高原环境下血栓形成机制的研究进展
Research Progress on Thrombosis Mechanism in High Altitude Environment
DOI: 10.12677/ACM.2021.115340, PDF, HTML, XML, 下载: 326  浏览: 564 
作者: 费雪莲:青海大学,青海 西宁;王卓亚:青海大学附属医院,青海 西宁
关键词: 高原缺氧血小板活化血栓形成High Altitude Hypoxia Platelet Activation Thrombosis
摘要: 环境对人体的生命健康有着至关重要的影响,是人类赖以生存和发展的物质基础条件。每年因各种原因进入高原的人数逐年增多,已有研究表明高原深静脉血栓的发生率较平原明显为高,可能与低氧所致血液高凝状态有关。因此,高原环境被认为是血栓形成的额外风险因素,但高原环境下血栓形成机制相当复杂,近年来,有许多针对高原环境下血栓形成机制的研究。本综述旨在提供一个全面系统的分析总结,以期待对后期临床工作及后续研究提供指导性意见。
Abstract: The environment has a crucial impact on the life and health of the human body and is the material basis for the survival and development of mankind. The annual number of people entering the plateau due to various reasons is increasing year by year, and studies have shown that the incidence of deep venous thrombosis at high altitude is significantly higher than that in the plain, which may be related to the hypercoagulable state of blood caused by hypoxia. Therefore, high altitude environment is considered as an additional risk factor for thrombosis, but the mechanism of thrombosis in high altitude environment is quite complex, and in recent years, there have been many studies on the mechanism of thrombosis in high altitude environment. The purpose of this review is to provide a comprehensive and systematic summary of the analysis in anticipation of guiding later clinical work and subsequent research.
文章引用:费雪莲, 王卓亚. 高原环境下血栓形成机制的研究进展[J]. 临床医学进展, 2021, 11(5): 2361-2367. https://doi.org/10.12677/ACM.2021.115340

1. 引言

高原环境被认为是血栓形成的额外风险因素,已有研究表明高原深静脉血栓的发生率较平原明显为高 [1] [2] [3]。在高原低氧暴露的情况下,静脉以及动脉血栓事件均可发生,其中包括肺血栓栓塞症、脑静脉血栓形成、门静脉血栓形成、主动脉血栓形成、脑卒中、短暂性脑缺血发作等 [4] [5] [6]。高原环境下血栓形成机制相当复杂,近年来,有许多针对高原环境下血栓形成机制的研究。本综述将从基因、蛋白水平分别阐述高原环境下血栓形成的机制。

2. 从基因水平阐述高原环境下血栓形成的机制

Jha等 [7] 相关研究中,使用全局基因表达谱、通路分类、网络分析和随后重要候选基因的验证,确定在高原(HA)与海平面(SL)静脉血栓形成病例中表现出差异表达的基因及其相关通路。这可能有助于解释HA应激下深静脉血栓(DVT)发生的分子机制。在高原深静脉血栓(HA-DVT)条件下观察到的差异表达基因(DEGs)中,反应组通路分析强调了止血通路的整体上调和过度激活,这表明HA时纤维蛋白形成、纤维蛋白溶解和血小板功能增强 [8]。结果表明,暴露于HA可激活血小板,导致血小板聚集、血小板消耗和血小板计数降低 [9],这反过来可能导致巨核细胞和血小板功能障碍。

2.1. 凝血级联和补体(hsa04610)

由于各种环境压力(包括缺氧和寒冷),HA与高凝状态相关,最终可能导致血栓形成倾向增加 [10]。通路富集分析显示止血、凝血、对伤口愈合的反应、血小板活化和体液调节,是HA-DVT中5种最富集的通路。这些结果表明,在极端海拔地区,凝血级联反应的过度激活可能是DVT发生的重要因素 [11] [12]。“凝血级联和补体(hsa04610)”是Jha等 [7] 研究中检测到的DEGs上调基因中富集的最显著的KEGG通路 [13] [14] [15]。vWF是凝血级联通路的关键基因,介导血小板在血管损伤部位的粘附和聚集,是止血和血栓形成的重要组成部分 [13] [14] [15]。

