术后谵妄研究进展
Research Progress of Postoperative Delirium
DOI: 10.12677/ACM.2021.115329, PDF, HTML, XML, 下载: 380  浏览: 675 
作者: 李 镇, 高金贵*:河北医科大学第二医院麻醉科,河北 石家庄;高逸龙:郑州大学医学院2018级临床6班,河南 郑州
关键词: 术后谵妄危险因素预防和干预Postoperative Delirium Risk Factors Prevention and Intervention
摘要: 术后谵妄(POD)是老年患者最常见的手术后并发症之一,其严重影响患者恢复,与远期认知功能损害相关,甚至可增加死亡率。POD的发生与多种因素相关,且目前尚无特异性药物治疗,这要求麻醉医师应根据患者个体情况做到早期识别、尽早干预,采取多模式的预防及干预措施,从而避免POD的发生进展。本文对POD的发病机制、危险因素、诊断、预防和干预措施进行综述,以期为POD的临床诊疗提供参考。
Abstract: Postoperative delirium (POD) is one of the most common postoperative complications in elderly patients, which seriously affects patient recovery, is associated with long-term cognitive impairment, and may even increase mortality. The occurrence of POD is associated with a variety of factors, and there is currently no specific drug therapy, which requires anesthesiologists to achieve early recognition and early intervention according to the individual situation of patients, and to take multi-mode prevention and intervention measures to avoid the occurrence and progression of POD. In this paper, the pathogenesis, risk factors, diagnosis, prevention and intervention measures of POD were reviewed, in order to provide reference for the clinical diagnosis and treatment of POD.
文章引用:李镇, 高逸龙, 高金贵. 术后谵妄研究进展[J]. 临床医学进展, 2021, 11(5): 2279-2287. https://doi.org/10.12677/ACM.2021.115329

1. 引言

术后谵妄(postoperative delirium, POD)是发生在术后7 d内或出院前的谵妄,根据世界卫生组织《国际疾病分类》第10版(ICD-10),谵妄是一种发生在手术后的急性意识障碍,临床特征为术后急性起病、注意力难以集中、意识障碍、思维紊乱伴有睡眠–觉醒周期紊乱等,以意识错乱评估方法(CAM)作为诊断标准。根据其临床表现,谵妄分为三种类型:过度活跃型、低活跃型和混合型 [1]。一项荟萃分析显示,最常见的类型是低活跃型,其次是混合型和过度活跃型 [2]。过度活跃型常表现为对周围环境非常敏感,出现幻视幻听,情绪紧张、恐惧,觉醒阈值提高等,因为此类型最易被发现,所以治疗较为及时。低活跃型常表现为面无表情、嗜睡、警觉性降低、精神运动迟缓、言语减少等,容易误诊为抑郁症,由于难以发现,因此预后最差,包括死亡率增加以及住院时间延长等 [3] [4]。混合型为上述两种情况交替出现。的交替发作伴随人口老龄化、外科和麻醉水平进步,老年人及共病患者外科手术增多,很多人在术后要经历短暂的谵妄过程。POD是老年群体最常见的手术后并发症之一,大约5%~15%的非心脏手术老年患者发生了POD,其中髋部手术患者其发生率约为21.5%,而心脏手术出现POD的几率则更高,可达50%。术后谵妄严重影响患者的恢复,使患者住院时间延长、增加再住院率和死亡率,并与长期认知功能损害相关 [5],给患者和整个社会带来了严重的社会问题和经济压力 [6]。通过对术后谵妄机制及危险因素研究,能在早期进行预防,降低其带来的不利影响。

2. 发病机制

关于术后谵妄的发病机制目前研究尚不明确,可能以下几种机制相关:

