急性单核细胞白血病迭患多发性骨髓瘤一例并文献复习
Simultaneous Occurrence of Acute Myeloid Leukemia and Multiple Myeloma: A Case Report and Literature Review
DOI: 10.12677/ACM.2022.121057, PDF, HTML, XML, 下载: 312  浏览: 625 
作者: 李智慧*, 李 丽, 王彦丽#:临沂市中心医院,山东 临沂
关键词: 多发性骨髓瘤急性白血病BCL-2VenetoclaxMultiple Myeloma Acute Leukemia BCL-2 Venetoclax
摘要: 目的:探讨急性髓系白血病迭患多发性骨髓瘤的发生机制、治疗方法及预后。方法:对1例急性单核细胞白血病迭患多发性骨髓瘤患者的病例资料进行分析,并复习相关文献。结果:该例患者行小剂量地西他滨 + 阿克拉霉素 + VRd方案化疗2疗程,小剂量地西他滨 + CAG + 硼替佐米方案化疗1疗程,最终因原发病进展合并严重感染死亡,生存期10个月。结论:此类病例临床罕见,预后差,临床多为个案报道,目前治疗方案仍不能治愈大多数患者,化疗序贯移植或联合新的靶向药物有望延长患者生存期,改善预后。
Abstract: Objective: To investigate the pathogenesis, treatment and prognosis of simultaneous occurrence of acute myeloid leukemia and multiple myeloma. Methods: The case data of a patient with acute monocytic leukemia complicated with multiple myeloma were analyzed and the related literatures were reviewed. Result: The patient was treated with low dose of decitabine + aclacinomycin + VRd for two courses of chemotherapy, low dose of decitabine + aclacinomycin + bortezomib for one course of chemotherapy. Finally, he died of progression of primary disease with severe infection and survived for 10 months. Conclusion: Such cases are rare in clinic and poor in prognosis, but most of them are reported in individual cases. At present, the treatment scheme cannot cure most patients. Sequential transplantation of chemotherapy or combined with new targeted drugs is expected to prolong the survival time of patients and improve the prognosis.
文章引用:李智慧, 李丽, 王彦丽. 急性单核细胞白血病迭患多发性骨髓瘤一例并文献复习[J]. 临床医学进展, 2022, 12(1): 376-380. https://doi.org/10.12677/ACM.2022.121057

1. 前言

急性髓系白血病(Acute myeloid leukemia, AML)是起源于造血干细胞的恶性克隆性疾病,以贫血、出血、感染、浸润为主要临床表现。多发性骨髓瘤(Multiple myeloma, MM)是一种恶性克隆性浆细胞疾病,以贫血、溶骨性骨质破坏、高钙血症、肾功能不全为主要特征。文献报道的大多为MM治疗后继发髓系恶性肿瘤,而未经任何放、化学治疗却同时迭患的病例鲜有报道。现将我院收治的一例急性单核细胞白血病迭患多发性骨髓瘤的病例报道如下。

