低成本吸附剂去除水体中亚甲基蓝的研究综述
Research on the Removal of Methylene Blue from Water by Low-Cost Adsorbents: A Review
DOI: 10.12677/AEP.2021.115111, PDF, HTML, XML,  被引量 下载: 351  浏览: 1,389  科研立项经费支持
作者: 张璐璐:陕西地建土地工程技术研究院有限责任公司,陕西 西安;陕西省土地工程建设集团自然资源部退化及未利用土地整治工程重点实验室,陕西 西安;王清艺*:陕西环保产业研究院有限公司,陕西 西安
关键词: 低成本吸附剂活性炭亚甲基蓝吸附机制Low-Cost Adsorbents Activated Carbon Methylene Blue Adsorption Mechanism
摘要: 本文综述了采用低成本吸附剂去除溶液中亚甲基蓝(MB)的方法。吸附法是去除水中染料最常用的方法,具有操作简单、对环境污染小、原料易得等优势。活性炭是目前用于去除水中染料的常规吸附材料,吸附速率快且吸附效果好,但由于活性炭的制备成本相对较高,使用范围受限,因此亟需寻找非常规、低成本的吸附剂。因此本综述的目的是探讨各种潜在低成本吸附剂用于去除MB的可行性,包括天然原料、农业废弃物、工业废弃物及其他低成本吸附剂。
Abstract: This article reviews the methods of removing methylene blue (MB) from solution with low-cost adsorbent. The adsorption method is the most commonly used method to remove dyes from water, and has the advantages of simple operation, low environmental pollution, and easy availability of raw materials. Activated carbon is currently a conventional adsorbent used to remove dyes in water. It has a fast adsorption rate and good adsorption effect. However, due to the relatively high preparation cost of activated carbon, its application range is limited. Therefore, it is urgent to find unconventional and low-cost adsorbents. Therefore, the purpose of this review is to explore the feasibility of various potential low-cost adsorbents for MB removal, including natural raw materials, agricultural waste, industrial waste and other low-cost adsorbents.
文章引用:张璐璐, 王清艺. 低成本吸附剂去除水体中亚甲基蓝的研究综述[J]. 环境保护前沿, 2021, 11(5): 920-925. https://doi.org/10.12677/AEP.2021.115111

1. 前言

染料被广泛用作许多行业的着色剂,例如纺织、印刷、皮革和油漆等 [1] [2]。染料中含有痕量的有机染料和有毒化合物。如今,水体中染料正成为水污染的主要来源之一,并代表了一类主要的环境问题 [3] [4]。亚甲基蓝(Methylene Blue, MB)是一种高色度、水溶性阳离子染料,广泛用于化学指示剂、染料、生物染色剂和药物等。MB若接触到人或动物眼睛则会被灼伤,可能造成永久性伤害。吸入时,会引起短时间快速或呼吸困难,而通过口腔摄入会产生烧灼感,导致恶心、呕吐、大量出汗、精神错乱和高铁血红蛋白血症 [5]。因此,对于如何修复MB污染水体受到科学家们的高度重视。

去除水中MB的方法主要包括光催化降解、阳离子交换、电化学降解、吸附等,其中吸附法在MB去除方面表面出很好的效率。目前活性炭被认为是最有前途的吸附剂,因为活性炭表面含有丰富的表面官能团(羟基、羧基、羰基等)和多孔结构,化学稳定性高,吸附过程不会产生有害物质 [6] [7] [8]。但由于活性炭是在高温无氧环境下煅烧而得,其生产成本相对较高、制造工艺较复杂,因此亟需寻找环境中天然存在或简单易得的原料替代活性炭来修复MB污染水体。

本综述探讨了传统活性炭和非常规低成本吸附剂去除水体中MB的技术可行性,非常规低成本吸附剂包括农业废弃物、工业废弃物、粘土矿物和沸石等,供广大读者能够快速了解到最新的MB染料吸附剂信息。