2.1. 神经炎症

急性外周炎症刺激(来自感染性、外科性或创伤性病因)诱导脑实质细胞的活化和中枢神经系统(CNS)中促炎细胞因子和炎性介质的表达,其诱导神经元和突触功能障碍以及表现为谵妄的神经行为和认知症状 [7]。外周炎性因子释放,损伤血脑屏障,这被认为是神经炎症发展的初始事件。越来越多的证据表明神经元损伤可能在谵妄的发生发展中起到作用,S100β可能是潜在的神经损伤生物标记物之一,研究显示伴发谵妄的患者脑脊液S100β水平升高,同时伴有阿尔茨海默病生物标志物Tau蛋白的水平增高,提示先前存在的星形胶质细胞活化和tau蛋白导致了易感性 [8];Tau是一种微管稳定蛋白,主要位于神经元中,但在星形胶质细胞和少突胶质细胞中也低水平表达,Tau蛋白与谵妄发生率和严重程度具有相关性,随着时间推移,Tau蛋白对谵妄的影响逐渐减弱 [9]。神经丝轻蛋白(NfL),一种高度表达的圆柱形中间丝蛋白,为有髓轴突提供结构支持,已发现在多种疾病中血液中含量升高,包括中风、TBI病、多发性硬化、AD等,许多证据表明NfL可以作为预测谵妄和长期认知功能下降风险的生物标志物。有研究表明,基线NfL水平较高患者更易出现谵妄,提示其是易感因素之一,但谵妄与术后即刻的NfL水平升高更相关 [10]。持续高水平的神经元特异性烯醇化酶(NSE)可能是识别认知损害的另一个生物标志物,NSE是神经元和外周神经内分泌细胞的高度特异性标志物,在谵妄患者中其血浆浓度可见升高。接受髋部骨折手术的老年患者中进行的研究表明,谵妄与皮质醇、IL-6、IL-8、CRP血液水平升高有关,术前CRP和IL-6浓度的增高预示了术后谵妄风险的增加 [11]。另一项研究表明急诊入院的患者测得的血浆IL-6、IL-8与谵妄持续时间延长显著相关 [12]。TNF-α和IL-6通过降低神经血管内皮之间TJ相关蛋白的表达来干扰血脑屏障的完整性,而血脑屏障的破坏被认为是神经炎症的标志 [13]。神经保护素1 (NPD1)是一种新的脂质衍生的SPMs介质,通过其抗炎和促分解作用,有助于老年小鼠术后POD样行为的恢复,且减弱了创伤后TNF-α和IL-6的全身释放 [14]。

2.2. 氧化应激

一些人发现氧化应激和/或抗氧化剂缺乏会增加对脑组织的损伤,并导致认知能力下降,不可逆退化。在该样本中,与非术后谵妄患者相比,发生谵妄的患者术前抗氧化酶过氧化氢酶(通常由身体产生,作为对抗自由基诱导损伤的主要内源性防御)水平明显较低 [15]。

2.3. 神经递质假说

神经递质紊乱可能是POD进展的主要原因,与谵妄相关的最常见的神经递质包括多巴胺或谷氨酸释放过量。多巴胺是一种内源性中枢神经递质,是儿茶酚胺合成途径中去甲肾上腺素的直接前体,过量多巴胺是谵妄发病机制中最常见的神经递质失衡之一 [16]。胆碱能功能的缺陷被认为会导致谵妄和认知能力下降,乙酰胆碱被认为与神经可塑性相关,其合成涉及各种前体、酶和受体,这些成分的功能障碍会导致谵妄 [17]。乙酰胆碱酯酶的活性降低是谵妄发生的独立危险因素。且乙酰胆碱与其他神经递质也有相互作用,有报道称不同的多巴胺受体对乙酰胆碱水平的影响不同,这可能解释了谵妄的不同临床表现,包括其高活性和低活性形式。乙酰胆碱和其他神经递质如谷氨酸盐、褪黑激素、去甲肾上腺素和γ-氨基丁酸(GABA)之间的功能失调性相互作用从而导致谵妄,这些失衡可能决定了谵妄亚型 [18]。另外,有研究表明胆碱能系统与炎症系统及免疫系统也有关联,其可将促炎反应维持在适当范围内 [19]。谷氨酸–谷氨酰胺动态平衡的紊乱与POD相关,有研究表明,POD患者术前谷氨酰胺水平降低。脑源性神经营养因子(BDNF)是一种影响神经可塑性和神经传递、学习、记忆和认知的蛋白质。与基线相比,BDNF水平的下降与接受脊柱手术的患者谵妄发生率的增加有关 [20]。而关于谵妄的代谢组学分析表明,“缬氨酸、亮氨酸和异亮氨酸生物合成”和“柠檬酸循环”途径可能失调 [21]。

