应激颗粒,FUS相关肌萎缩侧索硬化症的治疗新靶点
Stress Granules, a Novel Therapeutic Target of FUS-Related Amyotrophic Lateral Sclerosis
DOI: 10.12677/HJBM.2022.122007, PDF, HTML, XML, 下载: 355  浏览: 1,011  国家自然科学基金支持
作者: 周钰林, 宋 振, 金志刚*:浙江师范大学,化学与生命科学学院,浙江 金华
关键词: 应激颗粒FUS肌萎缩侧索硬化神经退行性疾病Stress Granules FUS Amyotrophic Lateral Sclerosis Neurodegenerative Disease
摘要: 肌萎缩侧索硬化症(amyotrophic lateral sclerosis, ALS)是一种引起上、下运动神经元退化的神经退行性疾病,其病理学的确切机制尚不清楚。与ALS相关的病理过程包括线粒体功能障碍、蛋白质稳态失衡和RNA代谢缺陷。在ALS患者退化的运动神经元中FUS蛋白形成了不溶性聚集体,而ALS相关的FUS突变加速了该过程。近年来很多研究表明,应激颗粒(stress granules, SGs)在FUS突变引起蛋白病变并驱动ALS进展的过程中发挥了重要作用。SGs是真核细胞响应压力形成的一种动态无膜细胞器,主要包含暂停翻译的mRNA和RNA结合蛋白。SGs通过招募mRNA调控了翻译,通过招募信号分子调控了信号通路,从而促进了细胞在压力下的适应和存活。然而,多种慢性压力诱导的SGs具有致病作用。SGs被认为在很多神经退行性疾病病理性蛋白质聚集体的产生过程中发挥了“成核种子”的作用,包括FUS突变引起的蛋白质聚集体。本文主要就SGs在FUS相关ALS病理发生中的作用及其靶向治疗策略做一简要概述和讨论。
Abstract: Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that causes degeneration of upper and lower motor neurons. The exact mechanisms underlying the pathogenesis of ALS remain elusive. Many pathological processes are associated with ALS, including mitochondrial dysfunction, loss of proteostasis and defect in RNA metabolism. FUS protein develops insoluble aggregation in degenerated motor neurons of ALS patients, which is accelerated by ALS-linked FUS mutations. Recently, many studies have shown that stress granules (SGs) play an important role in proteinopathy of mutated FUS that drives ALS progression. SGs are stress-induced dynamic membraneless organelle in eukaryotic cells, containing translation-stalled mRNAs and RNA binding proteins. SGs regulate mRNA translation and signaling pathways by recruitment of mRNAs and signaling proteins respectively, leading to stress adaption and cell survival. However, SGs induced by some chronic stress exert pathological outcomes and are believed to act as a seed for the formation of pathological protein aggregation in many neurodegenerative diseases, including FUS mutations-induced protein aggregation. Here we briefly summarized and discussed the role of SGs in the pathogenesis of FUS-re- lated ALS and the therapeutic strategy targeting SGs.
文章引用:周钰林, 宋振, 金志刚. 应激颗粒,FUS相关肌萎缩侧索硬化症的治疗新靶点[J]. 生物医学, 2022, 12(2): 55-65. https://doi.org/10.12677/HJBM.2022.122007

1. FUS相关ALS

1.1. ALS致病基因

肌萎缩侧索硬化症(amyotrophic lateral sclerosis, ALS)是一种神经退行性疾病。发病者由局部肌无力、抽搐和疼痛开始,逐渐扩散至全身骨骼肌肉群。ALS的发病年龄、发病部位和疾病进展具有高度的可变性,大多患者在诊断后3~5年因瘫痪扩散到隔膜导致的呼吸衰竭而死 [1]。尽管有些药物能够缓解ALS症状,但目前尚未有彻底治愈ALS的有效疗法 [2]。

大约10%的ALS病例为家族性ALS,大多数家族性ALS为常染色体显性遗传,另外约90%的ALS病例为无家族病史且病因不明的散发性ALS。最近报道大约有147种基因突变能够导致ALS发病 [3]。其中C9orf72重复扩增以及SOD1 (superoxide dismutase 1),TARDBP (TAR DNA-binding protein),FUS (fused in sarcoma)和TBK1 (TANK-binding kinase 1)的基因突变占据了15%的ALS总病例 [4]。这些基因与疾病的多个不同的生理过程相关,包括轴突运输、内质网应激、自噬、核质运输和RNA代谢等 [1]。C9orf72重复扩增和SOD1突变是导致ALS的最普遍的遗传原因,C9orf72重复扩增突变会导致功能丧失引起的神经变性和功能获得引起的神经兴奋性毒性 [5]。SOD1突变会使超氧化物清除能力丧失,影响线粒体功能,并改变神经胶质细胞的功能 [6] [7]。虽然FUS突变和TARDBP基因编码的TDP-43突变略少于C9orf72和SOD1,但是TDP-43的异常亚细胞定位在家族性和散发性ALS中很常见,而不局限于TDP-43突变引起的ALS。97%的散发性TDP-43突变导致其突变蛋白错定位,并且损伤线粒体功能 [8] [9]。迄今为止,由FUS的基因突变引发的ALS约占5%家族性ALS和1%散发性ALS。家族性ALS中,已发现的50多种FUS突变大多集中于C末端的脯氨酸–酪氨酸核定位信号(proline-tyrosine nuclear localization signal, PY-NLS) [10]。这些FUS突变导致其突变蛋白错定位于神经元细胞质、轴突和树突而导致神经元毒性 [11]。最近的研究指出,ALS患者中FUS的错定位或许是个新的分子诊断标志 [12] [13]。