2.2. 造血细胞谱系(hsa04640)、ECM

第二个最重要的KEGG通路是造血细胞谱系(hsa04640),建立了HA缺氧与血栓形成启动和发展之间的关键环节。缺氧条件可能通过整合素和糖蛋白的协同作用导致造血功能增加 [16] [17] [18] [19] [20]。在血管和基底膜损伤时,止血和血栓形成之间的微妙平衡也依赖于血小板的微调粘附反应。血小板暴露于多种细胞外基质(ECM)蛋白,由此间质ECM也在该过程中暴露 [21] [22]。血小板粘附不足导致出血,而粘附过度或不适当导致血凝块形成。与此一致,我们注意到Jha等 [7] 研究中ECM-受体相互作用相关基因(hsa04512)上调。

2.3. 应激反应(GO:006950)和免疫应答(GO:0045088)

使用SL-DVT和HA-DVT的DEG集比较富集的通路导致除了已知的血栓前通路之外的几种通路,还包括应激反应(GO:006950),HA-DVT的数据库重叠为53/231,SL-DVT为10/231,和先天性免疫反应的调节(GO:0045088),在其他差异富集通路中,HA-DVT病例的数据库重叠为10/201,SL-DVT为4/201。应激和免疫应答与HA暴露相关,在HA-DVT的情况下,这些富集术语中DEG的过度表达可能被认为是HA时DVT疾病病理生理学的促成因素 [23] [24]。

2.4. EGR1、TEK

HA的缺氧对整体生理和体内平衡提出了重大挑战。缺氧直接影响血管的血管张力,并通过刺激外周化学感受器增加通气和交感神经活性 [25]。根据早期的研究 [26] [27],氧水平降低激活转录因子EGR1,导致单核吞噬细胞和平滑肌细胞中组织因子的从头转录、翻译,最终导致血管纤维蛋白沉积。在Jha等 [7] 研究中,EGR1在HA-DVT病例中的表达高2.38倍,TEK上调4.84倍。已知TEK-I可调节血管生成、内皮细胞存活、增殖、迁移、粘附和细胞扩散,并维持缺血组织中的血管静止 [28]。

2.5. 凝血因子F2、ACE、基因簇、细胞粘附基因

Srivastava等 [29] 研究中凝血因子F2在海平面静脉血栓栓塞症(SL-VTE)和HA对照中分别上调1.5倍和2.1倍,在高原静脉血栓栓塞症(HA-VTE)受试者中表达最高2.7倍。F2基因(凝血酶原)的基因表达与易栓症倾向广泛相关 [30]。同样,参与内皮反应的另一个关键基因ACE在SL-VTE和HA对照中分别上调1.59倍和2.06倍,然而在HA-VTE受试者中表达最高5.21倍 [29]。因此可以推断,这些基因不仅在VTE病因学中起着重要作用,然而它们的表达也受到高原缺氧的影响,这可能是导致它们表达增加的一个额外因素。血管紧张素转换酶(ACE)是肾素–血管紧张素系统(RAS)的重要酶,与纤溶系统之间存在着密切的关系。ACE通过产生血管紧张素II和降解缓激肽下调纤维蛋白溶解 [31] [32]。因此,HA缺氧条件下F2和ACE的上调可能有助于增加VTE的易感性。相关研究 [29] 还发现了一组由10个基因组成的独特基因簇,这些基因仅在HA-VTE患者组中差异表达。这些基因不仅包括参与凝血、血凝块形成和细胞信号传导的基因,还包括参与细胞粘附和凋亡的基因上调。在健康个体中,抗凝和促血栓形成因子之间存在微妙的平衡,当这种平衡中断时,会发生出血或血凝块形成 [33]。血小板粘附不充分可能导致出血,而粘附过度则会导致血凝块形成。与此一致,Srivastava等 [29] 研究还注意到细胞粘附基因如CDH18、PCDHA1和ST8S1A4的过度表达。这些钙粘蛋白和原钙粘蛋白可能在血栓的发展中起关键作用。