2.4. 睡眠紊乱

昼夜节律紊乱引起了越来越多的关注,这被认为是POD的一种可能机制。昼夜节律是指在大约24小时内发生的行为和生理周期,包括睡眠–觉醒周期、激素分泌和核心体温。睡眠觉醒周期由大脑区域和神经递质系统之间相互作用调节,其中许多地方都与记忆和认知功能有关 [22]。而年龄在昼夜节律和记忆中起着重要作用 [23]。褪黑激素是由脑松果体分泌的激素之一,具有多种功能如镇静、催眠、抗焦虑等,其分泌具有明显的昼夜节律,全身麻醉过程本身会影响褪黑激素的分泌节律。研究表明,褪黑激素主要代谢产物6-羟基硫酸褪黑素(6-SMT)的尿排泄与谵妄亚型相关,活跃性谵妄排泄较少 [24]。而手术前给予较高剂量(5 mg)和小于5个消除半衰期的褪黑激素可降低POD的发生率,但仍需较大样本量证实 [25]。

3. 危险因素

3.1. 自身因素

3.1.1. 年龄

年龄是术后谵妄已确定的独立危险因素。老年人术后谵妄的发生率可达15%~53%,而在危重病房其发生率可达70%~87% [26]。随着年龄增加,谵妄发生率也会增加。这可能与老年人神经细胞衰老程度增加,接收外界信息减少以及脑组织本身的退行性变相关 [27]。

3.1.2. 脑血管意外

术前发生过脑血管意外,无论是脑梗塞还是脑出血,均存在既往的脑组织损伤,这类人群术后更容易出现谵妄 [27]。

3.1.3. 虚弱和认知障碍

痴呆患者入院时谵妄的发生率在57%到62%之间。研究表明,谵妄可能是痴呆患者存在储备能力减弱的脆弱大脑的标志,而谵妄本身也可能会导致一些患者永久性认知能力下降和痴呆。Voyer等人报道了痴呆的严重程度是谵妄严重程度的一个重要标志,并且痴呆且发生谵妄的患者有更高的发病率和死亡率 [28]。另一项对219名患者进行术前虚弱评估的前瞻性队列研究中发现,219人中虚弱前期得分者有54%,虚弱24%,认知障碍23%~37%,最终有25%的患者出现了POD [29]。

3.1.4. 感染和炎症

一项对于髋部骨折患者进行的研究发现,在入院期间,与无谵妄的患者相比,谵妄患者发生感染(肺炎、泌尿道感染或伤口感染)的频率明显更高(35%对22%) [28]。同样,另一项研究发现,重症监护室中脓毒症或脓毒性休克患者其发生脑功能障碍的几率较高,而这些脑功能障碍患者的皮质醇水平高于无脑功能障碍患者,表明皮质醇可能是严重脓毒症和脓毒性休克患者脑功能障碍的相关危险因素。下丘脑–垂体–肾上腺轴(HPA)释放的皮质醇对人应激状态下的存活至关重要,然而,过量释放或长期暴露于高水平的皮质醇可能对人大脑有害,尤其是在皮质激素受体高度集中的海马体和额叶皮质 [30]。当机体存在炎症时,炎性因子的释放会引起一系列级联反应,对血脑屏障造成损伤。系统性炎症与加重的神经炎症反应有关,这可能是导致神经认知缺陷的原因之一。

3.1.5. 其他相关原因

如受教育程度、存在视觉或听觉障碍、低体重指数、术前低蛋白、术前贫血等均是术后谵妄发生的相关危险因素。

3.2. 其他因素

3.2.1. 手术因素

手术本身作为一种伤害性刺激,会引起机体产生应激反应。术中及术后的炎症反应同样也会对患者脑功能造成损害。手术的类型不同,患者发生术后谵妄的几率也不相同,心脏手术发病率最高,而非心脏手术有报道发病率较高的手术类型依次为开颅手术(57.1%)、上腹部手术(18.1%)、开胸手术(16.3%)、脊柱/关节手术(15.2%)及大血管手术(11.1%)等,而下腹部及体表手术、头颈部手术及内镜手术(包括胸腔镜、腹腔镜、尿道镜、鼻内镜等)等发病率较低 [27]。此外,相关危险因素还包括手术时间长短,手术方式,术中出血,术前禁食水时间等。

3.2.2. 麻醉因素

常见促发因素为麻醉时间、疼痛及镇痛药物如吗啡、哌替啶、麻醉过深、使用苯二氮卓类镇静药物、氯胺酮、抗胆碱能药物、组胺受体拮抗剂、术中循环波动致脑灌注不足等 [31],而关于麻醉方式的影响,有研究表明,术后谵妄和麻醉方式无关 [32]。但是,吸入麻醉药如异氟醚和地氟醚会损害脑功能,这可能与麻醉剂的分子大小相关。小分子麻醉剂,可能导致更大的淀粉样β寡聚化 [33]。有研究表明,异氟烷会对成年大鼠海马造成损伤,从而产生认知障碍 [34]。