1.2. FUS与ALS

FUS基因突变是仅次于SOD1的常见ALS基因突变。FUS最初在研究粘液样脂肪肉瘤中的嵌合癌蛋白时,发现其属于FET家族蛋白 [14]。组成FUS蛋白的结构域从N端到C端分别为谷氨酰胺–甘氨酸–丝氨酸–酪氨酸富集区域(QGSY-rich domain)、精氨酸–甘氨酸–甘氨酸富集结构域1 (arginine-glycine-glycine rich domains 1, RGG1)、RNA识别结构域(RNA-recognition motifs, RRM)、RGG2、RGG3和PY-NLS。QGSY 结构域和RGG1组成的低复杂性的保守N端区域,主要驱动液–液相分离(liquid-liquid phase separation, LLPS)并介导蛋白质–蛋白质相互作用 [15]。FUS蛋白的C端负责识别并结合RNA [16]。最后29个氨基酸组成PY-NLS,调控FUS的入核 [17]。FUS蛋白可通过结合mRNA 3’UTR调控300多种mRNA的稳定性,并在RNA转录、剪接、转运和翻译以及DNA损伤修复等多个过程中发挥作用 [18] [19]。FUS突变集中于PY-NLS附近,并且会引起正常功能的丧失以及功能获得细胞毒性。虽然两者均是导致ALS的重要因素,但目前研究表明细胞毒性的功能获得可能是FUS相关ALS病理发生中的主导因素 [11]。

FUS突变可导致蛋白翻译受损,并激活无义介导的mRNA降解(nonsense-mediated decay, NMD)相关蛋白的活性,最终导致NMD相关因子的失调 [20]。能量代谢与ALS的发生、发展有关,FUS突变导致线粒体ATP合成受损并诱导神经变性,但与代谢的关系研究还是处于起步阶段 [21] [22]。过表达FUS突变会引起显性负效应(dominant negative effect),将过表达的野生型FUS一同隔离,共同形成蛋白质聚集体,会导致野生型FUS的功能丧失并引起细胞毒性 [23] [24]。但相反的是,最近研究指出野生型FUS也会将突变FUS滞留在细胞核,但无法确定突变FUS的核滞留是保护性的还是有害的 [25] [26],这种现象提示了FUS突变可能导致野生型FUS定位逐渐从细胞核转向细胞质,这可能与FUS的突变位点和蛋白质聚集体的进展阶段相关。值得注意的是,过表达野生型FUS足以降低细胞活力,使细胞周期调控异常 [27]。与TDP-43类似,与FUS突变无关的ALS患病模型中也观察到了FUS蛋白的明显错定位,错定位的FUS会丧失与细胞核mRNA前体的结合能力,进而导致神经变性。因此,FUS蛋白的错定位可以作为是一个新的分子诊断标志 [12] [13]。

2. 应激颗粒与ALS

2.1. ALS的蛋白病特征

神经元的非分裂及寿命较长等特性导致神经元更容易受到病理性聚集体的影响,这些病理性聚集体包含了许多RNA结合蛋白(RNA-binding proteins, RBPs),如TDP-43、FUS和hnRNP A1等,这些RBPs同时也是应激颗粒(stress granules, SGs)的蛋白组分。RBPs突变会导致蛋白在神经元中的长期积累并引发不溶性聚集体及细胞毒性,从而促进神经元变性和凋亡 [28]。因此,ALS是一种典型的蛋白病(proteinopathy)。SGs的动态变化与ALS的发生和发展密切相关,近年来与其相关的研究正逐渐增加。

2.2. SGs及其与ALS的关联

当真核细胞暴露于不利生长条件时,暂停翻译的RNA和蛋白质会发生LLPS,在细胞质中组装形成生物大分子凝聚体,即SGs。通常,SGs的发生伴随着翻译起始因子2α (eukaryotic initiation factor 2α, eIF2α)的磷酸化和总体翻译的停滞。eIF2α的磷酸化由4种蛋白激酶负责,包括HRI (heme-regulated eIF2α kinase)、PKR (protein kinase R)、GCN2 (general control nonderepressible 2)和PERK (PKR-like endoplasmic reticulum kinase)。此外,抑制eIF4A、eIF4E和eIF4G形成复合物eIF4F也能以不依赖于eIF2α磷酸化的方式来诱导SGs形成 [29]。SGs是一种瞬时动态结构,这种动态与SGs成核蛋白的内在无序区(intrinsic disordered regions, IDRs)特性相关,一些SGs成核蛋白(如G3BP1、TIA-1、和Caprin1等RBPs)和RNAs组成蛋白浓度较高的SGs核心,而低浓度高动态的蛋白质形成SGs外壳并包裹着SGs内核,进而形成一种与邻近SGs胞浆中蛋白质和mRNA动态交换的平衡状态,这构成了SGs快速、短暂和可逆地响应压力的基础,有利于细胞在压力来临时快速组装SGs以及适应或消除压力后可逆地解聚SGs [30]。

