白血病免疫治疗靶点研究进展
Current Research Advance in Immunotherapy of Leukemia
DOI: 10.12677/WJCR.2022.121002, PDF, HTML, XML, 下载: 518  浏览: 1,186 
作者: 唐瑀彤, 朱小瑛, 游 泳*:华中科技大学同济医学院协和医院血液科,湖北 武汉
关键词: 嵌合抗原受体T细胞白血病抗原Chimeric Antigen Receptor T Cell Leukemia Antigen
摘要: 白血病是一类造血干/祖细胞的恶性克隆性疾病,其治疗方法主要有化学治疗、造血干细胞移植、免疫治疗和分子靶向治疗等。近年来,白血病的免疫治疗取得了重大突破,成为研究热点,尤其是嵌合抗原受体修饰T细胞(chimeric antigen receptor T cells, CAR-T)作为新型治疗模式备受关注。CAR-T细胞的治疗基础为白血病细胞上的特异性抗原,即免疫治疗靶点。笔者对近年来白血病CAR-T细胞治疗靶点的相关研究进行综述。
Abstract: Leukemia is defined as malignant neoplasm of blood-forming tissues, which characterized as abnormal proliferation of leukocytes. The main treatment includes chemotherapy, allogeneic hematopoietic stem cell transplantation, immunotherapy and cellular therapy. Recently, immunotherapy, is an emerging novel therapy and has achieved dramatic success in clinical practice, especially for chimeric antigen receptor (CAR) T-cell. The basic of CAR-T therapy is tumor specific antigen, this review summarizes related potential tumor antigens in leukemia for CAR-T therapy.
文章引用:唐瑀彤, 朱小瑛, 游泳. 白血病免疫治疗靶点研究进展[J]. 世界肿瘤研究, 2022, 12(1): 7-15. https://doi.org/10.12677/WJCR.2022.121002

1. 引言

CAR-T细胞疗法是目前白血病中最前沿的细胞免疫治疗,相对传统免疫治疗而言,CAR-T细胞对白血病细胞具有更强的杀伤性和靶向性。而对白血病细胞特定靶点的识别是CAR-T细胞治疗的基础,因此寻找理想的免疫治疗靶点是当前白血病免疫治疗领域的研究热点。

2. 髓系白血病

2.1. 路易斯抗原Y (Lewis Y Antigen)

路易斯抗原Y是结合于糖蛋白和糖脂末端与Lewis血型抗原相关的的一种寡糖,属于非蛋白抗原。有学者检测了多种急性髓系白血病(acute myeloid leukemia, AML)细胞系以及AML患者骨髓标本中Lewis Y的表达情况,发现多种AML细胞表达Lewis Y。随后他们构建了Lewis Y CAR-T细胞,并证实了其对Lewis Y阳性AML细胞的特异性杀伤效应 [1]。Ritchie等 [2] 实施了Lewis Y CAR-T细胞治疗4例高危AML患者的临床试验,尽管抗白血病作用甚微,但Lewis Y CAR-T细胞在体内存在时间长达10个月,并可迁移到肿瘤部位发挥一定程度的免疫效应,证明Lewis Y作为AML治疗靶点具有可行性。

2.2. CD33

CD33分子是能结合唾液酸的跨膜受体,属于髓系分化抗原,在炎症反应和免疫应答中调控白细胞功能。90%的AML细胞表面高表达CD33分子,AML白血病干细胞(leukemia stem cell, LSC)亦有表达 [3],因而CD33分子有望成为AML的理想治疗靶点。有学者采用EB病毒特异性细胞毒性T细胞(EBV-CTL)构建了CD33 CAR-T细胞,并在体外实验和小鼠模型中证实了其对AML细胞的杀伤作用 [4]。一例难治性AML患者进行了CD33 CAR-T细胞输注临床试验,白血病细胞在输注2周后显著下降,但同时也出现了较大毒副作用。遗憾的是尽管CAR-T细胞在患者体内持续存在,但后期却复发死亡 [5]。鉴于此,CD33 CAR-T细胞的安全性和杀伤效应亟需进一步证实。最近Minagawa等 [6] 构建了含有可诱导Caspase9自杀基因的CD33 CAR-T细胞,可被小分子二聚体药物AP20187诱导清除,有望控制CAR-T细胞治疗的毒副作用。

2.3. CD123

Jordan等 [7] 检测了18例AML患者的骨髓标本,发现16例患者的LSC高表达CD123分子,而正常造血干细胞(hematopoietic stem cell, HSC)几乎不表达,提示CD123可能是LSC的表面标志。Mardiros等 [8] 首次报道了CD123 CAR-T细胞对AML细胞的特异性杀伤作用,并且未见正常HSC杀伤效应。目前已有学者开展了CD123 CAR-T细胞一期临床试验以证实其临床应用的安全性和有效性(NCT02159495, NCT02623582)。