2. 活性炭

活性炭的碳前驱体通常来源于天然材料,如生物质、褐煤或煤。煤是活性炭生产最常用的碳前驱体,它是由植物降解产生的碳质和矿物材料的混合物。每种煤的吸附特性取决于原始植被的性质和沉积后发生物理化学变化的程度。Qada等人 [9] 研究发现使用蒸汽(浓度为120 kg蒸汽/kg碳,温度1050℃)活化新西兰煤制备的活性炭对MB染料的吸附能力最高为588 mg/g。Karaca等人 [10] 发现褐煤中的黄铁矿、有机硫、碳酸盐和硅酸盐等成分对MB染料的吸附具有积极影响,吸附类型包括静电吸附和孔径吸附。

活性炭材料包括各类作物秸秆 [11]、竹子 [12]、稻壳、玉米芯 [13]、藤木屑 [14]、杏仁壳、核桃壳、榛子壳和杏核 [15] 等,活性炭的吸附能力取决于原料的来源、制备和处理条件,如热解温度和时间、活化剂的种类等。Hameed等人 [12] 以竹子为原料,以氢氧化钾为活化剂,850℃下碳化2 h,吸附动力学结果显示,活性炭对MB染料的吸附符合准二级动力学模型,吸附过程属于化学吸附,单层最大吸附容量为454.2 mg/g。Aygun等人 [15] 以农林废弃物(杏仁壳、核桃壳、榛子壳和杏核)为原料,氯化锌为活化剂,评估了活性炭的物理(磨损、堆积密度)、化学(元素组成、重量损失百分比)、表面(比表面积、表面化学)对MB染料的吸附特性,并得出活性炭生产原料的适宜顺序为:榛子壳 > 核桃壳 > 杏核 > 杏仁壳。

吸附剂对染料的具体吸附机制尚不清楚,这是因为吸附是一个复杂的过程,取决于多种相互作用,例如静电和/或非静电(疏水)相互作用。尽管在吸附特性和动力学方面已经取得了很大的成就,但仍需做大量工作来清楚地识别吸附机制 [16]。

3. 低成本吸附剂

活性炭作为吸附剂用于去除废水中MB染料一直是常规操作方法,但其高成本带来了许多经济问题。因此,需要开发低成本、易获得的吸附剂,可以更经济大规模使用。针对上述问题,寻求低成本吸附材料替代昂贵的活性炭是近几年的研究重点。成本是比较和选择吸附剂的一个重要参数,如果吸附剂仅需要较少的加工且在自然界中含量丰富,那么可认定其为低成本吸附剂 [17]。低成本的吸附剂主要包括天然材料、农业和工业废料物及副产品。

3.1. 天然材料

3.1.1. 粘土

黏土,是一种重要的矿物原料。是颗粒非常小的(<2 µm)可塑的硅酸铝盐。除了铝外,黏土还包含少量镁、铁、钠、钾和钙,一般由硅酸盐矿物在地球表面风化后形成。粘土表面存在的Ca2+、Mg2+、H+、K+、NH4+、Na+ SO 4 2 Cl PO 4 3 NO 3 等离子可通过离子交换、吸附或两者兼有的方式富集阳离子和阴离子,可充当污染物的天然清除剂,从而在环境中发挥重要作用。这些离子可以很容易地与其他离子进行交换而不影响粘土矿物的结构 [18]。天然粘土矿物成本低、资源丰富、吸附特性高和离子交换强,是一种天然低成本优势吸附材料。

粘土矿物,是组成粘土岩和土壤的主要矿物,包括高岭石族、伊利石族、蒙脱石族、蛭石族以及海泡石族。粘土矿物不仅可以吸附无机离子,还能吸附有机分子,如粘土矿物对MB的吸附已被广泛研究 [19] [20] [21] [22]。Hong等人 [19] 选用河南信阳非金属矿区的膨润土为原料,结果显示膨润土对MB染料的饱和吸附量为175 mg/g,吸附过程为吸热反应。Almeida等人 [21] 以蒙脱石粘土为吸附剂用于去除水中MB染料,结果显示吸附饱和量为316 mg/g,动力学模型符合准二级动力学模型,即为化学吸附,活化能为+28.5 kJ·mol−1。结果表明,蒙脱石粘土可以有效吸附MB染料,可作为废水处理中阳离子染料的低成本吸附剂。