总之,HA缺氧诱导止血和凝血途径相关基因表达的改变,进而引起血小板功能障碍,从而导致静脉血栓形成的易感性增加。该方向的进一步研究可以阐明HA处DVT的潜在分子发病机制,并确定抑制缺氧诱导的不良分子变化的有用治疗靶点。

3. 从蛋白水平阐述缺氧诱导的血栓前表型

直到20世纪90年代,人们才认为血小板携带由其亲本细胞巨核细胞合成的蛋白质,血小板是活性蛋白质合成的无核细胞,使血小板生物学更加复杂。Tyagi等 [33] 研究首次尝试分析缺氧条件下的血小板蛋白质组以及证明缺氧引起的血小板蛋白的差异表达,以研究低氧暴露对血小板蛋白的影响,从而试图了解低氧诱导血小板高反应性的潜在事件。

3.1. 钙蛋白酶、钙蛋白酶小亚基1(CAPNS1)、Ca21

相关蛋白包括重要的凝血级联蛋白,如纤维蛋白原和TF,一些参与钙调节和血小板活化的关键信号蛋白,以及负责调节钙蛋白酶活性的CAPNS1。缺氧不仅导致血栓前蛋白上调,而且通过抑制内质网驻留蛋白钙网蛋白和钙蛋白酶(据报道,钙网蛋白和钙蛋白酶具有抗血栓性质)来降低抗血栓形成倾向 [34] [35] 并维持钙稳态 [36]。钙蛋白酶活性的抑制证明可逆转缺氧诱导的血小板高反应性。钙蛋白酶在缺氧诱导的血栓前表型中起重要作用。钙蛋白酶是一种巯基蛋白酶,已被发现受钙内流和氧化应激的调节 [37] [38]。Tyagi等 [33] 研究中,发现暴露动物中的血小板细胞内钙和钙蛋白酶活性显著高于对照组。另外观察到CAPNS1、Ca21水平在低氧条件下显著上调。CAPNS1,其功能类似于钙蛋白酶蛋白酶体的分子伴侣 [39],并控制细胞扩散和迁移 [40]。考虑到Ca21也作为重要的第二信使,通过关键的下游信号级联调节基本的血小板反应性 [36]。通过缺氧诱导血栓形成的体内模型进一步证实了钙蛋白酶在缺氧条件下的血栓前作用 [33]。Tyagi等 [33] 研究观察了缺氧暴露后大鼠的血栓前表型,表现为出血和凝血酶原时间减少。这些实验性缺氧大鼠的血小板表现出较高的反应性,表现为血小板粘附、活化和聚集增强,是涉及血小板蛋白质组/分泌组和结构蛋白转变的精细协调的细胞信号事件的总和。研究结果表明血小板活化级联反应中CAPNS1依赖的钙蛋白酶活性与缺氧诱导的血栓形成有关。基于相关研究 [33] 结果,可以得出关于钙蛋白酶可能作用方式的几点:首先,在没有激动剂诱导聚集的情况下观察到血小板中钙蛋白酶的蛋白水解活性增加,表明缺氧引起的钙蛋白酶活化先于激动剂诱导的血小板聚集。其次,缺氧诱导的血小板高反应性在很大程度上依赖于钙蛋白酶活性,因为钙蛋白酶抑制剂的预输注限制了缺氧诱导的血小板聚集。第三,钙蛋白酶活性对缺氧诱导的血小板高反应性的影响大于常氧血小板。

