Hippo信号通路在消化系统肿瘤中的研究进展
Research Progress of Hippo Signaling Pathway in Digestive System Tumors
DOI: 10.12677/MD.2021.114035, PDF, HTML, XML, 下载: 443  浏览: 680 
作者: 石颖方, 国麟祺, 王虬玥, 姜文达, 杨彦民*:佳木斯大学附属第一医院普外科,黑龙江 佳木斯
关键词: Hippo信号通路胃癌结直肠癌肝癌胰腺癌Hippo Signaling Pathway Gastric Cancer Colorectal Cancer Liver Cancer Pancreatic Cancer
摘要: Hippo信号通路自上世纪末被发现以来就被持续关注,目前已被证实在多种动物细胞生长、增殖中均起到重要调控作用。在临床常见消化系统肿瘤中,多项实验证明Hippo信号通路在肿瘤细胞的发生、增殖、侵袭和转移中有着重要影响。在Hippo信号通路各部分组成因子中,核心因子YAP的激活及表达可明显促进多种正常及肿瘤细胞的增殖。Hippo信号通路中的核心及相关因子或可成为将来肿瘤靶向治疗药物的目标因子。本文就Hippo信号通路在临床常见消化系统肿瘤中的作用展开论述。
Abstract: Hippo signaling pathway has been continuously concerned since it was discovered at the end of last century. At present, it has been proved to play an important regulatory role in the growth and proliferation of a variety of animal cells. In common clinical digestive system tumors, many experiments have proved that Hippo signaling pathway has an important impact on the occurrence, proliferation, invasion and metastasis of tumor cells. Among the components of Hippo signaling pathway, the activation and expression of core factor Yap can significantly promote the proliferation of a variety of normal and tumor cells. The core and related factors in Hippo signaling pathway may become the target factors of tumor targeted therapeutic drugs in the future. This paper discusses the role of Hippo signaling pathway in common clinical digestive system tumors.
文章引用:石颖方, 国麟祺, 王虬玥, 姜文达, 杨彦民. Hippo信号通路在消化系统肿瘤中的研究进展[J]. 医学诊断, 2021, 11(4): 212-216. https://doi.org/10.12677/MD.2021.114035

1. Hippo信号通路作用机制

Hippo信号通路是一种果蝇激酶基因,本世纪初以来,研究认为该通路是一组进化相对保守 [1],主要核心是激酶级联反应,主要功能是限制组织生长 [2] 的遗传因子。

Hippo信号通路主要通过核心分子和下游效应分子协同作用,共同调控靶基因表达,改变组织细胞活性。其主要分子中,哺乳动物STE20样苏氨酸激酶(mammalian STE20-like protein kinase, MST) 1/2可磷酸化大抑癌丝氨酸/苏氨酸蛋白激酶(large tumor suppressor serine/threonine protein kinases, LATS) 1/2,激活其分子活性。转录共激活因子Yes相关蛋白(Yes-associated protein, YAP)和转录共激活因子PDZ结合基序(transcriptional.co-activator with PDZ-binding motif, TAZ)则是Hippo通路的下游因子。当YAP和TAZ处于活跃状态时,它们会转移到细胞核中,激活细胞增殖和迁移有关的多种基因。尤其YAP是Hippo通路的直接下游效应因子,已被鉴定为一种转录共激活因子,是Hippo信号通路中的关键。LAST1/2可使下游效应因子YAP和TAZ磷酸化,其磷酸化可阻止核内YAP积累,以此抑制细胞过度增殖,促进细胞凋亡 [3]。YAP已在人类许多癌症中被检到表达异常升高 [4]。简而言之,Hippo信号通路异常导致细胞活性增加的主要原因,就是下游分子YAP/TAZ活性的增强 [5]。