3.1.2. 沸石和其他硅质材料

二氧化硅、玻璃纤维、珍珠岩和沸石等硅质材料用作吸附剂去除水中MB染料的研究已有很多,这是由于它们的丰度高、易于获得且成本较低。Woolard团队 [22] 以粉煤灰(其主要结晶成分为Na6Al6Si6O24·8H2O)为吸附剂,经NaOH水热改性后,对MB染料的吸附量提升10倍。粉煤灰孔径丰富、比表面积大、机械稳定性好,是一种优良的吸附材料。珍珠岩是一种火山喷发的酸性熔岩,经急剧冷却而成的玻璃质岩石,其二氧化硅含量约为70%,珍珠岩价格低廉,分布广泛。Luo等人 [23] 以腐殖酸改性珍珠岩为去除MB染料的低成本吸附剂,最大吸附量为78.2 mg/g,且受染料初始浓度、pH、离子强度和吸附时间的影响很大。吸附过程符合准二级动力学模型,吸附速率受初始阶段的外部扩散和随后的颗粒内部扩散所控制。因此珍珠岩是用于净化MB染料污染水体的良好吸附剂,但不同类型(膨胀和未膨胀)和不同产地的珍珠岩由于成分不同会具有不同的特性。

3.2. 农业和工业废弃物及副产品

农业和其他行业的废弃物和副产品同样被认为是低成本吸附剂,因为它们在自然界中很丰富,而且加工要求少。

3.2.1. 农业固体废物

农业固体废物种类繁多,如树叶、秸秆、果皮、种子、锯末、树皮等都已被用作吸附剂 [24] [25] [26] [27] [28]。这些材料产量大,获取简单,成本低,结合其自身的物理化学特性可成为潜在的吸附剂。锯末是木材业丰富的副产品,可作为固体燃料或作为包装缓冲材料。它含有多种有机化合物(纤维素、半纤维素和木素),具有多酚基团,可吸附水中MB染料。Ahmad等人 [24] 以菲律宾桃花心木锯末为原料,对MB染料最大吸附量为158.73 mg/g,热力学计算表明MB染料吸附过程是吸热和自发的行为,动力学研究表明吸附遵循准二级动力学模型。树皮是木材业另外一种高产量副产品,由于其低成本和高可用性,树皮作为吸附剂极具吸引力。大量实验验证了树皮中富含单宁,是一种有效的吸附剂。Demarchi [25] 和McKay [27] 分别以Jatoba树皮和柚木树皮作为吸附剂去除水中MB染料,最大吸附量分别为211.5 mg/g和914.59 mg/g,均表现出较好的吸附性能。

3.2.2. 工业固体废物

工业固体废物如污泥、粉煤灰和赤泥都属于低成本材料,这些材料如得不到合理的利用不仅会对环境造成一定的危害,还会造成资源的浪费。Rashed等人 [29] 以饮用水处理厂明矾污泥和泥浆为原料,加入0.25 M硝酸在700℃条件下活化获得污泥基吸附剂,MB染料的饱和吸附量为70.4 mg/g,符合Langmuir等温吸附模型,属于多孔物理吸附。粉煤灰是火力发电厂的废物/副产品,研究证明粉煤灰可用于MB染料的吸附。Nazari Moghaddam等人 [30] 将粉煤灰用于MB染料吸附,吸附饱和容量为7.87 mg/g。Lin [31] 用硫酸处理后的粉煤灰作为低成本吸附材料,酸处理后的粉煤灰比表面积增加,吸附能力变强,吸附过程符合Freundlich等温线吸附模型和准二级动力学模型。热力学研究表明吸附属于吸热过程,焓值为5.63 kJ/mol。