2.4. CD38

CD38分子是细胞膜表面糖蛋白,能催化环腺苷二磷酸核糖的合成与降解,在多种细胞表面表达,Keyhani等 [9] 研究了CD38在304例AML患者和138例急性淋巴细胞白血病(acute lymphoblastic leukemia, ALL)患者中的表达情况,发现41%的AML患者和56.6%的ALL患者表达CD38,但在个别FAB亚型中存在差异。他们还发现CD38表达水平和预后相关,CD38高表达患者往往预后较好。随后Yoshida等 [10] 证实了CD38 CAR-T细胞对CD38阳性AML细胞的特异性杀伤作用,全反式维甲酸可诱导CD38表达并增强CAR-T细胞的杀伤作用。

2.5. CD44

CD44分子是一种高度糖基化的跨膜糖蛋白,存在多种变异体,其变异体V6在多种AML细胞中表达 [11]。在健康人中,CD44V6仅表达于单核细胞,HSC以及淋巴细胞表达极微,但在AML患者中,CD44V6却是白血病细胞生长必需分子。CD44V6 CAR-T细胞在体内外实验中均对AML细胞有特异性杀伤作用,而对HSC几乎无作用,但能杀伤单核细胞,临床级别自杀基因的引入则有望减轻单核细胞减少等不良反应 [12]。

2.6. CD70

CD70分子是一种肿瘤坏死因子家族的跨膜蛋白,其受体为CD27分子,正常生理情况下主要表达于活化的T细胞和淋巴细胞。CD70与CD27的相互作用可促进细胞的活化,与相较于CC33与CD123,CD70最大的优势在于只表达于AML和LSC而非HSC [13]。Kaufmann等发现在白血病急性期与缓解期的CD70与CD27的表达有很大差别,在急性期,CD70与CD27的表达量可升高至38倍和25倍,体外研究证实CD70抗体可明显阻断白血病细胞的增殖 [14]。Tim Sauer最新报道CD70 CAR-T在小鼠模型中可特异性杀伤AML细胞而不影响正常的CD34 + HSC [15]。

2.7. NKG2D配体

NKG2D为NK细胞活化受体,其配体具有多样性,包括MHC I类分子相关蛋白等,在正常组织细胞中表达甚微,但在白血病细胞中却有不同水平的表达,NK细胞能以NKG2D依赖的方式杀伤表达其配体的白血病细胞 [16]。Nikiforow等 [17] 实施了NKG2D CAR-T细胞的一期临床试验,初步证实了NKG2D CAR-T细胞对AML的抗肿瘤作用以及临床应用的安全性。

2.8. 叶酸受体β (Folate Receptor β, FOLR β)

叶酸受体是单链多肽糖蛋白,其亚型β表达于髄单核细胞系,在中性粒细胞分化成熟或单核细胞及巨噬细胞激活时表达升高,多种髓系白血病中均高表达。中性粒细胞表面FOLR β由于翻译后修饰作用不能结合叶酸,而白血病细胞FOLR β可结合叶酸 [18]。有研究发现全反式维甲酸可上调白血病细胞表面FOLR β [19]。Lynn等 [20] 初步证实了FOLR β CAR-T细胞对FOLR β阳性白血病细胞的杀伤作用,而对HSC无作用。全反式维甲酸可上调FOLR β表达水平并增强FOLR β CAR-T细胞的抗肿瘤效应。其团队还利用高亲和力FOLR β单链可变片段构建了CAR-T细胞,其抗白血病效应显著提高(p < 0.01) [21]。

2.9. FMS样酪氨酸激酶3 (Fibroblast-Macrophage Stimulating Factor Receptor Fms-Like Tyrosine Kinase 3, FLT-3)

FLT-3是Ⅲ型受体酪氨酸激酶家族成员,表达于90%以上AML细胞和部分HSC,淋巴细胞不表达。FLT3 CAR-T细胞在体内外实验中均能杀伤FLT3阳性AML细胞,而对小鼠体内HSC的移植重建和分化能力无影响 [22]。此外20%~30%的AML患者会发生FLT3基因内部串联重复序列突变(FLT3-ITD),致使酪氨酸激酶持续激活并促进白血病转化,提示FLT3-ITD也有可能成为AML免疫治疗靶点 [23]。

2.10. C型凝集素样分子1 (C-Type Lectin-Like Molecule-1, CLL1)

CLL1是髓系细胞抗原,为一种II型跨膜糖蛋白,表达于90%以上AML细胞,主要表达于AMLCD34 + CD38-干细胞而在正常HSC不表达 [24]。目前认为,Eduardo等 [25] 构建了CLL1 CAR-T细胞并在体内外实验中均能特异性杀伤AML细胞,而对HSC无作用。Zhang Hui等报道了CLL1 CAR-T应用于治疗儿童复发/难治AML的临床研究报道,在治疗后1个月内均到达CR,不良反应均得到有效控制与缓解,耐受性良好 [26]。

2.11. 粒–巨噬细胞集落刺激因子受体(GM-CSF Receptor, GMR/CD116)