2. 病例资料

患者男性,66岁,因纳差、乏力伴上腹部疼痛5天于2018-04-20入临沂市中心医院血液科,查体:贫血貌,齿龈增生,胸骨压痛,浅表淋巴结未及肿大,右侧腹部压痛,肝脾肋下未及。完善血常规:白细胞1.09 × 10^9/L,血红蛋白102 g/L,血小板246 × 10^9/L,中性粒细胞计数0.48 × 10^9/L,血沉44 m/h,网织红细胞计数75 × 10^9/L。生化:总蛋白89.40 g/L,白蛋白28.90 g/L,球蛋白60.50 g/L,尿素6.7 mmol/L,肌酐78 umol/L,钙2.14 mmol/L,矫正血清钙2.41 mmol/L,乳酸脱氢酶224 U/L。免疫球蛋白G 34.4 g/L,免疫球蛋白A 0.536 g/l,免疫球蛋白M 0.451 g/L。血清免疫固定电泳:单克隆免疫球蛋白类型IgG-λ型。血清游离轻链组合:λ轻链1007 mg/dL,κ轻链5 mg/dL,λ/κ 201.5。血清M蛋白含量12 g/L。血β2-微球蛋白0.88 mg/L。尿本周氏蛋白电泳阳性。肌钙蛋白8.97 pg/ml,脑利钠肽前体60.32 pg/ml。骨髓细胞学:增生活跃,原幼单核细胞占34%;浆细胞13%,双核、破裙样浆细胞易见。PB:原幼单核细胞占17%。骨髓病理:骨髓有核细胞增生程度大致正常(60%);浆细胞小簇状分布;CD38散在少及小簇(+),CD138散在及小簇(+);CD56 (−)。免疫分型:1) 12.49%细胞(占有核细胞)表达CD3、CD117、CD38、HLA-DR,部分表达CD7、CD33、CD13,不表达CD3、CD5、CD2、CD4、CD8、CD56、CD15、CD10、CD11b、CD16,考虑为恶性髓系幼稚细胞。2) 8.81%细胞(占有核细胞)表达CD138、CD38、clamdba,不表达CD19、CD20、CD56、CD117、ckappa,为恶性单克隆浆细胞。髓系白血病常见融合基因筛查、WT1、CEBPA、C-KIT、FLT3/ITD、NPM1突变均阴性。FISH:IGH基因重排、RB1 (13q14)、CKS1B (1q21)、p53 (17p13.1)、13q14.3/13q34均阴性。骨髓染色体:46,XY。头颅、骨盆、脊柱全长骨骼平片未见骨质破坏。腹部CT:右侧腹部肠壁增厚,腹腔多发小淋巴结。因经济原因未能行二代基因测序。根据2021NCCN指南诊断:1) 急性单核细胞白血病(M5b,中危);2) 多发性骨髓瘤(IgG-λ,DS分期I期A组,ISS分期II期,R-ISS分期II期,LDH升高,mSMART标危)。治疗过程:给予小剂量地西他滨 + 阿克拉霉素 + VRd方案(硼替佐米 + 来那度胺 + 地塞米松)化疗2疗程,MM评估PR,但AML诱导失败,骨髓涂片仍见12%原幼单核细胞。患者家属拒绝更换强化疗,采用小剂量地西他滨 + CAG + 硼替佐米方案化疗1疗程,化疗后出现肺铜绿假单胞菌、曲霉菌感染,患者家属拒绝继续治疗,终因原发病进展并发重症感染于2019年2月死亡。

3. 讨论

AML和MM同属于血液系统的恶性肿瘤,文献报道的大多为MM患者在应接受化疗或自体移植后发生了治疗相关性髓系肿瘤(therapy-related myeloid neoplasms, t-MN) [1] [2] [3] [4] [5],而在没有放化疗史的患者身上发生AML迭患MM的病例非常罕见,仅有个案报道。

