肝脏昼夜节律与肝脏代谢和疾病相关性的研究进展
Study on the Correlation between Circadian Rhythm and Liver Metabolism and Disease
DOI: 10.12677/ACM.2021.115310, PDF, HTML, XML, 下载: 440  浏览: 5,578 
作者: 钟慧杰:昆明理工大学医学院,云南 昆明;云南省第一人民医院感染疾病科及肝病科,云南 昆明
关键词: 昼夜节律肝脏代谢肝病节律钟基因Circadian Rhythm Liver Metabolism Liver Disease Circadian Clock Gene
摘要: 昼夜节律系统由位于下丘脑视交叉上核的母钟以及位于外周组织的子钟组成。肝脏的生物钟系统在调节新陈代谢和能量稳态方面起着重要作用,葡萄糖、胆汁酸、脂质以及胆固醇的代谢都受到昼夜节律调控。肝脏昼夜节律紊乱加速了诸如脂肪肝,肝硬化,肝炎和肝癌等肝脏疾病的发展。本文归纳总结了近年来关于肝脏昼夜节律与肝脏代谢和疾病相关性的研究进展。
Abstract: The circadian rhythm system consists of a central clock located in the suprachiasmatic nucleus in the hypothalamus and peripheral clocks in peripheral tissues. The biological clock system of liver plays an important role in liver metabolism, asglucose, bile acids, lipids and cholesterol are all subject to timed circadian control. Disruption of the circadian rhythm accelerates the development of liver diseases such as fatty liver, cirrhosis, hepatitis and liver cancer. This article summarized the recent research progress on the correlation between liver circadian rhythm and liver metabolism and disease.
文章引用:钟慧杰. 肝脏昼夜节律与肝脏代谢和疾病相关性的研究进展[J]. 临床医学进展, 2021, 11(5): 2166-2171. https://doi.org/10.12677/ACM.2021.115310

1. 前言

2017年诺贝尔医学奖的揭晓标志着人类认识到昼夜节律在生理和疾病中发挥的重要作用。昼夜节律系统由位于下丘脑视交叉上核(Suprachiasmatic Nucleus, SCN)的母钟以及位于外周组织的子钟组成 [1]。肝脏子钟参与调节肝脏新陈代谢和维持肝脏稳态。越来越多的研究表明,昼夜节律紊乱加速了诸如脂肪肝,肝硬化,肝炎和肝癌等肝脏疾病的发展,同时这些疾病也会破坏昼夜节律 [1]。本文就肝脏昼夜节律系统与肝脏生理和疾病的相关性作一综述。

2. 肝脏新陈代谢与昼夜节律

地球24小时自转所产生的昼夜节律,使生物能够预测外部环境的变化(如光–暗周期),并通过调节节律钟驱动的生理功能做出反应,由此进化出了一套使机体生理和行为与昼夜周期同步的内源性调节机制,形成生物钟系统 [2]。哺乳动物的生物钟系统是分级的,由下丘脑视交叉上核(Suprachiasmatic Nucleus, SCN)的母钟以及位于外周组织的子钟组成 [3]。视网膜感光细胞(视杆细胞和视锥细胞)将接收到的光能转化为电脉冲,并通过视网膜神经节细胞将其传递到大脑。表达光色素黑视素的视网膜神经节细胞亚群对可见光谱本质上敏感,并直接将光信号传递到SCN [4] [5]。换而言之,受光线引导的SCN是中枢节律钟,SCN-节律钟通过体液和神经元机制发挥作用向外周器官传递“授时因子”,从而使外周节律钟与中枢节律钟同步。在分子水平上,中央SCN母钟和外周子钟的成分是相同的,并且存在多个转录–翻译反馈系统,并产生一个周期为24小时的细胞自主自我维持的节律钟振荡 [6] - [11]。该振荡器的中心是由正性调控转录因子的异源二聚体BMAL1/CLOCK组成,启动反馈基因—REV-ERB,周期基因(PER1, PER2, PER3)和隐花色素基因(CRY1, CRY2)的转录与翻译;反之,PER1/2和CRY1/2蛋白异二聚抑制BMAL1/CLOCK复合物的转录活性,从而最终抑制它们各自的表达 [4] - [11]。当PER和CRY蛋白被降解后,负反馈结束,又开始一个新的24小时的周期循环 [12] [13]。