3.3. 其他吸附剂

除了上述几种原料外,还有一些材料可作为低成本MB染料吸附剂。例如Uddin [32] 和McKay [33] 分别研究了以废弃茶叶和头发为原料去除MB染料,饱和吸附量分别为300.05 mg/g和120 mg/g,吸附效果很好。另外还有沙子 [34]、牛粪灰 [35]、蛋壳和蛋壳膜 [36] 等,但针对该类原料研究目前还较少。

4. 结论

本综述总结了多种低成本吸附材料去除水体中MB染料的可行性。低成本吸附剂种类繁多、来源广泛,研究较多的包括粘土、沸石、等天然材料,树叶、秸秆、果皮、种子、锯末等农业物体废弃物,污泥、粉煤灰、赤泥等工业废弃物,上述低成本材料可有效替代商业活性炭吸附MB染料。由于低成本吸附剂在去除MB染料效果良好,我们希望将其推广至大规模的工业领域,不仅可以最大限度减少成本,还可以提高盈利能力。毋庸置疑,低成本吸附剂为未来的商业用途提供了广阔前景。

基金项目

陕西省土地工程建设集团内部科研资助项目(DJNY2021-17),西安市科技计划项目(20193050YF038NS038)。

NOTES

*通讯作者。

参考文献

[1] Cassano, A., Molinari, R., Romano, M., et al. (2001) Treatment of Aqueous Effluents of the Leather Industry by Mem-brane Processed—A Review. Journal of Membrane Science, 181, 111-126.
https://doi.org/10.1016/S0376-7388(00)00399-9
[2] Yin, J.L., Pei, M.S., He, Y.J., et al. (2015) Hydrothermal and Activated Synthesis of Adsorbent Montmorillonite Supported Porous Carbon Nanospheres for Removal of Methylene Blue from Waste Water. RSC Advances, 5, 89839-89847.
https://doi.org/10.1039/C5RA17322A
[3] Zhou, C.H., Zhang, D., Tong, D.S., et al. (2012) Paper-Like Compo-sites of Cellulose Acetate-Organo-Montmorillonite for Removal of Hazardous Anionic Dye in Water. Chemical Engi-neering Journal, 209, 223-234.
https://doi.org/10.1016/j.cej.2012.07.107
[4] Smith, Y.R., Bhattacharyya, D., Willhard, T., et al. (2016) Adsorp-tion of Aqueous Rare Earth Elements Using Carbon Black Derived from Recycled Tires. Chemical Engineering Journal, 296, 102-111.
https://doi.org/10.1016/j.cej.2016.03.082
[5] Tan, I.A.W., Ahmad, A.L. and Hameed, B.H. (2008) Adsorption of Basic Dye Using Activated Carbon Prepared from Oil Palm Shell: Batch and Fixed Bed Studies. Desalination, 225, 13-28.
https://doi.org/10.1016/j.desal.2007.07.005
[6] Bedin, K.C., Martins, A.C., Cazetta, A.L., et al. (2016) KOH-Activated Carbon Prepared from Sucrose Spherical Carbon: Adsorption Equilibrium, Kinetic and Thermodynamic Studies for Methylene Blue Removal. Chemical Engineering Journal, 286, 476-484.
https://doi.org/10.1016/j.cej.2015.10.099
[7] Benhouria, A., Islam, M.A., Zaghouane-Boudiaf, H., et al. (2015) Calcium Alginate-Bentonite-Activated Carbon Composite Beads as Highly Effective Adsorbent for Methylene Blue. Chemical Engineering Journal, 270, 621-630.
https://doi.org/10.1016/j.cej.2015.02.030
[8] Marrakchi, F., Ahmed, M.J., Khanday, W.A., et al. (2017) Mesoporous-Activated Carbon Prepared from Chitosan Flakes via Single-Step Sodium Hydroxide Activation for the Adsorption of Methylene Blue. International Journal of Biological Macromolecules, 98, 233-239.
https://doi.org/10.1016/j.ijbiomac.2017.01.119
[9] El Qada, E.N., Allen, S.J. and Walker, G.M. (2008) Adsorp-tion of Basic Dyes from Aqueoussolution onto Activated Carbons. Chemical Engineering Journal, 135, 174-184.
https://doi.org/10.1016/j.cej.2007.02.023
[10] Karaca, S., Gurses, A. and Bayrak, R. (2004) Effect of Some Pre-treatments on the Adsorption of Methylene Blue by Balkaya Lignite. Energy Conversion and Management, 45, 1693-1704.