AML和MM起源于不同的恶性克隆性细胞,分子生物学特征存在较大的差异,但二者同时发生可能存在共同的凋亡信号通路失控和驱动基因突变。研究认为RAS/MAPK、NF-kB、PI3K-Akt-mTOR、CXCR4/CXCL、DNA损伤应答/TP53途径在AML和MM发生、发展的过程中发挥了重要作用 [6] [7] [8] [9]。由于发病率低,目前文献报道尚未发现存在共同的驱动基因,两类疾病的突变高频基因位于KRAS、NRSAS、TP53、BRAF、BCL-2 [10] [11] [12],但能否引起AML和MM同时发生,尚需进一步研究。本例患者如能进行二代基因测序无疑对AML迭患MM病例提供了研究价值。AML迭患MM临床上罕见,预后差,虽然以蒽环类药物为基础的AML方案、异基因造血干细胞移植和分子靶向抑制剂(硼替佐米、来那度胺、达雷妥尤单抗等)在少数患者中取得了一定的疗效,但大多数患者仍无法治愈 [13] [14] [15] [16] [17]。本例患者根据指南诊断AML (中危)迭患MM (标危),AML侵袭性更高,治疗上应以AML为主、MM为辅的方案,患者及家属拒绝强化疗,选用治疗兼顾的方案进行诱导治疗,但AML诱导失败,且出现感染并发症导致继续治疗中断。王鲁群 [17] 报道了1例应用硼替佐米联合CAG方案(阿糖胞苷 + 阿克拉霉素 + 粒细胞集落刺激因子)治疗AML迭患MM,缓解期超过6个月,更适用于年龄大不适合强化疗的患者。Daniel Kim [15] 报道了1例AML迭患MM患者采用治疗兼顾化疗方案,多次诱导失败后接受白消安和环磷酰胺为预处理方案的清髓性异基因造血干细胞移植(allo-SCT),患者在SCT后421天无病生存。对于AML迭患MM患者,SCT可以作为缓解后的一线治疗选择。Celine Berthon [18] 报道1例AML迭患MM患者,治疗上采用“3 + 7”方案诱导缓解,AML达CR,但出现严重感染导致无法进行强化巩固治疗,换用阿扎胞苷 + 来那度胺维持治疗,MM取得VGPR疗效(AML仍CR),但此后MM、AML相继复发,分别给予阿扎胞苷 + 达雷妥尤单抗(Dara)方案、小剂量阿糖胞苷 + 维奈克拉方案治疗,患者最终死于白血病进展,生存期5年。化疗联合新的靶向药物可能延长患者生存期。目前研究最多的是BCL-2家族蛋白,其中抗凋亡蛋白Bcl-2-A1、Bcl-xL、Mcl-1基因的异常表达与肿瘤细胞对放化疗的敏感性和疾病复发、耐药等关系密切 [10] [19] [20]。维奈克拉(Venetoclax)是高选择性BCL-2抑制剂,目前已被FDA批准用于老年不适合强化疗的急性髓系白血病患者,研究显示BCL2-A1低表达、PML-RARA、WT1、FLT3和IDH1突变对Venetoclax具有更高的敏感性;相反,TET2、KRAS、PTPN11和SF3B1突变与Venetoclax耐药性有关 [21] [22]。在多发性骨髓瘤患者中Venetoclax适用于存在t(11; 14)、CyclinD1、BCL-2高表达、Mcl-1/Bcl-XL低表达的患者 [23],联合硼替佐米、地塞米松可以克服Venetoclax单药治疗的不足,并且表现出和Dara、卡非佐米相似的疗效 [24] [25]。另外,17-在和MM中被认为与药物耐药性有关,但体内外试验均证实17p-并不影响Venetoclax在和中的应用 [24] [26]。AZD5991 [27] 是目前正在临床研究的MCL-1抑制剂,可直接与MCL-1结合,通过激活依赖型线粒体凋亡途径,诱导癌细胞快速凋亡,其中作用最显著的是多发性骨髓瘤和急性髓系白血病。AZD5991和Venetoclax的联合应用可以导致caspase 3的快速激活,并锐减MCL-1的水平,可以有效地克服他们在单药治疗上的耐药性 [27]。