4. 预防和干预措施

4.1. 采用多模式方式

4.1.1. 术前综合评估

须从身体、心理和社会因素全面评估,制定个体化围术期优化策略。术前神经认知筛查是必要的,另外还须了解患者基本情况,包括高龄、教育程度、阻塞性睡眠呼吸暂停和脑血管事件史,术前总蛋白、白蛋白和血红蛋白等实验室指标,以及手术类型、手术持续时间、失血量和麻醉方式等,尽早发现术前虚弱患者可预测其发生POD的危险性。

4.1.2. 避免围术期多药治疗

多种药物本身是老年患者发生谵妄的独立风险因素,大量药物应用被认为直接增加了谵妄的风险。

4.1.3. 避免长时间禁食水

尽管指南建议术前2小时可饮用清饮料,可减少术后胃肠道功能障碍、术后恶心呕吐及谵妄等,但临床实际工作中目前禁食水时间偏长仍较为常见,长时间禁食水可导致患者脱水、不必要静脉输液及其他围手术期不良并发症。一项大型队列研究发现,禁食超过6小时是发生术后谵妄的独立危险因素 [35]。

4.1.4. 适当增加体力活动

体力活动与脑血流量增加、神经元再生、细胞增殖、突触可塑性相关。体力活动的增加会使海马体积增加,从而改善认知功能,降低术后谵妄发生率 [36]。

4.1.5. 多模式镇痛

疼痛和用于治疗疼痛的药物均与谵妄的发生有关。Vaurio及其同事 [37] 的研究证明,术后疼痛是术后谵妄的独立预测因素,而术前疼痛水平也与术后谵妄发生风险之间存在直接关系。另一方面,阿片类药物的使用已被认为会增加谵妄风险,而减少阿片类药物应用可以主要通过增加非甾体类抗炎药物使用,非甾体类抗炎药通过抑制环氧化酶减少前列腺素的合成来发挥镇痛作用,同时还有减轻神经炎症的作用,从而可能降低谵妄风险。此外,区域阻滞可有效减轻患者术后疼痛,有研究表明,使用区域麻醉可使谵妄发生率降低20%~40% [38]。

4.1.6. 避免使用可诱发术后谵妄的药物

如阿片类药物、苯二氮卓类镇静药物、氯胺酮、抗胆碱能药物、组胺受体拮抗剂等。可应用α2受体激动剂右美托咪定预防谵妄的发生。有研究表明,右美托咪定可能抑制由脂多糖诱导的小胶质细胞活化引起的炎症,同时可降低海马区炎性因子的水平 [39],降低血清脑源性神经营养因子、神经元特异性烯醇化酶和S100B浓度 [40],降低术后第1~3天的IL-6和TNF-a水平 [41]。因此可有效改善谵妄等认知功能障碍。Maldonado和他的同事研究了118例接受体外循环(CPB)心脏手术的患者发现,在成功脱离CPB后,相比于采用咪达唑仑和丙泊酚镇静,使用右美托咪定镇静术后谵妄发生率的绝对风险降低47% [42]。

4.1.7. 目标导向液体治疗

根据血流动力学指标指导液体治疗可以减少不必要的过量输液,一项观察性研究显示,在脊柱手术中采用目标导向液体疗法后,术后谵妄发生率降低了75% [43]。而且与传统的液体治疗模式相比,基于SVV指导的目标导向液体治疗可以使血流动力学更稳定,增加脑灌注,改善脑氧供需平衡 [44]。但目标导向液体治疗与谵妄的关系尚需更大样本量的研究。

此外,还可通过积极宣讲消除患者顾虑,改善视力和听力,改善睡眠情况,主要术后并发症的预防、早期发现和治疗,调节肠/膀胱功能,定期疼痛评估和早期治疗等来降低POD的风险。Inouye和他的同事对852名住院患者进行了一项研究来评估纠正与谵妄风险增加相关的环境因素后谵妄的发生情况。主要干预措施包括医院工作人员对患者每天进行适当的认知训练、实施非药物睡眠方案以帮助患者睡眠–觉醒周期正常化、在手术或者拔管后尽量早期活动、及时拔除导管和约束装置,以及早期纠正脱水和电解质异常等后谵妄的发生率降低了40% [45]。