在哺乳动物中,不同脏器的众多基因的表达显示出昼夜节律性,其中肝脏就有约20% 的转录组是呈节律性表达的。中枢节律钟通过激素来调节外周组织的昼夜节律钟:垂体收到来自视交叉上核的信号后,刺激褪黑素和糖皮质激素分泌进入循环系统,驯化肝脏等组织的昼夜节律 [14]。细胞自主的昼夜节律振荡存在于包括肝脏在内的外周器官中,在营养物质和外源物质的合成代谢和分解代谢中具有重要的生理作用。参与这些代谢功能的重要基因具有昼夜节律性,并调节肝脏的昼夜时钟系统 [15] [16]。

肝脏的生物钟系统在调节新陈代谢和能量稳态方面起着重要作用,葡萄糖、胆汁酸、脂质以及胆固醇的代谢都受到昼夜节律调控 [17]。时钟基因突变的动物表现出葡萄糖和脂质代谢受损,且个体容易出现因饮食诱导的肥胖和代谢功能障碍,能量代谢的改变和生物钟的紊乱两者的相互作用会导致恶性循环,从而导致糖尿病和其他代谢疾病,这为昼夜节律与代谢稳态之间的联系提供了有力的证据 [18]。人体血浆葡萄糖浓度以及葡萄糖耐量呈现昼夜节律性,早期研究表明葡萄糖耐量和胰岛素敏感性在晚上相比于早晨更低 [19]。昼夜节律调节是维持葡萄糖稳态的内在机制之一,一项对糖尿病患者进行的单核苷酸多态性研究证实了BMAL1与高血压和Ⅱ型糖尿病的易感性有关;另外,全基因组关联分析也表明时钟基因可以作为糖尿病的候选基因 [18]。昼夜节律紊乱导致的胆汁酸稳态丧失可能是肝脏代谢改变的早期事件之一。胆汁酸是胆固醇在肝脏分解代谢的最终产物,该过程由胆固醇7α-羟基化限速酶(CYP7A1)催化。CYP7A1基因表达受昼夜节律调节,在人血清中,CYP7A1酶活性呈周期性变化。研究表明时钟基因REV-ERBα可通过小异源二聚体伴侣受体正向调控CYP7A1基因的转录;另外,PER1/2双基因敲除的小鼠CYP7A1和其他关键胆汁酸酶表达异常,表明时钟基因间接调节胆汁酸合成 [17] [20]。除此之外,昼夜节律在调节脂质代谢方面也发挥着重要作用。昼夜节律紊乱可诱导肝脏中脂质的堆积,时钟基因突变的小鼠表现为嗜食和肥胖,且伴有高血糖、高血脂和脂肪肝变性 [21],同时高脂饮食可影响小鼠外周生物钟功能,抑制生物钟基因表达 [17]。有研究证实,血浆游离脂肪酸、甘油三酯和胆固醇的水平呈昼夜节律性,并且随着生物钟基因的突变而发生改变 [22]。

3. 昼夜节律紊乱影响肝脏疾病的发生发展

尽管大脑通过视网膜探测光线并调节整个身体的节律和褪黑素分泌,但肝脏有相对独立的昼夜节律系统以及褪黑素的产生。先前的研究表明,昼夜节律与各种肝脏疾病之间的关系以及节律或时钟基因表达的破坏可能促进肝脏脂肪变性、炎症或者癌症的发展 [23],反过来,肝脏疾病的发生与发展也会影响时钟基因和生物钟系统的功能。昼夜节律紊乱会加速各种慢性肝病的发展,而这些慢性肝病的持续发展都会进展到肝纤维化,甚至进一步恶化发展为肝硬化。昼夜节律和时钟基因有望成为治疗肝脏疾病的靶标,纠正昼夜节律絮乱可能是治疗肝脏疾病的一个不错的策略。