SGs性质取决于细胞的能量状态、翻译重新起始速率、蛋白质翻译后修饰、RNA修饰、分子伴侣和自噬清除等 [30] [31] [32]。SGs蛋白募集和交换速率是能量依赖的,抑制ATP相关酶活性会影响其动力学 [31]。哺乳动物SGs组分中Hsp70和Hsp40是分子伴侣,可调节颗粒的形成和分离 [30]。研究发现,位于SGs成核蛋白IDRs附近的多种修饰会影响SGs组装 [32],例如去甲基化的G3BP1可以促进SGs组装 [33]。在自噬缺陷细胞中,SGs解聚受损并影响衰老的神经细胞SGs数量 [34]。总而言之,SGs是一个动态的过程,这种过程的异常会引发一系列的疾病。

通常生理疾病会使细胞面对热休克、化学刺激等急性应激,这种急性压力较容易补偿,而持续的蛋白质稳态失衡、低浓度毒素刺激或病毒感染等慢性压力对细胞的影响可能更加严重。在FUS相关ALS中,慢性压力使细胞形成较小的FUS蛋白颗粒,这种不溶性颗粒可能与SGs重合,也可能独立于SGs,但颗粒的发展均与SGs相关。ALS患者脑组织中常见的病变特征是RBPs因突变从核内转变为细胞质聚集性表达,聚集体逐渐纤维化并影响神经细胞活性和神经传导等 [35]。在神经细胞中一些SGs蛋白具有细胞特异性和压力特异性。例如,Profilin 1是一种定位于神经细胞但不定位于外周细胞SGs中的肌动蛋白结合蛋白,而FMR1 (FMRP translational regulator 1)特异性定位于神经细胞中的SGs [36]。在神经细胞中,SGs组分的不同是否是ALS突变造成不同毒性的原因还值得探究。目前研究表明SGs与ALS的关联主要体现在:一方面,SGs作为了“成核种子”起始了蛋白质聚集体的形成过程,导致蛋白质正常功能的丧失及其细胞毒性的功能获得;另一方面,蛋白质聚集体形成后促进了动态可逆的正常SGs转变为持续不可逆的异常SGs,导致了SGs具有的细胞保护性功能的丧失。

3. SGs与FUS相关ALS

3.1. FUS突变体错定位于SGs

野生型FUS定位于细胞核中,ImportinsTNPO1基因编码的Kapβ2蛋白通过结合FUS蛋白C末端的PY-NLS促进了FUS的核定位。ALS患者中,FUS突变主要发生于PY-NLS,从而导致了FUS蛋白的错定位(图1)。这种错定位影响了蛋白间的相互作用、核质转运以及FUS蛋白参与的mRNA剪接与合成等过程,并逐渐产生神经毒性 [37] [38] [39]。FUS主要结合细胞核中未成熟的mRNA,由于FUS突变导致的错定位,FUS与胞质中成熟mRNA异常结合,导致mRNA的稳定性及转运的异常 [40] [41]。有研究报道,FUS突变与snRNA异常的相互作用影响了相关mRNA剪接调节机制 [42]。在果蝇模型中,抑制FUS出核可以降低突变FUS在胞质中功能获得的细胞毒性 [43]。

细胞在受到热休克、亚砷酸钠或山梨糖醇等压力时,整体蛋白质合成被抑制,FUS突变体错定位于SGs。目前,FUS突变体在急性应激诱导的SGs中的错定位已经得到了验证,但是对于慢性压力诱导的SGs研究较少 [44]。急性和慢性SGs的蛋白质组成略有不同,但却导致了极大的功能差异。急性SGs包含翻译暂停的mRNA、40S核糖体和翻译起始因子,保留了mRNA在压力消除后返回多聚核糖体重启翻译的能力,急性SGs还招募了细胞凋亡相关信号通路的信号分子并抑制压力诱导的细胞凋亡。因此,急性SGs具有促进压力下细胞存活的功能。相比之下,慢性SGs具有静态结构,包含不同的蛋白质组分并具有促凋亡功能。ALS患者发病通常持续3~6年,这种慢性压力会导致细胞RNA代谢脆弱性并使RBPs在SGs中产生病理性聚集 [45]。SGs作为RBPs的富集中心,加剧了FUS突变体的在慢性压力下的毒性作用,并成为ALS的分子标志 [13] [46]。

Figure 1. The most frequent FUS mutations associated with ALS patients occur within or close to C-terminal PY-NLS