幼年型粒单核细胞白血病患者(JMML)的粒-巨噬细胞集落刺激因子(GM-CSF)信号通路发生基因突变后表现为对GM-CSF刺激高度敏感,而HSC则不敏感,提示GM-CSF有可能作为JMML的治疗靶点。有学者证实了GMR CAR-T细胞能抑制JMML病人CD34阳性细胞增殖,而对正常CD34阳性细胞无抑制作用 [27]。

2.12. T细胞免疫球蛋白3 (T Cell Immunoglobulin-3, TIM3/CD366)

TIM3是一种T细胞表面抑制性分子,可介导T细胞耗竭,同时也表达与各种髓系细胞中,在AML中,TIM3高表达于AML LSCs而在HSC中不表达,可抑制IFN-γ,TNF-α等细胞因子的产生,AML的疾病进展有关 [28]。He等通过开发一种最新序列肿瘤选择性抗体和和抗原检索(STAR)系统,构建了靶向CD13和TIM3的双特异性CAR-T,在体内外实验中可有效的特异杀伤AML肿瘤细胞,而对HSC的毒性大大降低(p < 0.01),限制了对正常靶器官的损害 [29]。

3. 淋巴细胞白血病

3.1. CD19

CD19分子参与组成B细胞共受体,在识别结合抗原时增强B细胞活化信号的转导。CD19仅表达于B细胞,在髓系、红系、巨核系中不表达 [30]。近年来,以CD19为靶点的白血病免疫治疗取得了巨大进展,多个研究团队相继证实了CD19 CAR-T细胞的抗白血病效应 [31] [32] [33]。CD19 CAR-T在治疗B淋巴肿瘤反应良好,大量临床试验也初步证实了CD19 CAR-T细胞的抗白血病效应和临床安全性 [34]。

3.2. CD20

CD20分子广泛表达于B细胞,参与细胞周期调节以及B细胞的激活、增殖与分化。在多种B细胞血液肿瘤中可见表达 [35]。CD20的表达与白血病预后相关,儿童及成人前体B细胞急性淋巴细胞白血病中,表达CD20的患者预后往往较差 [36] [37]。靶向CD20的多种单克隆抗体在临床试验中已显示出理想治疗效果 [38]。Keisuke等 [39] 发现CD20 CAR-T细胞对CD20单抗难治性淋巴瘤和慢性淋巴细胞白血病(chronic lymphoblastic leukemia, CLL)细胞具有杀伤性,即使CD20表达水平极低。

3.3. CD22

CD22分子是免疫球蛋白样凝集素家族的重要成员,广泛表达于正常B细胞及B系肿瘤细胞。继CD22免疫毒素的抗白血病效应被证实后 [40],Waleed等 [41] 构建了CD22 CAR-T细胞,并能靶向杀伤急性B淋巴细胞白血病细胞(B-acute lymphoblastic leukemia, B-ALL),此外他们还发现表位特异性是CAR-T细胞杀伤效应的主要影响因素。在一项一期临床试验中,CD22 CAR-T细胞治疗使70%以上前体B细胞急性淋巴细胞白血病患者获得完全缓解,其中包括CD19 CAR-T细胞治疗后复发患者 [42]。

3.4. CD23

CD23在白血病B细胞上高表达,而正常B细胞表达水平极低,是淋巴细胞白血病的理想治疗靶点。CD23 CAR-T细胞对CLL细胞的杀伤性与CD19 CAR-T细胞相似,但对正常B细胞的毒性却显著低于CD19 CAR-T细胞(p < 0.05) [43]。

3.5. CD5

CD5分子是恶性T淋巴细胞表面标志,在80%急性T淋巴细胞白血病(T-acute lymphoblastic leukemia, T-ALL)和T细胞淋巴瘤中均表达,但除外免疫细胞,HSC和非造血细胞均不表达,因而其可能作为T细胞恶性肿瘤的免疫治疗靶点。T细胞也表达CD5,但有趣的是Mamonkin等 [44] 发现在转染携带CD5 CAR病毒后T细胞CD5表达量会下降,因而CD5 CAR-T细胞仅表现出微弱的互相杀伤现象,在体外能成功扩增并特异性杀伤急性白血病细胞。还有学者利用CD5阴性NK细胞构建了CD5 CAR-NK细胞,也对T-ALL有强的杀伤作用 [45]。目前已有CD5 CAR-T治疗T细胞淋巴肿瘤开展。

3.6. CD7

CD7分子是表达于T细胞和NK细胞以及它们祖细胞上的跨膜糖蛋白,作为共刺激分子有辅助T细胞活化的作用,在多数T淋巴细胞白血病和淋巴瘤中高表达。有研究发现CD7 CAR-T细胞由于正常T淋巴细胞表面表达CD7会诱导严重的互相杀伤现象,因而显著抑制CAR-T细胞的增殖和细胞活力(p < 0.01)。但采用CRISPR/Cas9 技术敲除CD7基因或利用CD7蛋白表达阻滞剂抑制CD7表达后构建的CAR-T细胞能够扩增,且细胞杀伤功能未受影响,其对T淋巴细胞白血病细胞的杀伤效应在体内外实验中均被证实 [46] [47]。