3.1. 昼夜节律与非酒精性脂肪性肝病

非酒精性脂肪性肝病(NAFLD)是目前发达国家慢性肝病的主要病因,全球NAFLD的患病率约为24%,且患病率随着肥胖和Ⅱ型糖尿病患者数量增加而增高 [24]。由NAFLD进展而成的非酒精性脂肪性肝炎(NASH)是一种可导致肝硬化、肝细胞癌、肝移植甚至死亡的潜在的进行性肝病 [25]。中央和外周昼夜节律的不协调是几乎所有代谢综合征和NAFLD的遗传、饮食或环境模型的核心特征 [21]。研究表明,BMAL1在调节脂肪储存、利用以及脂肪细胞分化中起重要作用。BMAL1的上调提高了脂肪细胞的脂质合成活性,BMAL1基因敲除的小鼠在正常饲养的情况下表现出葡萄糖不耐受、低胰岛素血症、脂肪储存减少、循环脂肪酸增加、肝脏异位脂肪形成增加以及肝脏脂肪变性 [26]。同样的,CLOCK基因也与NAFLD密切相关。与野生型小鼠的观察结果相反,CLOCK基因突变小鼠以肝脏脂肪变性、肥胖、高甘油三酯血症和高血糖为特征,全天脂质吸收增加,并且血浆甘油三脂的水平不会呈现昼夜节律性,全天都处于高水平状态 [22]。另外,目前正在研究作为NAFLD药物靶标的许多蛋白质(SREBP, ACC, PPARs)是由昼夜节律蛋白调节的。生物钟有望成为用作治疗NAFLD的靶标 [21]。

3.2. 昼夜节律与肝硬化

褪黑素是脑松果体分泌的一种激素,参与调节包括昼夜节律在内的多种生理功能。褪黑素可通过抑制氧化,炎症,肝星状细胞增殖以及肝细胞凋亡来预防肝损伤,从而抑制肝硬化的发展 [27]。有研究表明,在肝硬化患者中观察到的血浆褪黑素水平异常主要归咎于中枢昼夜节律功能障碍 [28]。肝硬化患者的中枢和外周昼夜节律紊乱,大部分患者会出现睡眠–觉醒节律障碍和褪黑素分泌节律改变 [1]。此外,还有研究表明四氯化碳诱导的小鼠急性肝纤维化会导致肝脏子钟昼夜节律絮乱,特别是纤维化肝脏中CRY2基因节律性表达异常,CRY2日节律受损,与对照组相比,CRY2在白天的表达水平明显降低。随着纤维化肝脏中时钟基因节律表达的改变,受生物钟调控的基因(如PPARA和POR)也会丧失正常的昼夜节律性 [29]。同样的,与野生型对照组相比,PER2基因敲除的小鼠经四氯化碳诱导后可导致更严重的肝纤维化 [1]。总之,肝脏纤维化的发生发展扰乱了肝脏时钟基因的昼夜节律性表达。

3.3. 昼夜节律与肝炎

慢性乙型肝炎病毒(HBV)感染是全球肝病和癌症的主要病因,目前还没有根治方法。昼夜节律因子BMAL1/CLOCK和REV-ERB是肝脏转录组的主要调节因子,最新的研究表明REV-ERBα调控牛磺胆酸钠共转运多肽(NTCP)的表达 [30]。NTCP是HBV的功能性受体,也是病毒感染宿主细胞的关键 [31]。Zhuang等人证实了REV-ERB可抑制NTCP的表达,其活性可抑制体内和体外HBV的转录和复制;同时还表明BMAL1能在体内和体外结合HBV基因组,调节病毒基因组的转录和病毒颗粒的生成 [30]。这些研究给治疗慢性HBV感染提供了新的思路。除此之外,一些研究也表明,体外培养的HBV或HCV感染的细胞存在异常的生物钟基因表达。在表达HCV 1b基因型核心蛋白的OR6细胞系中,PER2和CRY2蛋白表达均下调,相反的,PER2过表达降低了HCV的复制 [1]。

3.4. 昼夜节律与肝癌

昼夜节律的失调与肿瘤发生密切相关,昼夜节律调控细胞周期基因、细胞增殖基因、癌基因以及抑癌基因 [1]。肝细胞癌(HCC)是最具侵袭性的恶性肿瘤之一,且缺乏有效的治疗。持续的肝脏昼夜节律失调可通过改变CAR(组成性雄甾烷受体)的功能进一步推动NAFLD向HCC的转变 [32]。此外,Cui团队发现长链非编码RNA (IncRNA)通过扰乱肝脏昼夜节律加速HCC的发生发展 [33]。类似的,在人肝细胞癌组织活检样本中发现核心时钟基因的异常表达,并与肿瘤大小和长链非编码RNA水平升高相关 [34]。

4. 小结

肝脏昼夜节律已被证实参与调节肝脏新陈代谢和维持肝脏稳态。同时,肝脏昼夜节律紊乱加速了诸如脂肪肝,肝硬化,肝炎和肝癌等肝脏疾病的发展,但其作用机制还有待进一步探索。昼夜节律和时钟基因有望成为治疗肝脏疾病的靶标,纠正昼夜节律紊乱可能是治疗肝脏疾病的一个不错的策略。