随着研究的进一步深入,目前认为Hippo信号通路在各类哺乳动物中广泛存在调控胚胎及多种组织细胞的正常生长分化的功能 [6]。近年来,Hippo和其他信号转导通路之间互相串扰并可以交叉调节已在多种细胞表面得到证实 [7],各通路互相干预,共同调控组织生长。YAP也可通过激发某些转录因子的活性,启动细胞上皮–间充质转化(epithelial-mesenchymal transition, EMT),进一步促使癌细胞发生侵袭和转移 [8]。总之,癌症的产生和发展可由多种调控机制的紊乱造成 [9]。

2. Hippo信号通路在消化系肿瘤中的研究进展

2.1. 胃癌

胃癌是一种治疗预后较差,且病死率高居不下的恶性肿瘤。目前常见的胃癌治疗方法包括手术和化疗药物治疗。科学家通过对临床病例的分析发现,在多种胃癌组织亚型中,YAP表达与临床恶性程度都有着一定的相关性 [10] [11]。科学家通过对胃癌组织进行分析发现,胃癌细胞中的YAP相较于正常胃黏膜上皮细胞表达明显更高 [12],有学者认为YAP可能是胃癌的肿瘤启动子,并通过ERK/ER应激途径起作用 [13]。研究发现Yap的敲除可导致线粒体活性的降低,引起线粒体凋亡和细胞氧化应激反应,抑制癌细胞运动 [14],阻碍胃癌细胞增殖及EMT的发生 [15] [16]。这些实验都反复印证了Hippo信号通路在胃癌中的重要作用。随着研究的深入,发现Hippo信号通路还与其他多个信号通路之间有着相互作用,它们之间相互影响,共同调控胃癌的发生发展 [17]。与其他信号通路之间的具体相互作用机制,还需在未来继续探究。

2.2. 结直肠癌

结直肠癌是是目前临床常见恶性肿瘤之一,常见治疗方法有手术治疗和化疗治疗。肿瘤不断生长侵袭所致的肠道梗阻及转移至其他器官造成的多器官衰竭是癌症患者死亡的主要原因。同样有研究证明,Hippo信号通路在结直肠癌的侵袭性和转移中起着至关重要的作用。

研究发现YAP在结肠癌患者中也普遍存着上调现象,并且与EMT标记物的表达呈正相关。通过抑制YAP,也会降低EMT标记物的表达,并阻碍肿瘤的迁移和侵袭 [18]。通过大量临床患者的队列研究,发现YAP与结直肠癌分期密切相关,其活性在晚期TNM阶段始终较高,尤其是在晚期T阶段,其mRNA在乙状结肠癌中普遍呈高表达 [19]。另一组研究也表示,高表达YAP及其相关的基因TAZ和LATS2的患者,结直肠癌预后普遍较差 [20]。各组实验反复验证了YAP在结直肠癌细胞中的重要作用。目前,LBH589已被证明可能会抑制YAP及其mRNA的活性,减少YAP下游基因和EMT标记的表达 [19]。针对YAP是否可能成为新的结肠癌药物治疗靶点,有待未来进一步的研究挖掘。

2.3. 肝癌

肝脏是人体的重要组织器官,在维护人体内环境稳态中发挥着重要作用。而肝癌是一种预后相对较差,且术后极易复发的恶性肿瘤。研究发现,YAP被证明在肝细胞中可用于促进肝脏的发育和再生 [21],在肝脏正常组织及肝癌组织的生殖分裂中均有着重要意义。通过临床肝组织活检发现,术后一周内,YAP的表达可出现升高,因此推测YAP可用以改善肝细胞功能。在小鼠中,缺血损伤亦可激活肝脏YAP的表达,进而保护肝脏的应激损伤 [22]。同时,有实验认为YAP在紧急应激反应中发挥着重要作用,可清除受伤的细胞,维持组织稳态 [23]。研究人员通过对临床肝癌组织样本的检测,发现在95%的正常肝细胞中YAP不或弱表达,而在肝癌组织中可大量出现强阳性 [24],另有临床病理研究发现YAP与肝癌体积及不良预后具有相关性 [25],这为未来肝癌的治疗提供了新的可能性。