3.7. CD3

CD3分子是T细胞的表面标志,广泛表达于T细胞恶性肿瘤,有学者利用NK92细胞系构建了CD3 CAR-NK92细胞,证实了其对CD3阳性白血病细胞及淋巴瘤细胞的杀伤作用,并在小鼠模型中表现出抗肿瘤效应。虽然CD3 CAR-NK92细胞会杀伤正常T细胞,但可以应用于某些T细胞肿瘤患者的过渡治疗,有可能使这些患者达到造血干细胞移植的条件 [48]。

3.8. 受体酪氨酸激酶样孤儿受体1 (The Receptor Tyrosine Kinase-Like Orphan Receptor 1, ROR1)

ROR1分子属于受体酪氨酸激酶家族成员,在包括急慢性淋巴细胞白血病的多种B细胞恶性肿瘤中表达,正常B细胞不表达。Hudecek等 [49] 证实了ROR1 CAR-T细胞能特异性杀伤ROR1阳性肿瘤细胞,而对正常B细胞无作用。此外,他们还发现CAR的胞外间隔序列长度以及单链可变片段的亲和力会影响CAR-T细胞的杀伤能力 [50]。由于ROR1在人类和猕猴中具有高度的同源性,Berger等 [51] 利用猕猴模型初步证实了ROR1 CAR-T细胞在灵长类动物中的安全性。

3.9. 趋化因子受体4 (C-C Chemokine Receptor 4, CCR4)

趋化因子受体4是G蛋白偶联受体家族成员之一,在多种T细胞血液肿瘤尤其是成人T细胞白血病中过表达,继CCR4单克隆抗体的抗白血病作用被证实后,有研究者构建了CCR4 CAR-T细胞,其对成人T细胞白血病细胞等多种CCR4阳性肿瘤细胞表现出杀伤作用 [52]。

3.10. 胸腺基质淋巴生成素受体(Thymic Stromal Lymphopoietin Receptor, TSLPR)

TSLPR分子由CRLF2基因编码,与相应配体结合后参与淋巴细胞增殖调控,某些B-ALL患者由于CRLF2基因突变致使TSLPR过表达,并导致复发的高风险,因而TSLPR有可能作为这部分患者的理想治疗靶点。Qin 等 [53] 证实了TSLPR CAR-T细胞对TSLPR过表达白血病细胞的杀伤作用,并发现其在小鼠模型中的抗肿瘤作用与CAR-T细胞的结构有关。

3.11. 免疫球蛋白IgM Fc段受体(Immunoglobulin M Fc Receptor, FcµR)

FcµR也被称为Fas凋亡抑制分子3,表达于造血和淋巴组织,在CLL中高表达,Faitschuk等 [54] 发现与正常B细胞相比,CLL细胞FcµR的表达水平显著升高(p < 0.01),FcµR CAR-T细胞能特异性杀伤CLL细胞,而对正常B细胞几乎无作用,提示FcµR有可能作为CLL的免疫治疗靶点。

3.12. CD4

CD4分子在多数T细胞淋巴瘤和T-ALL中均表达,Pinz等 [55] 利用CD8阳性T细胞构建了CD4 CAR-T细胞,并证实了其对T细胞血液肿瘤中CD4阳性T细胞的特异性杀伤作用。尽管CD4 CAR-T细胞会杀伤正常CD4阳性T淋巴细胞,但有可能应用于微小残留病变的清除,并与后续造血干细胞移植联合治疗。

3.13. κ轻链(Κ Light Chains)

尽管CAR-T细胞在B细胞血液肿瘤的治疗上取得了显著疗效,但CAR-T细胞也存在多种毒副作用,例如脱靶效应,正常B细胞由于表达CD19、CD20等分子而受到CAR-T细胞的攻击,导致体液免疫受损增加感染概率。由于B细胞血液肿瘤存在免疫球蛋白轻链限制,即只表达κ链或λ链中的一种,因而靶向肿瘤细胞轻链的CAR-T细胞不会攻击表达另一种轻链的正常B细胞。有学者证实了靶向κ轻链的CAR-T细胞(κ-CAR)对B系肿瘤细胞的杀伤性,随后他们开展了κ-CAR细胞的临床试验,初步证实了κ-CAR细胞的安全性和有效性 [56] [57]。

