛋白-1 (LRG-1)是人血清中的一种炎症蛋白,最近的研究表明,胰腺癌患者的血清LRG-1水平升高 [54]。这些发现证明了炎症因子对诊断胰腺癌的意义。

6. 总结与展望

胰腺腺癌是一种致命疾病,由于起病隐匿,早期诊断困难,只有极少数患者可以被治愈,仍缺乏真正有效用于筛查该疾病的临床有用标记物,早期诊断仍是世界难题。CA19-9、CEA和CA125是目前常用的血清学标志物,但敏感性和特异性欠佳,早期诊断价值更差,漏诊或误诊率较大。目前越来越多新型生物标志物的涌现(如miRNA、DNA甲基化和外泌体等),成为研究热点,但目前仍没有能应用于临床的最优选择,未来需要大量实验去比较、验证和确认。随着相关技术的成熟与完善,未来可能会发现更灵敏、特异性更高的循环生物标志物以发现早期胰腺癌。

NOTES

*通讯作者。

参考文献

[1] Lamerz, R. (1999) Role of Tumour Markers, Cytogenetics. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 10, 145-149.
https://doi.org/10.1093/annonc/10.suppl_4.S145
[2] Huang, Z. and Liu, F. (2014) Diagnostic Value of Serum Carbohydrate Antigen 19-9 in Pancreatic Cancer: A Meta-Analysis. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 35, 7459-7465.
https://doi.org/10.1007/s13277-014-1995-9
[3] Levy, C., Lymp, J., Angulo, P., et al. (2005) The Value of Serum CA 19-9 in Predicting Cholangiocarcinomas in Patients with Primary Sclerosing Cholangitis. Digestive Diseases and Sciences, 50, 1734-1740.
https://doi.org/10.1007/s10620-005-2927-8
[4] Marrelli, D., Caruso, S., Pedrazzani, C., et al. (2009) CA19-9 Serum Levels in Obstructive Jaundice: Clinical Value in Benign and Malignant Conditions. American Journal of Surgery, 198, 333-339.
https://doi.org/10.1016/j.amjsurg.2008.12.031
[5] Hata, S., Sakamoto, Y., Yamamoto, Y., et al. (2012) Prognostic Impact of Postoperative Serum CA 19-9 Levels in Patients with Resectable Pancreatic Cancer. Annals of Surgical Oncology, 19, 636-641.
https://doi.org/10.1245/s10434-011-2020-9
[6] Steinberg, W. (1990) The Clinical Utility of the CA 19-9 Tumor-Associated Antigen. The American Journal of Gastroenterology, 85, 350-355.
[7] Kim, J., Lee, Y.S., Hwang, I.K., et al. (2015) Postoperative Carcinoembryonic Antigen as a Complementary Tumor Marker of Carbohydrate Antigen 19-9 in Pancreatic Ductal Adenocarcinoma. Journal of Korean Medical Science, 30, 259-263.
https://doi.org/10.3346/jkms.2015.30.3.259
[8] Poruk, K.E., Gay, D.Z., Brown, K., et al. (2013) The Clinical Utility of CA 19-9 in Pancreatic Adenocarcinoma: Diagnostic and Prognostic Updates. Current Molecular Medicine, 13, 340-351.
https://doi.org/10.2174/156652413805076876
[9] Luo, G., Liu, C., Guo, M., et al. (2017) Potential Biomarkers in Lewis Negative Patients with Pancreatic Cancer. Annals of Surgery, 265, 800-805.
https://doi.org/10.1097/SLA.0000000000001741
[10] Gu, Y.L., Lan, C., Pei, H., et al. (2015) Applicative Value of Serum CA19-9, CEA, CA125 and CA242 in Diagnosis and Prognosis for Patients with Pancreatic Cancer Treated by Concurrent Chemoradiotherapy. Asian Pacific Journal of Cancer Prevention: APJCP, 16, 6569-6573.
https://doi.org/10.7314/APJCP.2015.16.15.6569
[11] van Manen, L., Groen, J.V., Putter, H., et al. (2020) Elevated CEA and CA19-9 Serum Levels Independently Predict Advanced Pancreatic Cancer at Diagnosis. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 25, 186-193.
https://doi.org/10.1080/1354750X.2020.1725786
[12] Saluja, A. and Dudeja, V. (2008) Heat Shock Proteins in Pancreatic Diseases. Journal of Gastroenterology and Hepatology, 23, S42-S45.