YAP在胆管癌中也有着促进胆管正常和癌细胞增殖的功能 [26]。有研究证明,YAP在正常小鼠中有着促进肝胆管发育和肝脏损伤修复的功能 [27]。同时,研究发现成人胆管中Yap的缺失也可能导致严重的胆管缺陷和胆管生长发育延迟。YAP通过保留胆管完整性在肝再生中发挥着间接作用 [28]。部分因子也可通过Hippo信号通路的作用于YAP,抑制YAP,降低胆管癌细胞活性 [29]。Hippo信号通路对寻找临床治疗胆管癌的新治疗靶点仍有待探究,具有较高的研究意义。

2.4. 胰腺癌

胰腺癌是目前世界公认预后较差的一类恶性肿瘤,其发病率和死亡率都相对较高。临床常以手术为主加以药物辅助治疗。研究发现,YAP在胰腺癌患者的肿瘤样本表达广泛高于正常组织,通过实验模型研究,YAP已被确认为在驱动胰腺癌发生中起到关键作用 [30]。活性的YAP可以促进胰腺癌细胞的运动、侵袭和肿瘤发生,并通过包括AKT信号的过度激活等其他机制促进胰腺癌细胞发生EMT [31] [32]。其表达与临床分期与预后的相关性仍有待探究。若YAP能成为胰腺癌新的治疗靶点,将对胰腺癌的治疗起到重要推进作用。

3. 小结

越来越多的数据表明,Hippo信号通路在胃癌、肝癌、结直肠癌、胰腺癌中对癌细胞的增殖、侵袭及转移有着十分重要的作用。在临床相关数据分析中,YAP的高表达在肝癌及结直肠癌的恶性程度及预后也密切相关。在Hippo通路中,多种因子均可作为上游因子,抑制或激动下游因子,调控组织动物细胞的活性,促进癌细胞的增殖迁移。在接下来的研究中,Hippo通路与其他癌基因相关通路的关联性仍是重点。目前已知许多因子及分子可通过Hippo通路抑制YAP活性,抑制肿瘤细胞活性。未来针对Hippo及其核心因子YAP的肿瘤免疫抑制剂的研究,对肿瘤的治疗将有着重要意义。