4. 小结与展望

理想的CAR-T细胞治疗靶点是在白血病细胞或LSC上高表达,而在正常组织细胞中不表达,并且是白血病细胞维持其功能所必需的分子,从而有效避免肿瘤逃逸。但目前大部分免疫治疗靶点不具备肿瘤特异性,在正常组织细胞中都有不同水平的表达,这往往会导致脱靶效应,产生较大毒副作用。因此如何提高这些靶点的临床应用安全性以及寻找新的治疗靶点仍是目前白血病免疫治疗的研究重点。在提高CAR-T治疗的有效性和安全性方面,研究者也在不断尝试新的联合方案,如基因编辑技术改造结构,通用型CAR-T的开发,与其他抗肿瘤药物的联合应用,改善实体瘤中的肿瘤微环境,相信不久的将来,通过更多针对不同靶点的CAR-T的基础研究与临床实验的开展,会有更多特异性更强的治疗靶点被发现,给白血病治愈带来希望。

NOTES

*通讯作者。

参考文献

[1] Peinert, S., Prince, H.M., Guru, P.M., et al. (2010) Gene-Modified T Cells as Immunotherapy for Multiple Myeloma and Acute Myeloid Leukemia Expressing the Lewis Y Antigen. Gene Therapy, 17, 678-686.
https://doi.org/10.1038/gt.2010.21
[2] Ritchie, D.S., Neeson, P.J., Khot, A., et al. (2013) Persistence and Efficacy of Second-Generation CAR T Cell against the LeY Antigen in Acute Myeloid Leukemia. Molecular Therapy, 21, 2122-2129.
https://doi.org/10.1038/mt.2013.154
[3] Mcmillan, S.J. and Crocker, P.R. (2008) CD33-Related Sialic-Acid-Binding Immunoglobulin-Like Lectins in Health and Disease. Carbohydrate Research, 343, 2050-2056.
https://doi.org/10.1016/j.carres.2008.01.009
[4] Dutour, A., Marin, V., Pizzitola, I., et al. (2012) In Vitro and in Vivo Antitumor Effect of Anti-CD33 Chimeric Receptor-Expressing EBV-CTL against CD33 Acute Myeloid Leukemia. Advances in Hematology, 2012, Article ID: 683065.
https://doi.org/10.1155/2012/683065
[5] Wang, Q., Wang, Y., Lv, H., et al. (2015) Treatment of CD33-Directed Chimeric Antigen Receptor-Modified T Cells in One Patient with Relapsed and Refractory Acute Myeloid Leukemia. Molecular Therapy, 23, 184-191.
https://doi.org/10.1038/mt.2014.164
[6] Minagawa, K., Jamil, M.O., Al-Obaidi, M., et al. (2016) In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia. PLoS ONE, 11, e166891.
https://doi.org/10.1371/journal.pone.0166891
[7] Jordan, C.T., Upchurch, D., Szilvassy, S.J., et al. (2000) The Interleukin-3 Receptor Alpha Chain Is a Unique Marker for Human Acute Myelogenous Leukemia Stem Cells. Leukemia, 14, 1777-1784.
https://doi.org/10.1038/sj.leu.2401903
[8] Mardiros, A., Dos, S.C., Mcdonald, T., et al. (2013) T Cells Expressing CD123-Specific Chimeric Antigen Receptors Exhibit Specific Cytolytic Effector Functions and Antitumor Effects against human Acute Myeloid Leukemia. Blood, 122, 3138-3148.
https://doi.org/10.1182/blood-2012-12-474056
[9] Keyhani, A., Huh, Y.O., Jendiroba, D., et al. (2000) Increased CD38 Expression Is Associated with Favorable Prognosis in Adult Acute Leukemia. Leukemia Research, 24, 153-159.
https://doi.org/10.1016/S0145-2126(99)00147-2
[10] Yoshida, T., Mihara, K., Takei, Y., et al. (2016) All-Trans Retinoic Acid Enhances Cytotoxic Effect of T Cells with an Anti-CD38 Chimeric Antigen Receptor in Acute Myeloid Leukemia. Clinical & Translational Immunology, 5, e116.
https://doi.org/10.1038/cti.2016.73
[11] Legras, S., Gunthert, U., Stauder, R., et al. (1998) A Strong Expression of CD44-6v Correlates with Shorter Survival of Patients with Acute Myeloid Leukemia. Blood, 91, 3401-3413.
https://doi.org/10.1182/blood.V91.9.3401
[12] Casucci, M., Nicolis Di Robilant, B., Falcone, L., et al. (2013) CD44v6-Targeted T Cells Mediate Potent Antitumor Effects against Acute Myeloid Leukemia and Multiple Myeloma. Blood, 122, 3461-3472.
https://doi.org/10.1182/blood-2013-04-493361
[13] Wang, H., Kaur, G., Sankin, A.I., Chen, F., Guan, F. and Zang, X. (2019) Immune Checkpoint Blockade and CAR-T Cell Therapy in Hematologic Malignancies. Journal of Hematology & Oncology, 12, 59.
https://doi.org/10.1186/s13045-019-0746-1
[14] Kaufmann, Y., Amariglio, N., Rosenthal, E., Hirsch, Y.J., Many, A. and Rechavi, G. (2005) Proliferation Response of Leukemic Cells to CD70 Ligation Oscillates with Recurrent Remission and Relapse in a Low-Grade Lymphoma. The Journal of Immunology, 175, 6940-6947.