图1. ALS患者中的常见FUS突变发生于C末端的PY-NLS及其邻近区域

3.2. SGs与FUS R521突变

FUS蛋白521位的精氨酸(R521)是常见的FUS突变位点,通常突变为半胱氨酸(R521C)、组氨酸(R521H)或甘氨酸(R521G)。研究发现,R521H可诱导DNA损伤 [47]。在运动神经元中加入表达R521G的星形胶质细胞产生的条件培养基可导致神经元产生广泛的分支和较短的轴突 [48]。有趣的是,研究发现内源R521G突变可以与过表达的野生型FUS形成异二聚体并滞留在细胞核,提示过表达的野生型FUS可减弱FUS突变引起的细胞质毒性 [26]。在应激条件下,R521C和R521H主要定位于细胞核,部分定位于SGs [47] [49]。FUS突变引起的错定位改变SGs的大小、组分和动态,最终引起神经元凋亡。例如,R521C诱导了TIA-1错误加工,增强了神经毒性 [50]。R521C通过将RPMT1 (protein arginine methyltransferase 1)隔离在SGs中或将ELAVL4 (ELAV like RNA binding protein 4)隔离在FUS阳性包涵体中,导致细胞稳态发生变化并诱导了神经退化 [40] [51]。FUS突变聚集体还可以隔离核编码呼吸链复合体mRNA,并引起线粒体功能障碍 [41]。在自噬缺陷细胞中,SGs解聚受损,R521C阳性颗粒增多,诱导相关ALS病变 [52]。在动物模型中,R521C或R521H突变后的8个月,小鼠发生了年龄依赖性的神经病变 [37]。进一步研究发现,在敲入R521C的动物模型中,小鼠运动能力受损,大鼠产生睡眠障碍和昼夜节律失调 [50] [53]。有趣的是,R521H突变在遗传矫正为R521R后拯救了R521H突变的负面影响,表明单突变及其纠正足以引起和治愈该疾病 [54]。

3.3. SGs与FUS P525突变

第525位脯氨酸突变为亮氨酸(P525L),也是ALS患者中的常见FUS突变。因该突变发生于PY-NLS中的关键氨基酸,P525L存在比R521突变更加强烈的细胞质定位,核转运蛋白Kapβ2无法将其定位于核内 [55] [56]。与R521突变类似的是,P525L与ELAVL4共定位,能够诱导DNA损伤 [40] [47] [51]。很多研究报导了P525L产生的其他病理效应,如P525L损害了运动神经元中miRNA-375表达,进而影响下游靶基因ELAVL4 [51]。P525L诱导了DNA损伤并引起神经变性 [57]。P525L的表达阻止细胞增殖并促进神经胶质细胞分化 [27]。研究者将野生型FUS锚定在细胞质后发现,野生型FUS并不定位于SGs,但P525L与SGs共定位,提示胞质错位可能只是FUS错定位于SGs的其中一环 [56]。在应激条件下,对比与其他散发性ALS,P525L胞质颗粒数量更多且持续时间更长 [58]。细胞经紫外照射后,P525L无法进入DNA损伤位点,提示P525L的错定位位于ALS病变的上游 [57]。P525L突变减弱与ALS相关蛋白的结合和降低ALS蛋白的表达,并加速了FUS蛋白的病理性聚集 [46]。P525L突变抑制了运动神经元中FMR1的翻译,并增强FMR1在细胞中的LLPS [59]。

3.4. SGs与FUS其它突变

在神经元中,第514位精氨酸突变为甘氨酸(R514G)破坏了神经肌肉接头的形成,并且改变了与线粒体蛋白的互作 [60]。R514G转基因小鼠在12月之后出现异常的运动表现和认知缺陷,进一步发现R514G使NMD、蛋白质稳态和线粒体功能均受到影响 [61] [62]。第495位精氨酸突变为终止密码子(R495X),R495X因为缺少PY-NLS序列而出现了强烈的细胞质定位以及与胞质中成熟的mRNA异常结合,并在压力条件下与SGs共定位 [63] [64] [65]。FUS-ΔNLS的突变破坏了神经肌肉接头的形成,并显著减少了线粒体数量及面积(p < 0.01) [60]。在FUS-ΔNLS转基因小鼠中,FUS错定位于胞质并引起皮质神经元过度活跃、抑制性突触缺陷和RNA水平失调等,这些病理效应与SGs形成、内质网应激神经元损伤和蛋白质病联系紧密 [66] [67] [68] [69]。缺失了C端最后25个氨基酸的FUS 1-501突变在线虫中抑制了突触后电流的减少,并错定位于细胞质中 [70]。最近研究指出,FUS N端IDR区的突变具有两种倾向,甘氨酸突变(第165位的甘氨酸突变为谷氨酸、第178位的甘氨酸突变为丝氨酸以及第165位的甘氨酸突变为缬氨酸)更倾向于自聚集,与野生型FUS结合能力降低,且竞争性结合同一RNA。精氨酸突变(第244位精氨酸突变为半胱氨酸、第216位精氨酸突变为半胱氨酸以及第521位精氨酸突变为甘氨酸)更倾向于与野生型FUS形成异二聚体并改善其突变缺陷 [71]。有趣的是,FUS野生型并不定位于SGs,但是FUS的LLPS突变缺陷株可以抑制SGs形成,提示FUS的LLPS突变异常隔离了SGs成核蛋白,并可能破坏了正常SGs形成后具有的神经保护功能 [72]。本文总结了FUS突变对其定位以及神经元功能的影响(图2)。