NOTES

*通讯作者。

参考文献

[1] Zanconato, F., Cordenonsi, M. and Piccolo, S. (2016) YAP/TAZ at the Roots of Cancer. Cancer Cell, 29, 783-803.
https://doi.org/10.1016/j.ccell.2016.05.005
[2] Huang, J., Wu, S., Barrera, J., Matthews, K. and Pan, D. (2005) The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Dro-sophila Homolog of YAP. Cell, 122, 421-434.
https://doi.org/10.1016/j.cell.2005.06.007
[3] Warren, J.S.A., Xiao, Y. and Lamar, J.M. (2018) YAP /TAZ Acti-vation as a Target for Teating Metastatic Cancer. Cancers (Basel), 10, pii: E115.
https://doi.org/10.3390/cancers10040115
[4] 李桂兰, 张丽, 闫华超. Hippo信号通路与肿瘤发生相关性研究进展[J]. 基础医学与临床, 2010, 30(9): 1002-1004.
[5] Ma, Y., Yang, Y., Wang, F., et al. (2015) Hippo-YAP Sig-naling Pathway: A New Paradigm for Cancer Therapy. International Journal of Cancer, 137, 2275-2286.
https://doi.org/10.1002/ijc.29073
[6] Kemppainen, K., Wentus, N., Lassila, T., et al. (2016) Sphingosylphosphor-yl-choline Regulates the Hippo Signaling Pathway in a Dual Manner. Cell Signal, 28, 1894-1903.
https://doi.org/10.1016/j.cellsig.2016.09.004
[7] Pei, T.M. and Li, Y.J. (2015) YAP Is a Critical Oncogene in Human Cholangiocarcinoma. Oncotarget, 6, 17206-17220.
https://doi.org/10.18632/oncotarget.4043
[8] Chaikuad, A. and Bullock, A.N. (2016) Structural Basis of Intracel-lular TGF-Beta Signaling: Receptors and Smads. Cold Spring Harbor Perspectives in Biology, 8, a022111.
https://doi.org/10.1101/cshperspect.a022111
[9] Kim, M.H. and Kim, J. (2017) Role of YAP/TAZ Transcriptional Regulators in Resistance to Anti-Cancer Therapies. Cellular and Molecular Life Sciences, 74, 1457-1474.
https://doi.org/10.1007/s00018-016-2412-x
[10] Kang, W., Tong, J.H., Chan, A.W., Lee, T.L., Lung, R.W., Leung, P.P., et al. (2011) Yes-Associated Protein 1 Exhibits Oncogenic Property in Gastric Cancer and Its Nuclear Accumula-tion Associates with Poor Prognosis. Clinical Cancer Research, 17, 2130-2139.
https://doi.org/10.1158/1078-0432.CCR-10-2467
[11] Hu, X., Xin, Y., Xiao, Y. and Zhao, J. (2014) Overexpres-sion of YAP1 Is Correlated with Progression, Metastasis and Poor Prognosis in Patients with Gastric Carcinoma. Pa-thology and Oncology Research, 20, 805-811.
https://doi.org/10.1007/s12253-014-9757-y
[12] Lam-Himlin, D.M., Daniels, J.A., Gayyed, M.F., et al. (2016) The Hippo Pathway in Human Upper Gastrointestinal Dysplasia and Carcinoma: A Novel Oncogenic Pathway. Interna-tional Journal of Gastrointestinal Cancer, 37, 103-109.
[13] Liu, H.B., Mei, D., Xu, P.C., Wang, H.S. and Wang, Y. (2019) YAP Promotes Gastric Cancer Cell Survival and Migration/Invasion via the ERK/Endoplasmic Reticulum Stress Pathway. Oncology Letters, 18, 6752-6758.
https://doi.org/10.3892/ol.2019.11049
[14] Yan, H.Z., Qiu, C.M., Sun, W.W., Gu, M.M., et al. (2018) Yap Regu-lates Gastric Cancer Survival and Migration via SIRT1/Mfn2/Mitophagy. Oncology Reports, 39, 1671-1681.
https://doi.org/10.3892/or.2018.6252
[15] Han, T., Cheng, Z.W., Xu, M.L., Wang, X.M., Wu, J. and Fang, X.S. (2020) Yes-Associated Protein Contributes to Cell Proliferation and Migration of Gastric Cancer via Activation of Gli1. OncoTargets and Therapy, 13, 10867-10876.
https://doi.org/10.2147/OTT.S266449
[16] Sun, D., Li, X., He, Y., et al. (2016) YAP1 Enhances Cell Proliferation, Migration, and Invasion of Gastric Cancer in Vitro and in Vivo. Oncotarget, 7, 81062-81076.
https://doi.org/10.18632/oncotarget.13188