https://doi.org/10.4049/jimmunol.175.10.6940
[15] Sauer, T., Parikh, K., Sharma, S., Omer, B., Sedloev, D., Chen, Q., Angenendt, L., Schliemann, C., Schmitt, M., Müller-Tidow, C., Gottschalk, S. and Rooney, C.M. (2021) CD70-Specific CAR T Cells Have Potent Activity against Acute Myeloid Leukemia without HSC Toxicity. Blood, 138, 318-330.
https://doi.org/10.1182/blood.2020008221
[16] Salih, H.R., Antropius, H., Gieseke, F., et al. (2003) Functional Expression and Release of Ligands for the Activating Immunoreceptor NKG2D in Leukemia. Blood, 102, 1389-1396.
https://doi.org/10.1182/blood-2003-01-0019
[17] Murad, J. (2016) Safety Data from a First-in-Human Phase 1 Trial of NKG2D Chimeric Antigen Receptor-T Cells in AML/MDS and Multiple Myeloma.
[18] Pan, X.Q., Zheng, X., Shi, G., et al. (2002) Strategy for the Treatment of Acute Myelogenous Leukemia Based on Folate Receptor Beta-Targeted Liposomal Doxorubicin Combined with Receptor Induction Using All-Trans Retinoic Acid. Blood, 100, 594-602.
https://doi.org/10.1182/blood.V100.2.594
[19] Wang, H., Zheng, X., Behm, F.G., et al. (2000) Differentiation-Independent Retinoid Induction of Folate Receptor Type Beta, a Potential Tumor Target in Myeloid Leukemia. Blood, 96, 3529-3536.
https://doi.org/10.1182/blood.V96.10.3529
[20] Lynn, R.C., Poussin, M., Kalota, A., et al. (2015) Targeting of Folate Receptor Beta on Acute Myeloid Leukemia Blasts with Chimeric Antigen Receptor-Expressing T Cells. Blood, 125, 3466-3476.
https://doi.org/10.1182/blood-2014-11-612721
[21] Lynn, R.C., Feng, Y., Schutsky, K., et al. (2016) High-Affinity FRbeta-Specific CAR T Cells Eradicate AML and Normal Myeloid Lineage without HSC Toxicity. Leukemia, 30, 1355-1364.
https://doi.org/10.1038/leu.2016.35
[22] Chen, L., Mao, H., Zhang, J., et al. (2017) Targeting FLT3 by Chimeric Antigen Receptor T Cells for the Treatment of Acute Myeloid Leukemia. Leukemia, 31, 1830-1834.
https://doi.org/10.1038/leu.2017.147
[23] Kiyoi, H., Ohno, R., Ueda, R., et al. (2002) Mechanism of Constitutive Activation of FLT3 with Internal Tandem Duplication in the Juxtamembrane Domain. Oncogene, 21, 2555-2563.
https://doi.org/10.1038/sj.onc.1205332
[24] Marofi, F., Rahman, H.S., Al-Obaidi, Z.M.J., Jalil, A.T., Abdelbasset, W.K., Suksatan, W., Dorofeev, A.E., Shomali, N., Chartrand, M.S., Pathak, Y., Hassanzadeh, A., Baradaran, B., Ahmadi, M., Saeedi, H., Tahmasebi, S. and Jarahian, M. (2021) Novel CAR T Therapy Is a Ray of Hope in the Treatment of Seriously Ill AML Patients. Stem Cell Research & Therapy, 12, 465.
https://doi.org/10.1186/s13287-021-02420-8
[25] Laborda, E., Mazagova, M., Shao, S., et al. (2017) Development of A Chimeric Antigen Receptor Targeting C-Type Lectin-Like Molecule-1 for Human Acute Myeloid Leukemia. International Journal of Molecular Sciences, 18, 2259.
https://doi.org/10.3390/ijms18112259
[26] Zhang, H., Wang, P., Li, Z., He, Y., Gan, W. and Jiang, H. (2021) Anti-CLL1 Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed/Refractory Acute Myeloid Leukemia. Clinical Cancer Research, 27, 3549-3555.
https://doi.org/10.1158/1078-0432.CCR-20-4543
[27] Nakazawa, Y., Matsuda, K., Kurata, T., et al. (2016) Anti-Proliferative Effects of T Cells Expressing a Ligand-Based Chimeric Antigen Receptor against CD116 on CD34+ Cells of Juvenile Myelomonocytic Leukemia. Journal of Hematology & Oncology, 9, 27.
https://doi.org/10.1186/s13045-016-0256-3
[28] Lee, W.S., Ye, Z., Cheung, A.M.S., Goh, Y.P.S., Oh, H.L.J., Rajarethinam, R., Ye, S.P., Soh, M.K., Chan, E.H.L., Tan, L.K., Tan, S.Y., Chuah, C., Chng, W.J., Connolly, J.E. and Wang, C.I. (2021) Effective Killing of Acute Myeloid Leukemia by TIM-3 Targeted Chimeric Antigen Receptor T Cells. Molecular Cancer Therapeutics, 20, 1702-1712.