Figure 2. Subcellular localization and phathological function of ALS-linked FUS mutants in neuron

图2. ALS相关FUS突变体在神经元中的亚细胞定位及其病理功能

4. FUS相关ALS的治疗新靶点

在1980年代末和90年代初,研究者第一次发现ALS患者中的谷氨酸稳态受损,过度、有害的谷氨酸信号引起的兴奋性毒性被认为是ALS运动神经元病变的基础或促成因素 [73]。因此,许多的治疗工作都集中在过度兴奋的神经元上。直到如今,利鲁唑是唯一被证明有效的抗兴奋剂疗法 [74]。依达拉奉作为一种自由基清除药物,是唯一抗氧化治疗ALS的药物 [75]。这两种药物由于其广谱性,可用治疗家族性和散发性ALS,但是探寻这种优秀的药物很难,几十年的ALS药物研发依旧未能找到治疗效果优于利鲁唑和依达拉奉的药物。于是部分研究者将注意力转移到家族性ALS上,寻找精准治疗家族性ALS的策略。TDP-43和FUS都是通常存在于细胞核中的RBPs,尽管它们经常在细胞核和细胞质之间穿梭。ALS相关的FUS和TDP-43突变导致这种平衡的转变,从而导致FUS和TDP-43错定位到细胞质中,蛋白质的错定位是ALS诱发的一大关键病因,也是与ALS患病紧密联系的前因。

最近,研究者发现了以FUS为靶点的治疗药物。ALS患者中的HAT/HDAC稳态发生改变,ALS患者中的FUS K510出现乙酰化异常增加并定位于SGs [76]。乙酰转移酶CBP/p300抑制剂A-485可以显著减少FUS K510的乙酰化,并降低细胞毒性,但对ALS的疗效还需进一步研究 [76]。

最近研究揭示的SGs与FUS相关ALS的密切关联以及SGs在FUS相关ALS病理发生中的重要作用,提示靶向SGs与FUS突变体的联系,从而阻止FUS突变体错定位于SGs,可能会成为FUS相关ALS的一种新治疗策略。事实上,最新的研究成果显示,在应激条件下,Kapβ2被招募到SGs,过表达Kapβ2并不影响SGs的形成,但抑制了FUS在SGs中的积累,改善了FUS相关ALS果蝇模型的运动能力 [55]。在靶向SGs的小分子化合物的高通量筛选中发现,Cycloheximde、WS3、Quinacrine、Anisomycin、Mitoxantrone和Digitoxin均可通过抑制SGs形成从而抑制运动神经元中FUS聚集体的形成,降低了FUS错定位引起的神经毒性 [77]。

5. 总结与展望

尽管我们在了解ALS的病理特征方面进行了广泛的研究并取得了很大进展,但神经变性的确切机制和治疗方案仍然难以捉摸。蛋白质稳态受损和有毒蛋白质聚集是一种常见的病理特征,它将许多神经退行性疾病结合在一起,更好地了解这种蛋白质失衡背后的分子机制可能有助于我们了解ALS疾病生物学并确定治疗新靶点。在神经细胞中,RNA剪接活动发生频繁,而RBPs在其中扮演的角色还不得而知。目前大多数研究都集中在功能失调的蛋白质–蛋白质相互作用和相分离上。未来的研究可能需要关注聚集体动力学或SGs中的非必需成分的改变,以期从其他角度揭示病理性SGs作为有毒蛋白质聚集体的“成核种子”的潜在分子途径。我们在本文中简要探讨了SGs在FUS相关ALS中的作用并列举了常见FUS突变的病理效应,但还需进一步研究来解释为什么ALS相关蛋白的单一突变就足以引起ALS。在ALS动物模型中,FUS突变研究集中于其细胞质功能获得,而细胞核功能丧失研究较少。ALS患病原因多种,ALS研究者普遍使用SOD1第93位的甘氨酸突变成丙氨酸(G93A)突变小鼠作为ALS模型,导致药物临床进展缓慢。不同的ALS突变在病理发生中具有共性和个性的作用机制,但容易忽略突变的个性机制。因此建立ALS多种突变的不同动物模型有助于我们了解不同突变的确切机制,并进一步实现精准治疗。综上所述,针对SGs与FUS相关ALS发病机制的深入研究并探索靶向SGs与FUS联系的治疗策略,可能会在FUS相关ALS的药物研发中取得突破。