https://doi.org/10.1111/j.1440-1746.2007.05272.x
[13] Schäfer, C., Seeliger, H., Bader, D.C., et al. (2012) Heat Shock Protein 27 as a Prognostic and Predictive Biomarker in Pancreatic Ductal Adenocarcinoma. Journal of Cellular and Molecular Medicine, 16, 1776-1791.
https://doi.org/10.1111/j.1582-4934.2011.01473.x
[14] Sun, C., Rosendahl, A.H., Ansari, D., et al. (2011) Proteome-Based Biomarkers in Pancreatic Cancer. World Journal of Gastroenterology, 17, 4845-4852.
https://doi.org/10.3748/wjg.v17.i44.4845
[15] Mori-Iwamoto, S., Kuramitsu, Y., Ryozawa, S., et al. (2007) Proteomics Finding Heat Shock Protein 27 as a Biomarker for Resistance of Pancreatic Cancer Cells to Gemcitabine. International Journal of Oncology, 31, 1345-1350.
https://doi.org/10.3892/ijo.31.6.1345
[16] Duarte, B.D.P. and Bonatto, D. (2018) The Heat Shock Protein 47 as a Potential Biomarker and a Therapeutic Agent in Cancer Research. Journal of Cancer Research and Clinical Oncology, 144, 2319-2328.
https://doi.org/10.1007/s00432-018-2739-9
[17] Dutta, S.K., Girotra, M., Singla, M., et al. (2012) Serum HSP70: A Novel Biomarker for Early Detection of Pancreatic Cancer. Pancreas, 41, 530-534.
https://doi.org/10.1097/MPA.0b013e3182374ace
[18] Kosanam, H., Prassas, I., Chrystoja, C.C., et al. (2013) Laminin, Gamma 2 (LAMC2): A Promising New Putative Pancreatic Cancer Biomarker Identified by Proteomic Analysis of Pancreatic Adenocarcinoma Tissues. Molecular & Cellular Proteomics: MCP, 12, 2820-2832.
https://doi.org/10.1074/mcp.M112.023507
[19] Zhang, X., Huang, S., Guo, J., et al. (2016) Insights into the Distinct Roles of MMP-11 in Tumor Biology and Future Therapeutics (Review). International Journal of Oncology, 48, 1783-1793.
https://doi.org/10.3892/ijo.2016.3400
[20] Lee, J., Lee, J. and Kim, J.H. (2019) Identification of Matrix Metalloproteinase 11 as a Prognostic Biomarker in Pancreatic Cancer. Anticancer Research, 39, 5963-5971.
https://doi.org/10.21873/anticanres.13801
[21] Honda, K., Kobayashi, M., Okusaka, T., et al. (2015) Plasma Biomarker for Detection of Early Stage Pancreatic Cancer and Risk Factors for Pancreatic Malignancy Using Antibodies for Apolipoprotein-AII Isoforms. Scientific Reports, 5, Article No. 15921.
https://doi.org/10.1038/srep15921
[22] Kuwatani, M., Kawakami, H., Kubota, Y., et al. (2019) Verification of the Effectiveness of Fucosylated Haptoglobin as a Pancreatic Cancer Marker in Clinical Diagnosis. Pancreatology: Official Journal of the International Association of Pancreatology (IAP), 19, 569-577.
https://doi.org/10.1016/j.pan.2019.04.007
[23] Jenkinson, C., Elliott, V., Menon, U., et al. (2015) Evaluation in Pre-Diagnosis Samples Discounts ICAM-1 and TIMP-1 as Biomarkers for Earlier Diagnosis of Pancreatic Cancer. Journal of Proteomics, 113, 400-402.
https://doi.org/10.1016/j.jprot.2014.10.001
[24] Kishikawa, T., Otsuka, M., Ohno, M., et al. (2015) Circulating RNAs as New Biomarkers for Detecting Pancreatic Cancer. World Journal of Gastroenterology, 21, 8527-8540.
https://doi.org/10.3748/wjg.v21.i28.8527
[25] Bartel, D.P. (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-233.
https://doi.org/10.1016/j.cell.2009.01.002
[26] Brennecke, J., Stark, A., Russell, R.B., et al. (2005) Principles of microRNA-Target Recognition. PLoS Biology, 3, e85.