https://doi.org/10.1016/j.enconman.2003.09.026
[11] Kannan, N. and Sundaram, M.M. (2001) Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons—A Comparative Study. Dyes Pigments, 51, 25-40.
https://doi.org/10.1016/S0143-7208(01)00056-0
[12] Hameed, B.H., Din, A.T.M. and Ahmad, A.L. (2007) Adsorption of Methylene Blue onto Bamboo-Based Activated Carbon: Kinetics and Equilibrium Studies. Journal of Hazardous Materials, 141, 819-825.
https://doi.org/10.1016/j.jhazmat.2006.07.049
[13] Tseng, R.L., Tseng, S.K. and Wu, F.C. (2006) Preparation of High Surface Area Carbons from Corncob Using KOH- Combined with CO2 Gasification for the Adsorption of Dyes and Phenols from Water. Colloids and Surfaces A, 279, 69- 78.
https://doi.org/10.1016/j.colsurfa.2005.12.042
[14] Hameed, B.H., Ahmad, A.L. and Latiff, K.N.A. (2007) Ad-sorption of Basic Dye (Methyleneblue) onto Activated Carbon Prepared from Rattan Sawdust. Dyes Pigments, 75, 143-149.
https://doi.org/10.1016/j.dyepig.2006.05.039
[15] Aygun, A., Yenisoy-Karakas, S. and Duman, I. (2003) Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties. Microporous and Mesoporous Materials, 66, 189-195.
https://doi.org/10.1016/j.micromeso.2003.08.028
[16] Crini, G. (2006) Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresource Technology, 97, 1061-1085.
https://doi.org/10.1016/j.biortech.2005.05.001
[17] Bailey, S.E., Olin, T.J., Bricka, M., et al. (1999) A Review of Potentially Low-Cost Sorbents for Heavy Metals. Water Research, 33, 2469-2479.
https://doi.org/10.1016/S0043-1354(98)00475-8
[18] Bhattacharyya, K.G. and Gupta, S.S. (2008) Adsorption of a Few Heavy Metals on Natural and Modified Kaolinite and Montmorillonite: A Review. Advances in Colloid and In-terface Science, 140, 114-131.
https://doi.org/10.1016/j.cis.2007.12.008
[19] Hong, S., Wen, C., He, J., et al. (2009) Adsorption Thermodynamics of Methylene Blue onto Bentonite. Journal of Hazardous Materials, 167, 630-633.
https://doi.org/10.1016/j.jhazmat.2009.01.014
[20] Hajjaji, M., Alami, A. and El Bouadili, A. (2006) Removal of Methylene Blue from Aqueous Solution by Fibrous Clay Minerals. Journal of Hazardous Materials B, 135, 188-192.
https://doi.org/10.1016/j.jhazmat.2005.11.048
[21] Almeida, C.A.P., Debacher, N.A., Downs, A.J.L., et al. (2009) Removal of Methylene Blue from Colored Effluents by Adsorption on Montmorillonite Clay. Journal of Colloid and Interface Science, 332, 46-53.
https://doi.org/10.1016/j.jcis.2008.12.012
[22] Woolard, C., Strong, J. and Erasmus, C. (2002) Evaluation of the Use of Modified Coal Ash as a Potential Sorbent for Organic Waste Streams. Applied Geochemistry, 17, 1159-1164.
https://doi.org/10.1016/S0883-2927(02)00057-4
[23] Luo, W.J., Gao, Q., Wu, X.L., et al. (2014) Removal of Cat-ionic Dye (Methylene Blue) from Aqueous Solution by Humic Acid-Modified Expanded Perlite: Experiment and Theory. Separation Science and Technology, 49, 2400-2411.