3.2. 外基质蛋白、致密颗粒释放

Tyagi等 [33] 研究中,缺氧暴露诱导血小板高反应性通过血小板粘附试验体外研究缺氧暴露对血小板粘附细胞外基质蛋白倾向的影响。从暴露动物中分离的血小板显示对胶原蛋白和纤维蛋白原涂层表面的粘附增强。与对照组相比,暴露组中粘附血小板的平均尺寸和相同覆盖的面积百分比显著较高,胶原表面的增加更大,血小板中致密颗粒释放也显著增高。

3.3. 跨膜蛋白(CD41和αIIbβ3)

活化的血小板具有数量增加的各种跨膜蛋白,作为血小板活化标志物。αIIbβ3活化介导稳定的血小板活化并触发由外向内的信号传导,导致血小板扩散、颗粒分泌、稳定粘附,和血凝块回缩。Tyagi等 [33] 研究发现与αIIbβ3受体复合物相互作用的抗αIIbβ3抗体显示该复合物的表面表达增强,反映了暴露动物中ADP诱导的血小板活化大于对照组。另一种血小板活化标志物CD41也表现出相似的反应。相关研究 [41] 表明在长期低压缺氧条件下,人血小板中扩散到固定化纤维蛋白原的血小板显著增加,纤维蛋白原与整合素αIIbβ3结合触发血栓形成。

3.4. 血小板膜糖蛋白、整合素亚基、α颗粒趋化因子

相关研究 [41] 结果表明,长时间低压缺氧实质上改变了血小板转录组和蛋白质组,同时上调了血小板反应性。这些分子和功能的改变可能导致低氧条件下血栓事件的风险增加。血小板膜糖蛋白(如GP4、GP6、GP9)、整合素亚基(如ITGA2B、ITGB3)和α颗粒趋化因子(如SELP、PF4V1)在持续低压缺氧受试者中显著增加。这些在血小板活化和血栓形成中具有典型作用。GPIV、GPVI和GPIX与胶原的相互作用促进血小板粘附于血管内皮,并诱导信号级联反应,启动血小板活化、止血和血栓形成。

总之,在缺氧动物中,钙结合蛋白的不同调节、血小板胞内Ca21升高和钙蛋白酶活性升高提示Ca21稳态紊乱和钙蛋白酶激活可能导致血小板的高反应性,CD41和αIIbβ3表面表达增强进一步支持了血小板的高反应性,缺氧暴露对血小板粘附细胞外基质蛋白倾向的影响以及对血小板聚集和致密颗粒释放的影响,缺氧暴露下各种跨膜蛋白及相关因子的表达增加,最终,缺氧条件下的血栓前表型。总的来说,这些初步观察结果强调缺氧诱导的血小板蛋白表达模式的变化表明缺氧暴露使血小板蛋白质组向血栓前状态转变。

4. 总结与展望

综上所述,高原低压低氧环境是慢性高原病血栓形成的主要原因。高原低氧暴露也会诱导与凝血和血小板活化途径相关的各种基因的转录,导致各种蛋白及相关因子的表达增加,从而创造一个促血栓形成的环境,使一个人更容易发生静脉血栓形成。本文从基因、蛋白等方面分别阐述了高原环境下血栓形成的机制,旨在提供一个全面系统的分析总结,以期待对后期临床工作及后续研究提供指导性意见。目前的研究给出了一组VTE特异性基因及相关蛋白的表达增加,建议在这方面进行进一步的研究,以完全阐明HA-VTE的潜在分子机制,设计其早期诊断策略。