https://doi.org/10.1371/journal.pbio.0030085
[27] Munker, R. and Calin, G.A. (2011) MicroRNA Profiling in Cancer. Clinical Science (London, England: 1979), 121, 141-158.
https://doi.org/10.1042/CS20110005
[28] Qu, K., Zhang, X., Lin, T., et al. (2017) Circulating miRNA-21-5p as a Diagnostic Biomarker for Pancreatic Cancer: Evidence from Comprehensive miRNA Expression Profiling Analysis and Clinical Validation. Scientific Reports, 7, Article No. 1692.
https://doi.org/10.1038/s41598-017-01904-z
[29] Li, A., Yu, J., Kim, H., et al. (2013) MicroRNA Array Analysis Finds Elevated Serum miR-1290 Accurately Distinguishes Patients with Low-Stage Pancreatic Cancer from Healthy and Disease Controls. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19, 3600-3610.
https://doi.org/10.1158/1078-0432.CCR-12-3092
[30] Fleischhacker, M. and Schmidt, B. (2007) Circulating Nucleic Acids (CNAs) and Cancer—A Survey. Biochimica et Biophysica Acta, 1775, 181-232.
https://doi.org/10.1016/j.bbcan.2006.10.001
[31] Yi, J.M., Guzzetta, A.A., Bailey, V.J., et al. (2013) Novel Methylation Biomarker Panel for the Early Detection of Pancreatic Cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19, 6544-6555.
https://doi.org/10.1158/1078-0432.CCR-12-3224
[32] Eissa, M.A.L., Lerner, L., Abdelfatah, E., et al. (2019) Promoter Methylation of ADAMTS1 and BNC1 as Potential Biomarkers for Early Detection of Pancreatic Cancer in Blood. Clinical Epigenetics, 11, 59.
https://doi.org/10.1186/s13148-019-0650-0
[33] Li, S., Wang, L., Zhao, Q., et al. (2020) Genome-Wide Analysis of Cell-Free DNA Methylation Profiling for the Early Diagnosis of Pancreatic Cancer. Frontiers in Genetics, 11, Article ID: 596078.
https://doi.org/10.3389/fgene.2020.596078
[34] Zhou, H., Zhu, Y., Wei, F., et al. (2019) Significance of MUC2 Gene Methylation Detection in Pancreatic Cancer Diagnosis. Pancreatology: Official Journal of the International Association of Pancreatology (IAP), 19, 1049-1053.
https://doi.org/10.1016/j.pan.2019.09.012
[35] Li, X.B., Ma, J., Liu, Z.W., et al. (2019) Non-Invasive Detection of Pancreatic Cancer by Measuring DNA Methylation of Basonuclin 1 and Septin 9 in Plasma. Chinese Medical Journal, 132, 1504-1506.
https://doi.org/10.1097/CM9.0000000000000257
[36] Chang, J.C. and Kundranda, M. (2017) Novel Diagnostic and Predictive Biomarkers in Pancreatic Adenocarcinoma. International Journal of Molecular Sciences, 18, 667.
https://doi.org/10.3390/ijms18030667
[37] Tao, L., Zhou, J., Yuan, C., et al. (2019) Metabolomics Identifies Serum and Exosomes Metabolite Markers of Pancreatic Cancer. Metabolomics: Official Journal of the Metabolomic Society, 15, 86.
https://doi.org/10.1007/s11306-019-1550-1
[38] Herreros-Villanueva, M. and Bujanda, L. (2016) Glypican-1 in Exosomes as Biomarker for Early Detection of Pancreatic Cancer. Annals of Translational Medicine, 4, 64.
https://doi.org/10.21037/atm.2016.03.44
[39] Melo, S.A., Luecke, L.B., Kahlert, C., et al. (2015) Glypican-1 Identifies Cancer Exosomes and Detects Early Pancreatic Cancer. Nature, 523, 177-182.
https://doi.org/10.1038/nature14581
[40] Xiao, D., Dong, Z., Zhen, L., et al. (2020) Combined Exosomal GPC1, CD82, and Serum CA19-9 as Multiplex Targets: A Specific, Sensitive, and Reproducible Detection Panel for the Diagnosis of Pancreatic Cancer. Molecular Cancer Research: MCR, 18, 300-310.