[17] Li, N.S., Lu, N.H. and Xie, C. (2019) The Hippo and Wnt Signal-ling Pathways: Crosstalk during Neoplastic Progression in Gastrointestinal Tissue. The FEBS Journal, 286, 3745-3756.
https://doi.org/10.1111/febs.15017
[18] Ling, H.-H., Kuo, C.-C., et al. (2017) Elevation of YAP Promotes the Ep-ithelial-Mesenchymal Transition and Tumor Aggressiveness in Colorectal Cancer. Experimental Cell Research, 350, 218-225.
https://doi.org/10.1016/j.yexcr.2016.11.024
[19] Ling, H.-H., Kuo, C.-C., et al. (2017) Elevation of YAP Promotes the Epithelial-Mesenchymal Transition and Tumor Aggressiveness in Colorectal Cancer. Experimental Cell Research, 350, 218-225.
[20] Cho, S.Y., Gwak, J.W., Shin, Y.C., Moon, D., Ahn, J., Sol, H.W., Kim, S., Kim, G., Shin, H.M., Lee, K.H., Kim, J.Y. and Kim, J.S. (2018) Expression of Hippo Pathway Genes and Their Clinical Significance in Colon Adenocarcinoma. Oncology Letters, 15, 4926-4936.
https://doi.org/10.3892/ol.2018.7911
[21] Verboven, E., Moya, I.M., et al. (2021) Regeneration Defects in Yap and Taz Mutant Mouse Livers Are Caused by Bile Duct Disruption and Cholestasis. Gastroenterology, 160, 847-862.
https://doi.org/10.1053/j.gastro.2020.10.035
[22] Liu, Y., Lu, T.F., Zhang, C., Xu, J., Xue, Z.Z., et al. (2019) Activation of YAP Attenuates Hepatic Damage and Fibrosis in Liver Ische-mia-Reperfusion Injury. Journal of Hepatology, 71, 719-730.
https://doi.org/10.1016/j.jhep.2019.05.029
[23] Miyamura, N. and Nishina, H. (2018) YAP Regulates Liver Size and Function. Cell Cycle, 17, 267-268.
https://doi.org/10.1080/15384101.2017.1407390
[24] Muyesai, N., Abulajiang, S., Adelijiang, T., et al. (2016) Clinical and Experimental Analysis of Platelet Microparticles Inducing Thrombosis after Coronary Stenting. Clinical La-boratory, 62, 1619-1624.
https://doi.org/10.7754/Clin.Lab.2016.150534
[25] Sun, X., He, S., Wara, A.K., et al. (2014) Systemic Delivery of microRNA-181b Inhibits Nuclear Factor-B Activation, Vascular Inflammation, and Atherosclerosis in Apolipoprotein E-Deficient Mice. Circulation Research, 114, 32-40.
https://doi.org/10.1161/CIRCRESAHA.113.302089
[26] Pei, T.M., Li, Y.J., Wang, J.B., et al. (2015) YAP Is a Critical Oncogene in Human Cholangiocarcinoma. Oncotarget, 6, 17206-17220.
https://doi.org/10.18632/oncotarget.4043
[27] Loforese, G., Malinka, T., Keogh, A., et al. (2017) Impaired Liver Regeneration in Aged Mice Can Be Rescued by Silencing Hippo Core Kinases MST1 and MST2. EMBO Molecular Medicine, 9, 46-60.
https://doi.org/10.15252/emmm.201506089
[28] Hong, L., Cai, Y., Jiang, M., et al. (2015) The Hippo Signaling Pathway in Liver Regeneration and Tumorigenesis. Acta Biochimica et Biophysica Sinica (Shanghai), 47, 46-52.
https://doi.org/10.1093/abbs/gmu106
[29] Ma, W.B., Han, C., Zhang, J.Q., Song, K., Chen, W.N., Kwon, H. and Wu, T. (2020) The Histone Methyltransferase G9a Promotes Cholangiocarcinogenesis through Regulation of the Hippo Pathway Kinase LATS2 and YAP Signaling Pathway. Hepatology, 72, 1283-1297.
https://doi.org/10.1002/hep.31141
[30] Jeffffery, N. and Harries, L.W. (2016) b-Cell Differentiation Status in Type 2 Diabetes. Diabetes, Obesity and Metabolism, 18, 1167-1175.
https://doi.org/10.1111/dom.12778
[31] Haataja, L., Gurlo, T., Huang, C.J. and Butler, P.C. (2008) Islet Amyloid in Type 2 Diabetes, and the Toxic Oligomer Hypothesis. Endocrine Reviews, 29, 303-316.
https://doi.org/10.1210/er.2007-0037
[32] Poitout, V. and Robertson, R.P. (2008) Glucolipotoxicity: Fuel Excess and Beta-Cell Dysfunction. Endocrine Reviews, 29, 351-366.
https://doi.org/10.1210/er.2007-0023