4. 总结

综上,AML迭患MM临床罕见,总体生存期短,预后差,目前发病机制不明确,无标准治疗方案,临床上仍需要通过综合评估疾病的分期和危险度分层,免疫球蛋白类型、靶器官损害情况、患者的体能状态和感染情况,有无高危耐药基因及有无分子靶向治疗,尽可能应用多药化疗联合靶向药物、缓解后尽快行异基因造血干细胞移植或在非强化疗的基础上增加新的靶向抑制剂治疗可能提高治疗疗效,减少并发症,改善预后,延长生存期。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Chirlaque, M., Chen-Liang, T.H., Hurtado, A.M., García Malo, M.D., Ortuño, F.J., Roldán, V., Vicente, V., Jerez, A. and De Arriba, F. (2019) Increasing Therapy-Related Myeloid Neoplasms in Multiple Myeloma. European Journal of Clinical Investigation, 49, Article ID: e13050.
https://doi.org/10.1111/eci.13050
[2] Mailankody, S., Pfeiffer, R.M., Kristinsson, S.Y., Korde, N., Bjorkholm, M., Goldin, L.R., Turesson, I. and Landgren, O. (2011) Risk of Acute Myeloid Leukemia and Myelodysplastic Syndromes after Multiple Myeloma and Its Precursor Disease (MGUS). Blood, 118, 4086-4092.
https://doi.org/10.1182/blood-2011-05-355743
[3] Bhatia, S. (2013) Therapy-Related Myelodysplasia and Acute Myeloid Leukemia. Seminars in Oncology, 40, 666-675.
https://doi.org/10.1053/j.seminoncol.2013.09.013
[4] Chung, A. and Liedtke, M. (2019) Therapy-Related Myeloid Neoplasms after Treatment for Plasma-Cell Disorders. Best Practice & Research Clinical Haematologyl, 32, 54-64.
https://doi.org/10.1016/j.beha.2019.02.003
[5] Gupta, S.K., Chandramohan, J. and Kumar, L. (2015) AML Transformation after Autologous Stem Cell Transplant for Multiple Myeloma. BMJ Case Reports, 2015, Article ID: bcr2015210024.
https://doi.org/10.1136/bcr-2015-210024
[6] Nepstad, I., Hatfield, K.J., Grønningsæter, I.S. and Reikvam, H. (2020) The PI3K-Akt-mTOR Signaling Pathway in Human Acute Myeloid Leukemia (AML) Cell12s. International Journal of Molecular Sciences, 21, Article No. 2907.
https://doi.org/10.3390/ijms21082907
[7] Ramakrishnan, V. and Kumar, S. (2018) PI3K/AKT/mTOR Pathway in Multiple Myeloma: From Basic Biology to Clinical Promise. Leukemia & Lymphoma, 59, 2524-2534.
https://doi.org/10.1080/10428194.2017.1421760
[8] Harms, M., Gilg, A., Ständker, L., Beer, A.J., Mayer, B., Rasche, V., Gruber, C.W. and Münch, J. (2020) Microtiter Plate-Based Antibody-Competition Assay to determine binding affinities and Plasma/Blood Stability of CXCR4 Ligands. Scientific Reports, 10, Article No. 16036.
https://doi.org/10.1038/s41598-020-73012-4
[9] Ullah, T.R. (2019) The Role of CXCR4 in Multiple Myeloma: Cells’ Journey from Bone Marrow to Beyond. Journal of Bone Oncology, 17, Article ID: 100253.
https://doi.org/10.1016/j.jbo.2019.100253
[10] Cory, S., Huang, D.C. and Adams, J.M. (2003) The Bcl-2 Family: Roles in Cell Survival and Oncogenesis. Oncogene, 22, 8590-8607.
https://doi.org/10.1038/sj.onc.1207102
[11] Linden, M. (2004) Targeted Overexpression of Bcl-XL in B-Lymphoid Cells Results in Lymphoproliferative Disease and Plasma Cell Malignancies. Blood, 103, 2779-2786.
https://doi.org/10.1182/blood-2003-10-3399
[12] Bolli, N., Biancon, G., Moarii, M., Gimondi, S., Li, Y., de Philippis, C., et al. (2018) Analysis of the Genomic Landscape of Multiple Myeloma Highlights Novel Prognostic Markers and Disease Subgroups. Leukemia, 32, 2604-2616.
https://doi.org/10.1038/s41375-018-0037-9
[13] Oka, S., Ono, K. and Nohgawa, M. (2017) Successful Treatment with Azacitidine for the Simultaneous Occurrence of Multiple Myeloma and Acute Myeloid Leukemia with Concomitant del(5q) and the JAK2 V617F Mutation. Annals of Hematology, 96, 1411-1413.
https://doi.org/10.1007/s00277-017-3032-8
[14] Kumar, R., Srinivasan, V.K., Sharma, P., Aggarwal, R., Prakash, G., Malhotra, P. and Varma, N. (2016) Synchronous Plasma Cell Myeloma and Acute Myeloid Leukemia in a Therapy-Naïve Patient: A Rare Occurrence. Indian Journal of Hematology and Blood Transfusion, 32, 168-172.