参考文献

[1] Gupta, N., Sahu, A., Prabhakar, A., et al. (2017) Activation of NL-RP3 Inflammasome Complex Potentiates Venous Thrombosis in Response to Hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 114, 4763-4768.
https://doi.org/10.1073/pnas.1620458114
[2] Prabhash, J., Anita, S., Amit, P., et al. (2018) Genome-Wide Expression Analysis Suggests Hypoxia-Triggered Hyper-Coagulation Leading to Venous Thrombosis at High Altitude. Thrombosis and Haemostasis, 118, 1279-1295.
https://doi.org/10.1055/s-0038-1657770
[3] Chaurasia, S.N., Kushwaha, G., Kulkarni, P.P., et al. (2019) Platelet HIF-2α Promotes Thrombogenicity through PAI-1 Synthesis and Extracellular Vesicle Release. Haematologica, 104, 2482-2492.
https://doi.org/10.3324/haematol.2019.217463
[4] Boulos, P., Kouroukis, C. and Blake, G. (1999) Superior Sagittal Sinus Thrombosis Occurring at High Altitude Associated with Protein C Deficiency. Acta Haematologica, 102, 104-106.
https://doi.org/10.1159/000040980
[5] Jha, S.K., Anand, A.C., Sharma, V., et al. (2002) Stroke at High Altitude: Indian Experience. High Altitude Medicine & Biology, 3, 21-27.
https://doi.org/10.1089/152702902753639513
[6] Anand, A.C., Saha, A., Seth, A.K., et al. (2010) Symptomatic Portal System Thrombosis in Soldiers Due to Extended Stay at Extreme Altitude. Journal of Gastroenterology and Hepatology, 20, 777-783.
https://doi.org/10.1111/j.1440-1746.2005.03723.x
[7] Prabhash, J., Anita, S., Amit, P., et al. (2018) Genome-Wide Expression Analysis Suggests Hypoxia-Triggered Hyper-Coagulation Leading to Venous Thrombosis at High Altitude. Thrombosis and Haemostasis, 118, 1279-1295.
https://doi.org/10.1055/s-0038-1657770
[8] BäRtsch, P., Waber, U., Haeberli, A., et al. (1987) Enhanced Fibrin Formation in High-Altitude Pulmonary Edema. Journal of Applied Physiology, 63, 752-757.
https://doi.org/10.1152/jappl.1987.63.2.752
[9] Lehmann, T., Mairburl, H., Pleisch, B., et al. (2006) Platelet Count and Function at High Altitude and in High-Altitude Pulmonary Edema. Journal of Applied Physiology, 100, 690-694.
https://doi.org/10.1152/japplphysiol.00991.2005
[10] Hudson, J.G., Bowen, A.L., Navia, P., et al. (1999) The Effect of High Altitude on Platelet Counts, Thrombopoietin and Erythropoietin Levels in Young Bolivian Airmen Visiting the Andes. International Journal of Biometeorology, 43, 85-90.
https://doi.org/10.1007/s004840050120
[11] Golebiewska, E.M., et al. (2015) Platelet Secretion: From Haemostasis to Wound Healing and Beyond. Blood Reviews, 29, 153-162.
https://doi.org/10.1016/j.blre.2014.10.003
[12] Laurens, N., Koolwijk, P. and de Maat, M.P.M. (2010) Fibrin Structure and Wound Healing. Journal of Thrombosis & Haemostasis, 4, 932-939.
https://doi.org/10.1111/j.1538-7836.2006.01861.x
[13] Franchini, M. and Lippi, G. (2006) Von Willebrand Factor and Thrombosis. Annals of Hematology, 85, 415-423.
https://doi.org/10.1007/s00277-006-0085-5
[14] Reininger, A.J. (2010) Function of von Willebrand Factor in Haemostasis and Thrombosis. Haemophilia, 14, 11-26.
https://doi.org/10.1111/j.1365-2516.2008.01848.x
[15] Ruggeri, Z.M. (2007) The Role of von Willebrand Factor in Thrombus Formation. Thrombosis Research, 120, S5-S9.