4.2. 术中避免循环过大的波动,积极监测局部脑氧饱和度和脑电图

大脑自动调节在维持大脑的适当血流方面起着重要作用,在二氧化碳浓度恒定的情况下,脑灌注保持相对恒定,但是对于老年人或一些共病患者如患原发性高血压,糖尿病,阻塞性睡眠呼吸暂停低通气综合征等,其自动调节能力受损,因此术中低血压易引起脑灌注不足。一项关于肺移植患者的小型队列研究表明,脑灌注压每降低10 mmHg,POD发生风险增加一倍 [46]。术中低血压持续时间,低血压程度与术后谵妄不相关,而术中血压波动增加是术后谵妄的预测条件,但关于低血压是否可以预测术后谵妄尚存在争议 [47]。而另外一项荟萃分析则显示,低血压可增加患者重症监护室的住院时间,但并不增加死亡率和POD的发生率 [48]。近红外光谱(NIRS)是一种测量局部脑氧饱和度的无创设备,可以反映脑血流量,一项研究表明术前和术中低的脑氧饱和度是心脏手术后谵妄的预测因素,临界值在总人群中为50%,在68岁以下为55% [49]。因此,围术期监测脑氧饱和度能及时的发现脑血流减少,进行干预从而预防术后谵妄的出现 [50]。大脑皮层爆发抑制是POD发生的危险因素之一 [36],术中积极的脑电监测可防止大脑皮层爆发抑制的出现。爆发抑制包括等电性和短暂电活动的交替,可由作用于γ-GABA受体的麻醉药物诱发。谵妄患者对谵妄有预先存在的易感性,这在术中脑电图中反映为宽带功率降低,额叶高频功率和α带连接性增加 [51]。

4.3. 提高睡眠质量

包括使用低剂量氟哌啶醇或低剂量非典型抗精神病药物。乙酰胆碱酯酶抑制剂在阿尔茨海默病的对症治疗中有效,但在预防谵妄方面似乎无效。褪黑激素和褪黑激素受体激动剂具有相当好的效果,有预防谵妄的前景。α2受体激动剂右美托咪定有助于重症监护室中谵妄患者的防治,但其在普通病房中广泛应用还需要一定时间 [52]。