https://doi.org/10.1158/1535-7163.MCT-20-0155
[29] He, X., Feng, Z., Ma, J., Ling, S., Cao, Y., Gurung, B., Wu, Y., Katona, B.W., O’Dwyer, K.P., Siegel, D.L., June, C.H. and Hua, X. (2020) Bispecific and Split CAR T Cells Targeting CD13 and TIM3 Eradicate Acute Myeloid Leukemia. Blood, 135, 713-723.
https://doi.org/10.1182/blood.2019002779
[30] Uckun, F.M., Jaszcz, W., Ambrus, J.L., et al. (1988) Detailed Studies on Expression and Function of CD19 Surface Determinant by Using B43 Monoclonal Antibody and the Clinical Potential of Anti-CD19 Immunotoxins. Blood, 71, 13-29.
https://doi.org/10.1182/blood.V71.1.13.13
[31] Brentjens, R.J., Latouche, J., Santos, E., et al. (2003) Eradication of Systemic B-Cell Tumors by Genetically Targeted Human T Lymphocytes Co-Stimulated by CD80 and Interleukin-15. Nature Medicine, 9, 279-286.
https://doi.org/10.1038/nm827
[32] Cooper, L.J.N., Topp, M.S., Serrano, L.M., et al. (2003) T-Cell Clones Can Be Rendered Specific for CD19: Toward the Selective Augmentation of the Graft-versus-B-Lineage Leukemia Effect. Blood, 101, 1637-1644.
https://doi.org/10.1182/blood-2002-07-1989
[33] Kochenderfer, J.N., Feldman, S.A., Zhao, Y., et al. (2009) Construction and Preclinical Evaluation of an anti-CD19 Chimeric Antigen Receptor. Journal of Immunotherapy (Hagerstown, Md.: 1997), 32, 689-702.
https://doi.org/10.1097/CJI.0b013e3181ac6138
[34] Maude, S.L., Teachey, D.T., Porter, D.L., et al. (2015) CD19-Targeted Chimeric Antigen Receptor T-Cell Therapy for Acute Lymphoblastic Leukemia. Blood, 125, 4017-4023.
https://doi.org/10.1182/blood-2014-12-580068
[35] Huh, Y.O., Keating, M.J., Saffer, H.L., et al. (2001) Higher Levels of Surface CD20 Expression on Circulating Lymphocytes Compared with Bone Marrow and Lymph Nodes in B-Cell Chronic Lymphocytic Leukemia. American Journal of Clinical Pathology, 116, 437-443.
https://doi.org/10.1309/438N-E0FH-A5PR-XCAC
[36] Borowitz, M.J., Shuster, J., Carroll, A.J., et al. (1997) Prognostic Significance of Fluorescence Intensity of Surface Marker Expression in Childhood B-Precursor Acute Lymphoblastic Leukemia. A Pediatric Oncology Group Study. Blood, 89, 3960-3966.
https://doi.org/10.1182/blood.V89.11.3960
[37] Thomas, D.A., O’Brien, S., Jorgensen, J.L., et al. (2009) Prognostic Significance of CD20 Expression in Adults with De Novo Precursor B-Lineage Acute Lymphoblastic Leukemia. Blood, 113, 6330-6337.
https://doi.org/10.1182/blood-2008-04-151860
[38] Butler, L.A., Tam, C.S. and Seymour, J.F. (2017) Dancing Partners at the Ball: Rational Selection of Next Generation Anti-CD20 Antibodies for Combination Therapy of Chronic Lymphocytic Leukemia in the Novel Agents Era. Blood Reviews, 31, 318-327.
https://doi.org/10.1016/j.blre.2017.05.002
[39] Watanabe, K., Terakura, S., Martens, A.C., et al. (2015) Target Antigen Density Governs the Efficacy of Anti-CD20- CD28-CD3 Zeta Chimeric Antigen Receptor-Modified Effector CD8+ T Cells. Journal of Immunology (Baltimore, Md.: 1950), 194, 911-920.
https://doi.org/10.4049/jimmunol.1402346
[40] Mussai, F., Campana, D., Bhojwani, D., et al. (2010) Cytotoxicity of the Anti-CD22 Immunotoxin HA22 (CAT-8015) against Paediatric Acute Lymphoblastic Leukaemia. British Journal of Haematology, 150, 352-358.
https://doi.org/10.1111/j.1365-2141.2010.08251.x
[41] Haso, W., Lee, D.W., Shah, N.N., et al. (2013) Anti-CD22-Chimeric Antigen Receptors Targeting B-Cell Precursor Acute Lymphoblastic Leukemia. Blood, 121, 1165-1174.
https://doi.org/10.1182/blood-2012-06-438002
[42] Fry, T.J., Shah, N.N., Orentas, R.J., et al. (2017) CD22-Targeted CAR T Cells Induce Remission in B-ALL That Is Naive or Resistant to CD19-Targeted CAR Immunotherapy. Nature Medicine, 24, 20-28.