https://doi.org/10.1016/j.thromres.2007.03.011
[16] Li, P., et al. (2011) Regulation of Bone Marrow Hematopoietic Stem Cell Is Involved in High-Altitude Erythrocytosis. Experimental Hematology, 39, 37-46.
[17] Zovein, A.C. and Forsberg, E.C. (2015) Hematopoietic Development at High Altitude: Blood Stem Cells Put to the Test. Development, 142, 1728-1732.
https://doi.org/10.1242/dev.121103
[18] Reeves, J.T. (2004) Is Increased Hematopoiesis Needed at Altitude? Journal of Applied Physiology, 96, 1579-1580.
https://doi.org/10.1152/japplphysiol.01386.2003
[19] Hirota, K. (2015) Involvement of Hypoxia-Inducible Factors in the Dysregulation of Oxygen Homeostasis in Sepsis. Cardiovascular & Haematological Disorders—Drug Targets, 15, 29-40.
https://doi.org/10.2174/1871529X15666150108115553
[20] Schreiber, T.D., Steinl, C., Essl, M., et al. (2009) The Integrin α9β1 on Hematopoietic Stem and Progenitor Cells: Involvement in Cell Adhesion, Proliferation and Differentiation. Haematologica, 94, 1493.
https://doi.org/10.3324/haematol.2009.006072
[21] Bergmeier, W. and Hynes, R.O. (2012) Extracellular Matrix Proteins in Hemostasis and Thrombosis. Cold Spring Harbor Perspectives in Biology, 4, a005132.
https://doi.org/10.1101/cshperspect.a005132
[22] Watson, C.H., Watson, S.P. and Nieswandt, B. (2003) Platelet-Collagen Interaction: Is GPVI the Central Receptor? Blood, 102, 449-461.
https://doi.org/10.1182/blood-2002-12-3882
[23] Rahaman, M.M., Reinders, F.G., Koes, D., et al. (2015) Structure Guided Chemical Modifications of Propylthiouracil Reveal Novel Small Molecule Inhibitors of Cytochrome b5 Reductase 3 That Increase Nitric Oxide Bioavailability. Journal of Biological Chemistry, 290, 16861-16872.
https://doi.org/10.1074/jbc.M114.629964
[24] Voetsch, B., Jin, R.C. and Loscalzo, J. (2004) Nitric Oxide Insufficiency and Atherothrombosis. Histochemistry & Cell Biology, 122, 353-367.
https://doi.org/10.1007/s00418-004-0675-z
[25] Bovill, E.G. and Vliet, A. (2011) Venous Valvular Stasis-Associated Hypoxia and Thrombosis: What Is the Link? Annual Review of Physiology, 73, 527-545.
https://doi.org/10.1146/annurev-physiol-012110-142305
[26] Yan, S.F., Mackman, N., Kisiel, W., et al. (1999) Hypoxia/Hypoxemia-Induced Activation of the Procoagulant Pathways and the Pathogenesis of Ischemia-Associated Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2029-2035.
https://doi.org/10.1161/01.ATV.19.9.2029
[27] Jussi, N., Massimiliano, G., Aino, S.P., et al. (2005) USF1 and Dyslipidemias: Converging Evidence for a Functional Intronic Variant. Human Molecular Genetics, 14, 2595-2605.
https://doi.org/10.1093/hmg/ddi294
[28] Kishimoto, K., Yoshida, S., Ibaragi, S., et al. (2012) Hypoxia-Induced Up-Regulation of Angiogenin, besides VEGF, Is Related to Progression of Oral Cancer. Oral Oncology, 48, 1120-1127.
https://doi.org/10.1016/j.oraloncology.2012.05.009
[29] Srivastava, S., Kumari, B., Garg, I., et al. (2020) Targeted Gene Expression Study Using TaqMan Low Density Array to Gain Insights into Venous Thrombo-Embolism (VTE) Pathogenesis at High Altitude. Blood Cells Molecules and Diseases, 82, Article ID: 102421.