基金项目

国家自然科学基金(31970755),浙江省自然科学基金(LY21C120001)。

参考文献

NOTES

*通讯作者。

参考文献

[1] Dudman, J. and Qi, X. (2020) Stress Granule Dysregulation in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 14, Article ID: 598517.
https://doi.org/10.3389/fncel.2020.598517
[2] Jaiswal, M.K. (2019) Riluzole and Edaravone: A Tale of Two Amyotrophic Lateral Sclerosis Drugs. Medicinal Research Reviews, 39, 733-748.
https://doi.org/10.1002/med.21528
[3] Dervishi, I., Gozutok, O., Murnan, K., Gautam, M., Heller, D., Bigio, E. and Ozdinler, P.H. (2018) Protein-Protein Interactions Reveal Key Canonical Pathways, Upstream Regulators, Interactome Domains, and Novel Targets in ALS. Scientific Reports, 8, Article ID: 14732.
https://doi.org/10.1038/s41598-018-32902-4
[4] Masrori, P. and van Damme, P. (2020) Amyotrophic Lateral Sclerosis: A Clinical Review. European Journal of Neurology, 27, 1918-2199.
https://doi.org/10.1111/ene.14393
[5] Shi, Y., Lin, S., Staats, K.A., Li, Y., Chang, W.H., Hung, S.T., et al. (2018) Haploinsufficiency Leads to Neurodegeneration in C9ORF72 ALS/FTD Human Induced Motor Neurons. Nature Medicine, 24, 313-325.
https://doi.org/10.1038/nm.4490
[6] Song, W., Song, Y., Kincaid, B., Bossy, B. and Bossy-Wetzel, E. (2013) Mutant SOD1G93A Triggers Mitochondrial Fragmentation in Spinal Cord Motor Neurons: Neuroprotection by SIRT3 and PGC-1α. Neurobiology of Disease, 51, 72-81.
https://doi.org/10.1016/j.nbd.2012.07.004
[7] Bravo-Hernandez, M., Tadokoro, T., Navarro, M.R., Platoshyn, O., Kobayashi, Y., Marsala, S., et al. (2020) Spinal Subpial Delivery of AAV9 Enables Widespread Gene Silencing and Blocks Motoneuron Degeneration in ALS. Nature Medicine, 26, 118-130.
https://doi.org/10.1038/s41591-019-0674-1
[8] Brown, R.H.J. and Al Chalabi, A. (2017) Amyotrophic Lateral Sclerosis. The New England Journal of Medicine, 377, Article No. 1602.
https://doi.org/10.1056/NEJMc1710379
[9] Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A. and Patel, B.K. (2019) Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 12, Article No. 25.
https://doi.org/10.3389/fnmol.2019.00025
[10] Deng, H., Gao, K. and Jankovic, J. (2014) The Role of FUS Gene Variants in Neurodegenerative Diseases. Nature Reviews Neurology, 10, 337-348.
https://doi.org/10.1038/nrneurol.2014.78
[11] Sharma, A., Lyashchenko, A.K., Lu, L., Nasrabady, S.E., Elmaleh, M., Mendelsohn, M., et al. (2016) ALS-Associated Mutant FUS Induces Selective Motor Neuron Degeneration through Toxic Gain of Function. Nature Communications, 7, Article No. 10465.
https://doi.org/10.1038/ncomms10465
[12] Tyzack, G.E., Luisier, R., Taha, D.M., Neeves, J., Modic, M., Mitchell, J.S., et al. (2019) Widespread FUS Mislocalization Is a Molecular Hallmark of Amyotrophic Lateral Sclerosis. Brain, 142, 2572-2580.
https://doi.org/10.1093/brain/awz217
[13] Harley, J., Hagemann, C., Serio, A. and Patani, R. (2020) FUS Is Lost from Nuclei and Gained in Neurites of Motor Neurons in a Human Stem Cell Model of VCP-Related ALS. Brain, 143, e103.
https://doi.org/10.1093/brain/awaa339
[14] Crozat, A., Aman, P., Mandahl, N. and Ron, D. (1993) Fusion of CHOP to a Novel RNA-Binding Protein in Human Myxoid Liposarcoma. Nature, 363, 640-644.
https://doi.org/10.1038/363640a0
[15] Kato, M., Han, T.W., Xie, S., Shi, K., Du, X., Wu, L.C., et al. (2012) Cell-Free Formation of RNA Granules: Low Complexity Sequence Domains form Dynamic Fibers within Hydrogels. Cell, 149, 753-767.
https://doi.org/10.1016/j.cell.2012.04.017
[16] Loughlin, F.E., Lukavsky, P.J., Kazeeva, T., Reber, S., Hock, E.M., Colombo, M., et al. (2019) The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity. Molecular cell, 73, 490-504.e6.
https://doi.org/10.1016/j.molcel.2018.11.012
[17] Dormann, D., Rodde, R., Edbaue, R.D., Bentmann, E., Fischer, I., Hruscha, A., et al. (2010) ALS-Associated Fused in Sarcoma (FUS) Mutations Disrupt Trans portin-Mediated Nuclear Import. EMBO Journal, 29, 2841-2757.
https://doi.org/10.1038/emboj.2010.143
[18] Kapeli, K., Pratt, G.A., Vu, A.Q., Hutt, K.R., Martinez, F.J., Sundararaman, B., et al. (2016) Distinct and Shared Functions of ALS-Associated Proteins TDP-43, FUS and TAF15 Revealed by Multisystem Analyses. Nature Communications, 7, Article No. 12143.