参考文献

[1] Tahara, Y. and Shibata, S. (2016) Circadian Rhythms of Liver Physiology and Disease: Experimental and Clinical Evidence. Nature Reviews Gastroenterology & Hepatology, 13, 217-226.
https://doi.org/10.1038/nrgastro.2016.8
[2] Sahar, S. and Sassone-Corsi, P. (2012) Regulation of Metabolism: The Circadian Clock Dictates the Time. Trends in Endocrinology & Metabolism, 23, 1-8.
https://doi.org/10.1016/j.tem.2011.10.005
[3] Hastings, M.H., Reddy, A.B. and Maywood, E.S. (2003) A Clockwork Web: Circadian Timing in Brain and Periphery, in Health and Disease. Nature Reviews Neuroscience, 4, 649-661.
https://doi.org/10.1038/nrn1177
[4] LeGates, T.A., Fernandez, D.C. and Hattar, S. (2014) Light as a Central Modulator of Circadian Rhythms, Sleep and Affect. Nature Reviews Neuroscience, 15, 443-454.
https://doi.org/10.1038/nrn3743
[5] Takahashi, J.S., Hong, H.K., Ko, C.H. and McDearmon, E.L. (2008) The Genetics of Mammalian Circadian Order and Disorder: Implications for Physiology and Disease. Nature Reviews Genetics, 9, 764-775.
https://doi.org/10.1038/nrg2430
[6] Asher, G. and Schibler, U. (2011) Crosstalk between Components of Circadian and Metabolic Cycles in Mammals. Cell Metabolism, 13, 125-137.
https://doi.org/10.1016/j.cmet.2011.01.006
[7] Eckel-Mahan, K. and Sassone-Corsi, P. (2013) Metabolism and the Circadian Clock Converge. Physiological Reviews, 93, 107-135.
https://doi.org/10.1152/physrev.00016.2012
[8] Bass, J. (2012) Circadian Topology of Metabolism. Nature, 491, 348-356.
https://doi.org/10.1038/nature11704
[9] Feng, D. and Lazar, M.A. (2012) Clocks, Metabolism, and the Epigenome. Molecular Cell, 47, 158-167.
https://doi.org/10.1016/j.molcel.2012.06.026
[10] Asher, G. and Sassone-Corsi, P. (2015) Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell, 161, 84-92.
https://doi.org/10.1016/j.cell.2015.03.015
[11] Panda, S. (2016) Circadian Physiology of Metabolism. Science, 354, 1008-1015.
https://doi.org/10.1126/science.aah4967
[12] Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., et al. (2000) Resetting Central and Peripheral Circadian Oscillators in Transgenic rats. Science, 288, 682-685.
https://doi.org/10.1126/science.288.5466.682
[13] Welsh, D.K., Takahashi, J.S. and Kay, S.A. (2010) Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annual Review of Physiology, 72, 551-577.
https://doi.org/10.1146/annurev-physiol-021909-135919
[14] Pinato, D.J. and Stebbing, J. (2016) Melatonin: Resetting the Clock of Cancer Progression? The Lancet Oncology, 17, 23-24.
https://doi.org/10.1016/S1470-2045(15)00571-9
[15] Storch, K.F., Paz, C., Signorovitch, J., Raviola, E., Pawlyk, B., Li, T., et al. (2007) Intrinsic Circadian Clock of the Mammalian Retina: Importance for Retinal Processing of Visual Information. Cell, 130, 730-741.
https://doi.org/10.1016/j.cell.2007.06.045
[16] Sadacca, L.A., Lamia, K.A., Delemos, A.S., Blum, B. and Weitz, C.J. (2011) An Intrinsic Circadian Clock of the Pancreas Is Required for Normal Insulin Release and Glucose Homeostasis in Mice. Diabetologia, 54, 120-124.
https://doi.org/10.1007/s00125-010-1920-8
[17] Ferrell, J.M. and Chiang, J.Y.L. (2015) Circadian Rhythms in Liver Metabolism and Disease. Acta Pharmaceutica Sinica B, 5, 113-122.
https://doi.org/10.1016/j.apsb.2015.01.003
[18] Tong, X. and Yin, L. (2013) Circadian Rhythms in Liver Physiology and Liver Diseases. Comprehensive Physiology, 3, 917-940.
https://doi.org/10.1002/cphy.c120017