https://doi.org/10.1007/s12288-015-0628-9
[15] Kim, D., Kwok, B. and Steinberg, A. (2010) Simultaneous Acute Myeloid Leukemia and Multiple Myeloma Successfully Treated with Allogeneic Stem Cell Transplantation. Southern Medical Journal, 103, 1246-1249.
https://doi.org/10.1097/smj.0b013e3181fa5eeb
[16] Murukutlaa, S., Aroraa, S., Bhatta, V.R., Kediaa, S., Popalzaib, M. and Dhar, M. (2014) Concurrent Acute Monoblastic Leukemia and Multiple Myeloma in a 66-Year-Old Chemotherapy-Naive Woman. World Journal of Oncology, 5, 68-71.
https://doi.org/10.14740/wjon722w
[17] Wang, L.-Q., Hao, L., Li, X.-X., Li, F.-L., Wang, L.-L., Chen, X.-L. and Hou, M. (2015) A Case of Simultaneous Occurrence of Acute Myeloid Leukemia and Multiple Myeloma. BMC Cancer, 15, Article No. 724.
https://doi.org/10.1186/s12885-015-1743-6
[18] Berthon, C., Nudel, M., Boyle, E.M., Goursaud, L., Boyer, T., Marceau, A. and Quesnel, B. (2020) Acute Myeloid Leukemia Synchronous with Multiple Myeloma Successfully Treated by Azacytidine/Lenalidomide and Daratumumab without a Decrease in Myeloid Clone Size. Leukemia Research Reports, 13, Article ID: 100202.
https://doi.org/10.1016/j.lrr.2020.100202
[19] El-Shakankiry, N.H., El-Sayed, G.M., El-Maghraby, S. and Moneer, M.M.. (2009) Bcl-2 Protein Expression In Egyptian Acute Myeloid Leukemia. Journal of the Egyptian National Cancer Institute, 21, 71-76.
[20] Campos, L., Rouault, J.P., Sabido, O., Oriol, P., Roubi, N., Vasselon, C., et al. (2002) High Expression of Bcl-2 Protein in Acute Myeloid Leukemia Cells Is Associated with Poor Response to Chemotherapy. Blood, 81, 3091-3096.
[21] Zhang, H., Wilmot, B., Bottomly, D., Kurtz, S.E., Eide, C.A., Damnernsawad, A., et al. (2018) Biomarkers Predicting Venetoclax Sensitivity and Strategies for Venetoclax Combination Treatment. Blood, 132, 175.
https://doi.org/10.1182/blood-2018-175
[22] Mill, C.P., Cai, T., Fiskus, W., Borthakur, G., Kornblau, S.M., Kadia, T.M., et al. (2018) Mechanisms Underlying Superior Efficacy of Co-Targeting BET Proteins and Anti-Apoptotic BCL2 or MCL1 Protein Against AML Blast Progenitor Cells. Blood, 132, 1351.
https://doi.org/10.1182/blood-2018-99-113976
[23] Punnoose, E.A., Leverson, J.D., Peale, F., Boghaert, E.R., Belmont, L.D., Tan, N., et al. (2016) Expression Profile of BCL-2, BCL-XL, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models. Molecular Cancer Therapeutics, 15, 1132-1144.
https://doi.org/10.1158/1535-7163.mct-15-0730
[24] Touzeau, C., Maciag, P., Amiot, M. and Moreau, P. (2018) Targeting Bcl-2 for the Treatment of Multiple Myeloma. Leukemia, 32, 1899-1907.
https://doi.org/10.1038/s41375-018-0223-9
[25] Kumar, S.K., Harrison, S.J., Cavo, M. de la Rubia, J., Popat, R., Gasparetto, C, et al. (2020) Venetoclax or Placebo in Combination with Bortezomib and Dexamethasone in Patients with Relapsed or Refractory Multiple Myeloma (BELLINI): A Randomised, Double-Blind, Multicentre, Phase 3 Trial. The Lancet Oncology, 21, 1630-1642.
https://doi.org/10.1016/s1470-2045(20)30525-8
[26] Guerra, V.A., Di Nardo, C. and Konopleva, M., (2019) Venetoclax-Based Therapies for Acute Myeloid Leukemia. Best Practice and Research in Clinical Haematology, 32, 145-153.
https://doi.org/10.1016/j.beha.2019.05.008
[27] Tron, A.E., Belmonte, M.A., Adam, A., Aquila, B.M., Boise, L.H., Chiarparin, E., et al. (2018) Discovery of Mcl-1-Specific Inhibitor AZD5991 and Preclinical Activity in Multiple Myeloma and Acute Myeloid Leukemia. Nature Communications, 9, Article No. 5341.
https://doi.org/10.1038/s41467-018-07551-w