https://doi.org/10.1158/1541-7786.MCR-19-0588
[41] Buscail, E., Chauvet, A., Quincy, P., et al. (2019) CD63-GPC1-Positive Exosomes Coupled with CA19-9 Offer Good Diagnostic Potential for Resectable Pancreatic Ductal Adenocarcinoma. Translational Oncology, 12, 1395-1403.
https://doi.org/10.1016/j.tranon.2019.07.009
[42] Kimura, H., Yamamoto, H., Harada, T., et al. (2019) CKAP4, a DKK1 Receptor, Is a Biomarker in Exosomes Derived from Pancreatic Cancer and a Molecular Target for Therapy. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25, 1936-1947.
https://doi.org/10.1158/1078-0432.CCR-18-2124
[43] Lux, A., Kahlert, C., Grützmann, R., et al. (2019) c-Met and PD-L1 on Circulating Exosomes as Diagnostic and Prognostic Markers for Pancreatic Cancer. International Journal of Molecular Sciences, 20, 3305.
https://doi.org/10.3390/ijms20133305
[44] Que, R., Ding, G., Chen, J., et al. (2013) Analysis of Serum Exosomal microRNAs and Clinicopathologic Features of Patients with Pancreatic Adenocarcinoma. World Journal of Surgical Oncology, 11, 219.
https://doi.org/10.1186/1477-7819-11-219
[45] Poruk, K.E., Valero, V., Saunders, T., et al. (2016) Circulating Tumor Cell Phenotype Predicts Recurrence and Survival in Pancreatic Adenocarcinoma. Annals of Surgery, 264, 1073-1081.
https://doi.org/10.1097/SLA.0000000000001600
[46] Allard, W.J., Matera, J., Miller, M.C., et al. (2004) Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas But Not in Healthy Subjects or Patients with Nonmalignant Diseases. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10, 6897-6904.
https://doi.org/10.1158/1078-0432.CCR-04-0378
[47] Court, C.M., Ankeny, J.S., Sho, S., et al. (2016) Reality of Single Circulating Tumor Cell Sequencing for Molecular Diagnostics in Pancreatic Cancer. The Journal of Molecular Diagnostics: JMD, 18, 688-696.
https://doi.org/10.1016/j.jmoldx.2016.03.006
[48] Rhim, A., Mirek, E., Aiello, N., et al. (2012) EMT and Dissemination Precede Pancreatic Tumor Formation. Cell, 148, 349-361.
https://doi.org/10.1016/j.cell.2011.11.025
[49] Feng, L., Qi, Q., Wang, P., et al. (2018) Serum Levels of IL-6, IL-8, and IL-10 Are Indicators of Prognosis in Pancreatic Cancer. The Journal of International Medical Research, 46, 5228-5236.
https://doi.org/10.1177/0300060518800588
[50] Shaw, V.E., Lane, B., Jenkinson, C., et al. (2014) Serum Cytokine Biomarker Panels for Discriminating Pancreatic Cancer from Benign Pancreatic Disease. Molecular Cancer, 13, 114.
https://doi.org/10.1186/1476-4598-13-114
[51] Babic, A., Schnure, N., Neupane, N.P., et al. (2018) Plasma Inflammatory Cytokines and Survival of Pancreatic Cancer Patients. Clinical and Translational Gastroenterology, 9, 145.
https://doi.org/10.1038/s41424-018-0008-5
[52] Litman-Zawadzka, A., Łukaszewicz-Zając, M., Gryko, M., et al. (2018) Serum Chemokine CXCL8 as a Better Biomarker for Diagnosis and Prediction of Pancreatic Cancer than Its Specific Receptor CXCR2, C-Reactive Protein, and Classic Tumor Markers CA 19-9 and CEA. Polish Archives of Internal Medicine, 128, 524-531.
https://doi.org/10.20452/pamw.4307
[53] Fogelman, D.R., Morris, J., Xiao, L., et al. (2017) A Predictive Model of Inflammatory Markers and Patient-Reported Symptoms for Cachexia in Newly Diagnosed Pancreatic Cancer Patients. Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer, 25, 1809-1817.
https://doi.org/10.1007/s00520-016-3553-z
[54] Furukawa, K., Kawamoto, K., Eguchi, H., et al. (2015) Clinicopathological Significance of Leucine-Rich α2-Glyco- protein-1 in Sera of Patients with Pancreatic Cancer. Pancreas, 44, 93-98.
https://doi.org/10.1097/MPA.0000000000000205