[19] Mason, I.C., Qian, J., Adler, G.K. and Scheer, F.A.J.L. (2020) Impact of Circadian Disruption on Glucose Metabolism: Implications for Type 2 Diabetes. Diabetologia, 63, 462-472.
https://doi.org/10.1007/s00125-019-05059-6
[20] Saran, A.R., Dave, S. and Zarrinpar, A. (2020) Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology, 158, 1948-1966. e1.
https://doi.org/10.1053/j.gastro.2020.01.050
[21] Gooley, J.J. and Chua, E.C.P. (2014) Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics. Journal of Genetics and Genomics, 41, 231-250.
https://doi.org/10.1016/j.jgg.2014.04.001
[22] Mukherji, A., Bailey, S.M., Staels, B. and Baumert, T.F. (2019) The Circadian Clock and Liver Function in Health and Disease. Journal of Hepatology, 71, 200-211.
https://doi.org/10.1016/j.jhep.2019.03.020
[23] Sato, K., Meng, F., Francis, H., Wu, N., Chen, L., Kennedy, L., et al. (2020) Melatonin and Circadian Rhythms in Liver Diseases: Functional Roles and Potential Therapies. Journal of Pineal Research, 68, e12639.
https://doi.org/10.1111/jpi.12639
[24] Safari, Z. and Gérard, P. (2019) The Links between the Gut Microbiome and Non-Alcoholic Fatty Liver Disease (NAFLD). Cellular and Molecular Life Sciences, 76, 1541-1558.
https://doi.org/10.1007/s00018-019-03011-w
[25] Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544.
https://doi.org/10.1016/j.jhep.2018.10.033
[26] Shi, D., Chen, J., Wang, J., Yao, J., Huang, Y., Zhang, G., et al. (2019) Circadian Clock Genes in the Metabolism of Non-Alcoholic Fatty Liver Disease. Frontiers in Physiology, 10, Article No. 423.
https://doi.org/10.3389/fphys.2019.00423
[27] Hu, C., Zhao, L., Tao, J. and Li, L. (2019) Protective Role of Melatonin in Early-Stage and End-Stage Liver Cirrhosis. Journal of Cellular and Molecular Medicine, 23, 7151-7162.
https://doi.org/10.1111/jcmm.14634
[28] Montagnese, S., Middleton, B., Mani, A.R., Skene, D.J. and Morgan, M.Y. (2010) On the Origin and the Consequences of Circadian Abnormalities in Patients with Cirrhosis. American Journal of Gastroenterology, 105, 1773-1781.
https://doi.org/10.1038/ajg.2010.86
[29] Chen, P., Kakan, X. and Zhang, J. (2010) Altered Circadian Rhythm of the Clock Genes in Fibrotic Livers Induced by Carbon Tetrachloride. FEBS Letters, 584, 1597-1601.
https://doi.org/10.1016/j.febslet.2010.03.019
[30] Zhuang, X., Forde, D., Tsukuda, S., D’Arienzo, V., Mailly, L., Harris, J.M., et al. (2021) Circadian Control of Hepatitis B Virus Replication. Nature Communications, 12, Article No. 1658.
https://doi.org/10.1038/s41467-021-21821-0
[31] Ni, Y., Lempp, F.A., Mehrle, S., Nkongolo, S., Kaufman, C., Fälth, M., et al. (2014) Hepatitis B and D Viruses Exploit Sodium Taurocholate Co-Transporting Polypeptide for Species-Specific Entry into Hepatocytes. Gastroenterology, 146, 1070-1083. e6.
https://doi.org/10.1053/j.gastro.2013.12.024
[32] Fu, T., Zhao, X. and Evans, R.M. (2016) Liver Cancer Checks in When Bile Acid Clocks Out. Cancer Cell, 30, 827-828.
https://doi.org/10.1016/j.ccell.2016.11.012
[33] Cui, M., Zheng, M., Sun, B., Wang, Y., Ye, L. and Zhang, X. (2015) A Long Noncoding RNA Perturbs the Circadian Rhythm of Hepatoma Cells to Facilitate Hepatocarcinogenesis. Neoplasia, 17, 79-88.
https://doi.org/10.1016/j.neo.2014.11.004
[34] Lin, Y.M., Chang, J.H., Yeh, K.T., Yang, M.Y., Liu, T.C., Lin, S.F., et al. (2008) Disturbance of Circadian Gene Expression in Hepatocellular Carcinoma. Molecular Carcinogenesis, 47, 925-933.
https://doi.org/10.1002/mc.20446