https://doi.org/10.1038/ncomms12143
[19] Sama, R.R., Ward, C.L. and Bosco, D.A. (2014) Functions of FUS/TLS from DNA Repair to Stress Response: Implications for ALS. ASN Neuro, 6, 1-18.
https://doi.org/10.1177/1759091414544472
[20] Kamelgarn, M., Chen, J., Kuang, L., Jin, H., Kasarskis, E.J. and Zhu, H. (2018) ALS Mutations of FUS Suppress Protein Translation and Disrupt the Regulation of Nonsense-Mediated Decay. Proceedings of the National Academy of Sciences of the United States of America, 115, E11904-E13.
https://doi.org/10.1073/pnas.1810413115
[21] Vandoorne, T., Veys, K., Guo, W., Sicart, A., Vints, K., Swijsen, A., et al. (2019) Differentiation but Not ALS Mutations in FUS Rewires Motor Neuron Metabolism. Nature Communications, 10, Article No. 4147.
https://doi.org/10.1038/s41467-019-12099-4
[22] Deng, J., Wang, P., Chen, X., Cheng, H., Liu, J., Fushimi, K., et al. (2018) FUS Interacts with ATP Synthase Beta Subunit and Induces Mitochondrial Unfolded Protein Response in Cellular and Animal Models. Proceedings of the National Academy of Sciences of the United States of America, 115, E9678-E9686.
https://doi.org/10.1073/pnas.1806655115
[23] Sabatelli, M., Moncada, A., Conte, A., Lattante, S., Marangi, G., Luigetti, M., et al. (2013) Mutations in the 3’ Untranslated Region of FUS Causing FUS Overexpression Are Associated with Amyotrophic Lateral Sclerosis. Human Molecular Genetics, 22, 4748-4755.
https://doi.org/10.1093/hmg/ddt328
[24] Vance, C., Scotter, E.L., Nishimura, A.L., Troakes, C., Mitchell, J.C., Kathe, C., et al. (2013) ALS Mutant FUS Disrupts Nuclear Localization and Sequesters Wild-Type FUS within Cytoplasmic Stress Granules. Human Molecular Genetics, 22, 2676-88.
https://doi.org/10.1093/hmg/ddt117
[25] An, H., Skelt, L., Notaro, A., Highley, J.R., Fox, A.H., La, B.V., et al. (2019) ALS-Linked FUS Mutations Confer Loss and Gain of Function in the Nucleus by Promoting Excessive Formation of Dysfunctional Paraspeckles. Acta Neuropatho- logica Communications, 7, Article No. 7.
https://doi.org/10.1186/s40478-019-0658-x
[26] Don, E.K., Maschirow, A., Radford, R.A.W., et al. (2021) In Vivo Validation of Bimolecular Fluorescence Complementation (BiFC) to Investigate Aggregate Formation in Amyotrophic Lateral Sclerosis (ALS). Molecular Neurobiology, 58, 2061-2074.
https://doi.org/10.1007/s12035-020-02238-0
[27] Stronati, E., Biagioni, S., Fiore, M., Giorgi, M., Poiana, G., Toselli, C., et al. (2021) Wild-Type and Mutant FUS Expression Reduce Proliferation and Neuronal Differentiation Properties of Neural Stem Progenitor Cells. International Journal of Molecular Sciences, 22, Article No.7566.
https://doi.org/10.3390/ijms22147566
[28] Ryan, V.H. and Fawzi, N.L. (2019) Physiological, Pathological, and Targetable Membraneless Organelles in Neurons. Trends in Neurosciences, 42, 693-708.
https://doi.org/10.1016/j.tins.2019.08.005
[29] Advani, V.M. and Ivanov, P. (2020) Stress Granule Subtypes: An Emerging Link to Neurodegeneration. Cellular and Molecular Life Sciences, 77, 4827-4845.
https://doi.org/10.1007/s00018-020-03565-0
[30] Protter, D.S.W. and Parker, R. (2016) Principles and Properties of Stress Granules. Trends in Cell Biology, 26, 668-679.
https://doi.org/10.1016/j.tcb.2016.05.004
[31] Jain, S., Wheeler, J.R., Walters, R.W., Agrawal, A., Barsic, A. and Parker, R. (2016) ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell, 164, 487-498.
https://doi.org/10.1016/j.cell.2015.12.038
[32] Panas, M.D., Ivanov, P. and Anderson, P. (2016) Mechanistic Insights into Mammalian Stress Granule Dynamics. The Journal of Cell Biology, 215, 313-323.
https://doi.org/10.1083/jcb.201609081
[33] Tsai, W.C., Gayatri, S., Reineke, L.C., Sbardella, G., Bedford, M.T. and Lloyd, R.E. (2016) Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly. The Journal of Biological Chemistry, 291, 22671-22685.
https://doi.org/10.1074/jbc.M116.739573
[34] Omer, A., Patel, D., Moran, J.L., Lian, X.J., Di, M.S. and Gallouzi, I.E. (2020) Autophagy and Heat-Shock Response Impair Stress Granule Assembly during Cellular Senescence. Mechanisms of Ageing and Development, 192, Article ID: 111382.
https://doi.org/10.1016/j.mad.2020.111382