NOTES

*通讯作者。

参考文献

[1] Meagher, D.J. and Trzepacz, P.T. (2000) Motoric Subtypes of Delirium. Seminars in Clinical Neuropsychiatry, 5, 75-85.
[2] Krewulak, K., Stelfox, H., Leigh, J., et al. (2018) Incidence and Prevalence of Delirium Subtypes in an Adult ICU: A Systematic Review and Meta-Analysis. Critical Care Medicine, 46, 2029-2035.
https://doi.org/10.1097/CCM.0000000000003402
[3] Stransky, M., Schmidt, C., Ganslmeier, P., et al. (2011) Hypoactive Delirium after Cardiac Surgery as an Independent Risk Factor for Prolonged Mechanical Ventilation. Journal of Cardiothoracic and Vascular Anesthesia, 25, 968-974.
https://doi.org/10.1053/j.jvca.2011.05.004
[4] Falsini, G., Grotti, S., Porto, I., et al. (2018) Long-Term Prognostic Value of Delirium in Elderly Patients with Acute Cardiac Diseases Admitted to Two Cardiac Intensive Care Units: A Prospective Study (DELIRIUM CORDIS). European Heart Journal Acute Cardiovascular Care, 7, 661-670.
https://doi.org/10.1177/2048872617695235
[5] Maldonado, J. (2008) Delirium in the Acute Care Setting: Characteristics, Diagnosis and Treatment. Critical Care Clinics, 24, 657-722.
https://doi.org/10.1016/j.ccc.2008.05.008
[6] Witlox, J., Eurelings, L.S., de Jonghe, J.F., et al. (2010) Delirium in Elderly Patients and the Risk of Post-Discharge Mortality, Institutionalization, and Dementia: A Meta-Analysis. JAMA, 304, 443-451.
https://doi.org/10.1001/jama.2010.1013
[7] Maldonado, J.R. (2013) Neuropathogenesis of Delirium: Review of Current Etiologic Theories and Common Pathways. The American Journal of Geriatric Psychiatry, 21, 1190-1222.
https://doi.org/10.1016/j.jagp.2013.09.005
[8] Hov, K.R., Bolstad, N., Idland, A.V., et al. (2017) Cerebrospinal Fluid S100B and Alzheimer’s Disease Biomarkers in Hip Fracture Patients with Delirium. Dementia and Geriatric Cognitive Disorders EXTRA, 7, 374-385.
https://doi.org/10.1159/000481853
[9] Ballweg, T., White, M., Parker, M., et al. (2021) Association between Plasma Tau and Postoperative Delirium Incidence and Severity: A Prospective Observational Study. British Journal of Anaesthesia, 126, 458-466.
https://doi.org/10.1016/j.bja.2020.08.061
[10] Fong, T., Vasunilashorn, S., Ngo, L., et al. (2020) Association of Plasma Neurofilament Light with Postoperative Delirium. Annals of Neurology, 88, 984-994.
https://doi.org/10.1002/ana.25889
[11] Van Munster, B., Bisschop, P., Zwinderman, A., et al. (2010) Cortisol, Interleukins and S100B in Delirium in the Elderly. Brain and Cognition, 74, 18-23.
https://doi.org/10.1016/j.bandc.2010.05.010
[12] Mcneil, J.B., Hughes, C.G., Girard, T., et al. (2019) Plasma Biomarkers of Inflammation, Coagulation, and Brain Injury as Predictors of Delirium Duration in Older Hospitalized Patients. PLoS ONE, 14, e0226412.
https://doi.org/10.1371/journal.pone.0226412
[13] Blecharz-Lang, K., Wagner, J., Fries, A., et al. (2018) Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells. Translational Stroke Research, 9, 631-642.
https://doi.org/10.1007/s12975-018-0614-2
[14] Zhou, Y., Wang, J., Li, X., et al. (2020) Neuroprotectin D1 Protects against Postoperative Delirium-Like Behavior in Aged Mice. Frontiers in Aging Neuroscience, 12, Article ID: 582674.
https://doi.org/10.3389/fnagi.2020.582674
[15] Karlidag, R., Unal, S., Sezer, O., et al. (2006) The Role of Oxidative Stress in Postoperative Delirium. General Hospital Psychiatry, 28, 418-423.
https://doi.org/10.1016/j.genhosppsych.2006.06.002
[16] Han, Y., Zhang, W., Liu, J., et al. (2020) Metabolomic and Lipidomic Profiling of Preoperative CSF in Elderly Hip Fracture Patients with Postoperative Delirium. Frontiers in Aging Neuroscience, 12, Article ID: 570210.
https://doi.org/10.3389/fnagi.2020.570210
[17] Hshieh, T.T., Fong, T.G. and Marcantonio, E.R. (2008) Cholinergic Deficiency Hypothesis in Delirium: A Synthesis of Current Evidence. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 63, 764-772.
https://doi.org/10.1093/gerona/63.7.764
[18] Mulkey, M.A., Hardin, S.R., Olson, D.M., et al. (2018) Pathophysiology Review: Seven Neurotransmitters Associated with Delirium. Clinical Nurse Specialist CNS, 32, 195-211.