https://doi.org/10.1080/01496395.2014.920395
[24] Ahmad, A., Rafatullah, M., Sulaiman, O., et al. (2009) Scav-enging Behaviour of Meranti Sawdust in the Removal of Methylene Blue from Aqueous Solution. Journal of Hazardous Materials, 170, 357-365.
https://doi.org/10.1016/j.jhazmat.2009.04.087
[25] Demarchi, C.A., Debrassi, A. and Rodrigues, C.A. (2012) The Use of Jatoba Bark for Removal of Cationic Dyes. Coloration Technology, 128, 208-217.
https://doi.org/10.1111/j.1478-4408.2012.00365.x
[26] Wu, Y., Zhang, L., Gao, C., et al. (2009) Adsorption of Copper Ions and Methylene Blue in a Single and Binary System on Wheat Straw. Journal of Chemical & Engineering Data, 54, 3229-3234.
https://doi.org/10.1021/je900220q
[27] McKay, G., Porter, J.F. and Prasad, G.R. (1999) The Removal of Dye Colors from Aqueous Solutions by Adsorption on Low-Cost Materials. Water, Air, & Soil Pollution, 114, 423-438.
https://doi.org/10.1023/A:1005197308228
[28] Jin, Y., Yun, H.U. and Sun, J. (2008) Preparation and Utilization of Rice Straw Cationic Sorbent Bearing Carboxyl Groups for Removal of Methylene Blue from Aqueous Solution. Acta Scientiae Circumstantiae, 76, 519-524.
https://doi.org/10.1016/j.dyepig.2006.10.013
[29] NageebRashed, M., El-Daim El Taher, M.A. and Fadlalla, S.M.M. (2016) Adsorption of Methylene Blue Using Modified Adsorbents from Drinking Water Treatment Sludge. Water Science & Technology, 74, 1885-1898.
https://doi.org/10.2166/wst.2016.377
[30] Nazari Moghaddam, A.A., Najafpour, G.D., Ghoreyshi, A.A., et al. (2010) Adsorption of Methylene Blue in Aqueous Phase by Fly Ash, Clay and Walnut Shell as Adsorbents. World Ap-plied Sciences Journal, 8, 229-234.
[31] Lin, J.X., Zhan, S.L. and Fang, M.H. (2008) Adsorption of Basic Dye from Aqueous Solution onto Fly Ash. Journal of Environmental Management, 87, 193-200.
https://doi.org/10.1016/j.jenvman.2007.01.001
[32] Uddin, M.T., Islam, M.A., Mahmud, S., et al. (2009) Ad-sorptive Removal of Methylene Blue by Tea Waste. Journal of Hazardous Materials, 164, 53-60.
https://doi.org/10.1016/j.jhazmat.2008.07.131
[33] McKay, G., Ramprasad, G. and Pratapamowli, P. (1986) Equilibrium Studies for the Adsorption of Dyestuffs from Aqueous Solution by Low-Cost Materials. Water, Air, & Soil Pollution, 29, 273-283.
https://doi.org/10.1007/BF00158759
[34] Saeed, B.B., Rauf, M.A. and AlAli, S.S. (2007) Removal of Methylene Blue from Aqueous Solution by Adsorption on Sand. Dyes Pigments, 74, 85-87.
https://doi.org/10.1016/j.dyepig.2006.01.016
[35] Kumar, K.V. (2002) Adsorption Isotherm for Basic Dye onto Low Cost Adsorbents. Research Journal of Chemistry and Environment, 6, 61-65.
[36] Tsai, W.T., Yang, J.M., Lai, C.W., et al. (2006) Characterization and Adsorption Properties of Eggshells and Eggshell Membrane. Bioresource Technology, 97, 488-493.
https://doi.org/10.1016/j.biortech.2005.02.050