https://doi.org/10.1038/nm.4441
[43] Giordano Attianese, G.M.P., Marin, V., Hoyos, V., et al. (2011) In Vitro and in Vivo Model of a Novel Immunotherapy Approach for Chronic Lymphocytic Leukemia by Anti-CD23 Chimeric Antigen Receptor. Blood, 117, 4736-4745.
https://doi.org/10.1182/blood-2010-10-311845
[44] Mamonkin, M., Rouce, R.H., Tashiro, H., et al. (2015) A T-Cell-Directed Chimeric Antigen Receptor for the Selective Treatment of T-Cell Malignancies. Blood, 126, 983-992.
https://doi.org/10.1182/blood-2015-02-629527
[45] Chen, K.H., Wada, M., Pinz, K.G., et al. (2017) Preclinical Targeting of Aggressive T-Cell Malignancies Using Anti-CD5 Chimeric Antigen Receptor. Leukemia, 31, 2151-2160.
https://doi.org/10.1038/leu.2017.8
[46] Gomes-Silva, D., Srinivasan, M., Sharma, S., et al. (2017) CD7-Edited T Cells Expressing a CD7-Specific CAR for the Therapy of T-Cell Malignancies. Blood, 130, 285-296.
https://doi.org/10.1182/blood-2017-01-761320
[47] Png, Y.T., Vinanica, N., Kamiya, T., et al. (2017) Blockade of CD7 Expression in T Cells for Effective Chimeric Antigen Receptor Targeting of T-Cell Malignancies. Blood Advances, 1, 2348-2360.
https://doi.org/10.1182/bloodadvances.2017009928
[48] Chen, K.H., Wada, M., Firor, A.E., et al. (2016) Novel Anti-CD3 Chimeric Antigen Receptor Targeting of Aggressive T Cell Malignancies. Oncotarget, 7, 56219-56232.
https://doi.org/10.18632/oncotarget.11019
[49] Hudecek, M., Schmitt, T.M., Baskar, S., et al. (2010) The B-Cell Tumor-Associated Antigen ROR1 Can Be Targeted with T Cells Modified to Express a ROR1-Specific Chimeric Antigen Receptor. Blood, 116, 4532-4541.
https://doi.org/10.1182/blood-2010-05-283309
[50] Hudecek, M., Lupo-Stanghellini, M., Kosasih, P.L., et al. (2013) Receptor Affinity and Extracellular Domain Modifications Affect Tumor Recognition by ROR1-Specific Chimeric Antigen Receptor T Cells. Clinical Cancer Research, 19, 3153-3164.
https://doi.org/10.1158/1078-0432.CCR-13-0330
[51] Berger, C., Sommermeyer, D., Hudecek, M., et al. (2015) Safety of Targeting ROR1 in Primates with Chimeric Antigen Receptor-Modified T Cells. Cancer Immunology Research, 3, 206-216.
https://doi.org/10.1158/2326-6066.CIR-14-0163
[52] Perera, L.P., Zhang, M., Nakagawa, M., et al. (2017) Chimeric Antigen Receptor Modified T Cells That Target Chemokine Receptor CCR4 as a Therapeutic Modality for T-Cell Malignancies. American Journal of Hematology, 92, 892-901.
https://doi.org/10.1002/ajh.24794
[53] Qin, H., Cho, M., Haso, W., et al. (2015) Eradication of B-ALL Using Chimeric Antigen Receptor-Expressing T Cells Targeting the TSLPR Oncoprotein. Blood, 126, 629-639.
https://doi.org/10.1182/blood-2014-11-612903
[54] Faitschuk, E., Hombach, A.A., Frenzel, L.P., et al. (2016) Chimeric Antigen Receptor T Cells Targeting Fc mu Receptor Selectively Eliminate CLL Cells While Sparing Healthy B Cells. Blood, 128, 1711-1722.
https://doi.org/10.1182/blood-2016-01-692046
[55] Pinz, K., Liu, H., Golightly, M., et al. (2016) Preclinical Targeting of Human T-Cell Malignancies Using CD4-Specific Chimeric Antigen Receptor (CAR)-Engineered T Cells. Leukemia, 30, 701-707.
https://doi.org/10.1038/leu.2015.311
[56] Vera, J., Savoldo, B., Vigouroux, S., et al. (2006) T Lymphocytes Redirected against the Kappa Light Chain of Human Immunoglobulin Efficiently Kill Mature B Lymphocyte-Derived Malignant Cells. Blood, 108, 3890-3897.
https://doi.org/10.1182/blood-2006-04-017061
[57] Ramos, C.A., Savoldo, B., Torrano, V., et al. (2016) Clinical Responses with T Lymphocytes Targeting Malignancy-Associated Kappa Light Chains. The Journal of Clinical Investigation, 126, 2588-2596.
https://doi.org/10.1172/JCI86000