https://doi.org/10.1097/NUR.0000000000000384
[19] Cerejeira, J., Nogueira, V., Luis, P., et al. (2012) The Cholinergic System and Inflammation: Common Pathways in Delirium Pathophysiology. Journal of the American Geriatrics Society, 60, 669-675.
https://doi.org/10.1111/j.1532-5415.2011.03883.x
[20] Wyrobek, J., LaFlam, A., Max, L., et al. (2017) Association of Intraoperative Changes in Brain-Derived Neurotrophic Factor and Postoperative Delirium in Older Adults. British Journal of Anaesthesia, 119, 324-332.
https://doi.org/10.1093/bja/aex103
[21] Tripp, B., Dillon, S., Yuan, M., et al. (2021) Targeted Metabolomics Analysis of Postoperative Delirium. Scientific Reports, 11, Article No. 1521.
https://doi.org/10.1038/s41598-020-80412-z
[22] Eban-Rothschild, A., Appelbaum, L. and de Lecea, L. (2018) Neuronal Mechanisms for Sleep/WakeRegulation and Modulatory Drive. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 43, 937-952.
https://doi.org/10.1038/npp.2017.294
[23] Cedernaes, J., Osorio, R.S., Varga, A.W., et al. (2017) Candidate Mechanisms Underlying the Association between Sleep-Wake Disruptions and Alzheimer’s Disease. Sleep Medicine Reviews, 31, 102-111.
https://doi.org/10.1016/j.smrv.2016.02.002
[24] Yuan, Y., Song, Y., Wang, G., et al. (2021) Effects of General versus Regional Anaesthesia on Circadian Melatonin Rhythm and Its Association with Postoperative Delirium in Elderly Patients Undergoing Hip Fracture Surgery: Study Protocol for a Prospective Cohort Clinical Trial. BMJ Open, 11, e043720.
https://doi.org/10.1136/bmjopen-2020-043720
[25] Han, Y., Wu, J., Qin, Z., et al. (2020) Melatonin and Its Analogues for the Prevention of Postoperative Delirium: A Systematic Review and Meta-Analysis. Journal of Pineal Research, 68, e12644.
https://doi.org/10.1111/jpi.12644
[26] Kukreja, D., Günther, U. and Popp, J. (2015) Delirium in the Elderly: Current Problems with Increasing Geriatric Age. The Indian Journal of Medical Research, 142, 655-662.
https://doi.org/10.4103/0971-5916.174546
[27] 谭刚, 郭向阳, 罗爱伦, 等. 老年非心脏手术患者术后谵妄的流行病学调查[J]. 协和医学杂志, 2011, 2(4): 319-325.
[28] De Jong, L., Van Rijckevorsel, V., Raats, J.W., et al. (2019) Delirium after Hip Hemiarthroplasty for Proximal Femoral Fractures in Elderly Patients: Risk Factors and Clinical Outcomes. Clinical Interventions in Aging, 14, 427-435.
https://doi.org/10.2147/CIA.S189760
[29] Susano, M., Grasfield, R., Friese, M., et al. (2020) Brief Preoperative Screening for Frailty and Cognitive Impairment Predicts Delirium after Spine Surgery. Anesthesiology, 133, 1184-1191.
https://doi.org/10.1097/ALN.0000000000003523
[30] Nguyen, D.N., Huyghens, L., Zhang, H., et al. (2014) Cortisol Is an Associated-Risk Factor of Brain Dysfunction in Patients with Severe Sepsis and Septic Shock. BioMed Research International, 2014, Article ID: 712742.
https://doi.org/10.1155/2014/712742
[31] Hughes, C.G., Boncyk, C.S., Culley, D.J., et al. (2020) American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Postoperative Delirium Prevention. Anesthesia and Analgesia, 130, 1572-1590.
https://doi.org/10.1213/ANE.0000000000004641
[32] Mason, S.E., Noel-Storr, A. and Ritchie, C.W. (2010) The Impact of General and Regional Anesthesia on the Incidence of Post-Operative Cognitive Dysfunction and Post-Operative Delirium: A Systematic Review with Meta-Analysis. Journal of Alzheimer’s Disease, 22, 67-79.
https://doi.org/10.3233/JAD-2010-101086
[33] Kotekar, N., Shenkar, A. and Nagaraj, R. (2018) Postoperative Cognitive Dysfunction—Current Preventive Strategies. Clinical Interventions in Aging, 13, 2267-2273.
https://doi.org/10.2147/CIA.S133896
[34] Lin, D. and Zuo, Z. (2011) Isoflurane Induces Hippocampal Cell Injury and Cognitive Impairments in Adult Rats. Neuropharmacology, 61, 1354-1359.
https://doi.org/10.1016/j.neuropharm.2011.08.011
[35] Radtke, F., Franck, M., Macguill, M., et al. (2010) Duration of Fluid Fasting and Choice of Analgesic Are Modifiable Factors for Early Postoperative Delirium. European Journal of Anaesthesiology, 27, 411-416.
https://doi.org/10.1097/EJA.0b013e3283335cee