https://doi.org/10.1016/j.bcmd.2020.102421
[30] Poort, S. (1996) A Common Genetic Variation in the 3’-Untranslated Region of the Prothrombin Gene Is Associated with Elevated Plasma Prothrombin Levels and an Increase in Venous Thrombosis. Blood, 88, 3698.
https://doi.org/10.1182/blood.V88.10.3698.bloodjournal88103698
[31] Ridker, P.M., Gaboury, C.L., Conlin, P.R., et al. (1993) Stimulation of Plasminogen Activator Inhibitor in Vivo by Infusion of Angiotensin II. Evidence of a Potential Interaction between the Renin-Angiotensin System and Fibrinolytic Function. Circulation, 87, 1969-1973.
https://doi.org/10.1161/01.CIR.87.6.1969
[32] Leeuwen, R.V., Kol, A., Andreotti, F., et al. (1994) Angiotensin II Increases Plasminogen Activator Inhibitor Type 1 and Tissue-Type Plasminogen Activator Messenger RNA in Cultured Rat Aortic Smooth Muscle Cells. Circulation, 90, 362-368.
https://doi.org/10.1161/01.CIR.90.1.362
[33] Tyagi, T., Ahmad, S., Gupta, N., et al. (2014) Altered Expression of Platelet Proteins and Calpain Activity Mediate Hypoxia-Induced Prothrombotic Phenotype. Blood, 123, 1250-1260.
https://doi.org/10.1182/blood-2013-05-501924
[34] Kuwabara, K., Pinsky, D.J., Schmidt, A.M., et al. (1995) Calreticulin, an Antithrombotic Agent Which Binds to Vitamin K-Dependent Coagulation Factors, Stimulates Endothelial Nitric Oxide Production, and Limits Thrombosis in Canine Coronary Arteries. Journal of Biological Chemistry, 270, 8179-8187.
https://doi.org/10.1074/jbc.270.14.8179
[35] Wajih, N., Sane, D.C., Hutson, S.M., et al. (2004) The Inhibitory Effect of Calumenin on the Vitamin K-Dependent Gamma-Carboxylation System. Characterization of the System in Normal and Warfarin-Resistant Rats. Journal of Biological Chemistry, 279, 25276-25283.
https://doi.org/10.1074/jbc.M401645200
[36] Rink, T. (1990) Calcium Signaling in Human Platelets. Annual Review of Physiology, 52, 431-449.
https://doi.org/10.1146/annurev.ph.52.030190.002243
[37] Suzuki, K., Sorimachi, H., Yoshizawa, T., et al. (1995) Calpain: Novel Family Members, Activation, and Physiological Function. Biological Chemistry Hoppe-Seyler, 376, 523-529.
https://doi.org/10.1515/bchm3.1995.376.9.523
[38] Ray, S.K., Fidan, M., Nowak, M.W., et al. (2000) Oxidative Stress and Ca2+ Influx Upregulate Calpain and Induce Apoptosis in PC12 Cells. Brain Research, 852, 326-334.
https://doi.org/10.1016/S0006-8993(99)02148-4
[39] Yoshizawa, T., Sorimachi, H., Tomioka, S., et al. (1995) Calpain Dissociates into Subunits in the Presence Ions. Biochemical and Biophysical Research Communications, 208, 376-383.
https://doi.org/10.1006/bbrc.1995.1348
[40] Undyala, V.V., Dembo, M., Cembrola, K., et al. (2008) The Calpain Small Subunit Regulates Cell-Substrate Mechanical Interactions during Fibroblast Migration. Journal of Cell Science, 121, 3581-3588.
https://doi.org/10.1242/jcs.036152
[41] Shang, C., Wuren, T., Ga, Q., et al. (2019) The Human Platelet Transcriptome and Proteome Is Altered and Pro- Thrombotic Functional Responses Are Increased during Prolonged Hypoxia Exposure at High Altitude. Platelets, 31, 33-42.
https://doi.org/10.1080/09537104.2019.1572876