[36] Pedemonte, J., Plummer, G., Chamadia, S., et al. (2020) Electroencephalogram Burst-Suppression during Cardiopulmonary Bypass in Elderly Patients Mediates Postoperative Delirium. Anesthesiology, 133, 280-292.
https://doi.org/10.1097/ALN.0000000000003328
[37] Vaurio, L., Sands, L., Wang, Y., et al. (2006) Postoperative Delirium: The Importance of Pain and Pain Management. Anesthesia and Analgesia, 102, 1267-1273.
https://doi.org/10.1213/01.ane.0000199156.59226.af
[38] Weinstein, S., Poultsides, L., Baaklini, L., et al. (2018) Postoperative Delirium in Total Knee and Hip Arthroplasty Patients: A Study of Perioperative Modifiable Risk Factors. British Journal of Anaesthesia, 120, 999-1008.
https://doi.org/10.1016/j.bja.2017.12.046
[39] Chen, N., Chen, X., Xie, J., et al. (2019) Dexmedetomidine Protects Aged Rats from Postoperative Cognitive Dysfunction by Alleviating Hippocampal Inflammation. Molecular Medicine Reports, 20, 2119-2126.
https://doi.org/10.3892/mmr.2019.10438
[40] Li, Y., Yu, Z.X., Ji, M.S., et al. (2019) A Pilot Study of the Use of Dexmedetomidine for the Control of Delirium by Reducing the Serum Concentrations of Brain-Derived Neurotrophic Factor, Neuron-Specific Enolase, and S100B in Polytrauma Patients. Journal of Intensive Care Medicine, 34, 674-681.
https://doi.org/10.1177/0885066617710643
[41] Zhang, W., Wang, T., Wang, G., et al. (2020) Effects of Dexmedetomidine on Postoperative Delirium and Expression of IL-1β, IL-6, and TNF-α in Elderly Patients after Hip Fracture Operation. Frontiers in Pharmacology, 11, 678.
https://doi.org/10.3389/fphar.2020.00678
[42] Maldonado, J., Wysong, A., Van Der Starre, P., et al. (2009) Dexmedetomidine and the Reduction of Postoperative Delirium after Cardiac Surgery. Psychosomatics, 50, 206-217.
https://doi.org/10.1176/appi.psy.50.3.206
[43] Zhang, N., Liang, M., Zhang, D., et al. (2018) Effect of Goal-Directed Fluid Therapy on Early Cognitive Function in Elderly Patients with Spinal Stenosis: A Case-Control Study. International Journal of Surgery (London, England), 54, 201-205.
https://doi.org/10.1016/j.ijsu.2018.04.007
[44] 黄祥, 韩明明, 殷国兵, 等. 目标导向液体治疗对缺血型烟雾病患者脑血管重建术后谵妄的影响[J]. 临床麻醉学杂志, 2020, 36(1): 13-16.
[45] Inouye, S., Bogardus, S., Charpentier, P., et al. (1999) A Multicomponent Intervention to Prevent Delirium in Hospitalized Older Patients. The New England Journal of Medicine, 340, 669-676.
https://doi.org/10.1056/NEJM199903043400901
[46] Jin, Z., Hu, J. and Ma, D. (2020) Postoperative Delirium: Perioperative Assessment, Risk Reduction, and Management. British Journal of Anaesthesia, 125, 492-504.
https://doi.org/10.1016/j.bja.2020.06.063
[47] Hirsch, J., Depalma, G., Tsai, T.T., et al. (2015) Impact of Intraoperative Hypotension and Blood Pressure Fluctuations on Early Postoperative Delirium after Non-Cardiac Surgery. British Journal of Anaesthesia, 115, 418-426.
https://doi.org/10.1093/bja/aeu458
[48] Feng, X., Hu, J., Hua, F., et al. (2020) The Correlation of Intraoperative Hypotension and Postoperative Cognitive Impairment: A Meta-Analysis of Randomized Controlled Trials. BMC Anesthesiology, 20, 193.
https://doi.org/10.1186/s12871-020-01097-5
[49] Lim, L., Nam, K., Lee, S., et al. (2020) The Relationship between Intraoperative Cerebral Oximetry and Postoperative Delirium in Patients Undergoing Off-Pump Coronary Artery Bypass Graft Surgery: A Retrospective Study. BMC Anesthesiology, 20, 285.
https://doi.org/10.1186/s12871-020-01180-x
[50] Mailhot, T., Cossette, S., Lambert, J., et al. (2016) Cerebral Oximetry as a Biomarker of Postoperative Delirium in Cardiac Surgery Patients. Journal of Critical Care, 34, 17-23.
https://doi.org/10.1016/j.jcrc.2016.02.024
[51] Tanabe, S., Mohanty, R., Lindroth, H., et al. (2020) Cohort Study into the Neural Correlates of Postoperative Delirium: The Role of Connectivity and Slow-Wave Activity. British Journal of Anaesthesia, 125, 55-66.
https://doi.org/10.1016/j.bja.2020.02.027
[52] Ford, A.H. and Almeida, O.P. (2015) Pharmacological Interventions for Preventing Delirium in the Elderly. Maturitas, 81, 287-292.
https://doi.org/10.1016/j.maturitas.2015.03.024