[35] Janssens, J., Wils, H., Kleinberger, G., Joris, G., Cuijt, I., Ceuterick-de, G.C., et al. (2013) Overexpression of ALS-Associated p.M337V Human TDP-43 in Mice Worsens Disease Features Compared to Wild-Type Human TDP-43 Mice. Molecular Neurobiology, 48, 22-35.
https://doi.org/10.1007/s12035-013-8427-5
[36] Hensel, N. and Claus, P. (2018) The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration? Neuroscientist, 24, 54-72.
https://doi.org/10.1177/1073858417705059
[37] Lopez-Erauskin, J., Tadokoro, T., Baughn, M.W., Myers, B., McAlonis-Downes, M., Chillon-Marinas, C., et al. (2018) ALS/FTD-Linked Mutation in FUS Suppresses Intra-Axonal Protein Synthesis and Drives Disease without Nuclear Loss- of-Function of FUS. Neuron, 100, 816-830.e7.
https://doi.org/10.1016/j.neuron.2018.09.044
[38] Groen, E.J., Fumoto, K., Blokhuis, A.M., Engelen-Lee, J., Zhou, Y., Heuvel, D.M., et al. (2013) ALS-Associated Mutations in FUS Disrupt the Axonal Distribution and Function of SMN. Human Molecular Genetics, 22, 3690-3704.
https://doi.org/10.1093/hmg/ddt222
[39] Lin, Y.C., Kumar, M.S., Ramesh, N., Anderson, E.N., Nguyen, A.T., Kim, B., et al. (2021) Interactions between ALS-linked FUS and Nucleoporins Are Associated with Defects in the Nucleocytoplasmic Transport Pathway. Nature Neuroscience, 24, 1077-1088.
https://doi.org/10.1038/s41593-021-00859-9
[40] Jun, M.H., Ryu, H.H., Jun, Y.W., Liu, T., Li, Y., Lim, C.S., et al. (2017) Sequestration of PRMT1 and Nd1-L mRNA into ALS-linked FUS Mutant R521C-Positive Aggregates Contributes to Neurite Degeneration upon Oxidative Stress. Scientific Reports, 7, Article No. 40474.
https://doi.org/10.1038/srep40474
[41] Tsai, Y.L., Coady, T.H., Lu, L., Zheng, D., Alland, I., Tian, B., et al. (2020) ALS/FTD-Associated Protein FUS Induces Mitochondrial Dysfunction by Preferentially Sequestering Respiratory Chain Complex mRNAs. Genes & Development, 34, 785-805.
https://doi.org/10.1101/gad.335836.119
[42] Jutzi, D., Campagne, S., Schmidt, R., Reber, S., Mechtersheimer, J., Gypas, F., et al. (2020) Aberrant Interaction of FUS with the U1 snRNA Provides a Molecular Mechanism of FUS Induced Amyotrophic Lateral Sclerosis. Nature Communications, 11, Article No. 6341.
https://doi.org/10.1038/s41467-020-20191-3
[43] Steyaert, J., Scheveneels, W., Vanneste, J., Van, D.P., Robberecht, W., Callaerts, P., et al. (2018) FUS-Induced Neurotoxicity in Drosophila Is Prevented by Downregulating Nucleocytoplasmic Transport Proteins. Human Molecular Genetics, 27, 4103-4116.
https://doi.org/10.1093/hmg/ddy303
[44] Reineke, L.C. and Neilson, J.R. (2019) Differences between Acute and Chronic Stress Granules, and How These Differences May Impact Function in Human Disease. Biochemical Pharmacology, 162, 123-131.
https://doi.org/10.1016/j.bcp.2018.10.009
[45] Wolozin, B. and Ivanov, P. (2019) Stress Granules and Neurodegeneration. Nature Reviews Neuroscience, 20, 649-666.
https://doi.org/10.1038/s41583-019-0222-5
[46] Marrone, L., Drexler, H.C.A., Wang, J., Tripathi, P., Distler, T., Heisterkamp, P., et al. (2019) FUS Pathology in ALS is Linked to Alterations in Multiple ALS-Associated Proteins and Rescued by Drugs Stimulating Autophagy. Acta Neuro- pathologica, 138, 67-84.
https://doi.org/10.1007/s00401-019-01998-x
[47] Wang, H., Guo, W., Mitra, J., Hegde, P.M., Vandoorne, T., Eckelmann, B.J., et al. (2018) Mutant FUS Causes DNA Ligation Defects to Inhibit Oxidative Damage Repair in Amyotrophic Lateral Sclerosis. Nature Communications, 9, Article No. 3683.
https://doi.org/10.1038/s41467-018-06111-6
[48] Kia, A., Mcavoy, K., Krishnamurthy, K., Trotti, D. and Pasinelli, P. (2018) Astrocytes Expressing ALS-Linked Mutant FUS Induce Motor Neuron Death through Release of Tumor Necrosis Factor-Alpha. Glia, 66, 1016-1033.
https://doi.org/10.1002/glia.23298
[49] Lenzi, J., De Santis, R., De Turris, V., Morlando, M., Laneve, P., Calvo, A., et al. (2015) ALS Mutant FUS Proteins Are Recruited into Stress Granules in Induced Pluripotent Stem Cell-Derived Motoneurons. Disease Models & Mechanisms, 8, 755-766.
https://doi.org/10.1242/dmm.020099
[50] Zhang, X., Wang, F., Hu, Y., Chen, R., Meng, D., Guo, L., et al. (2020) In Vivo Stress Granule Misprocessing Evidenced in a FUS Knock-In ALS Mouse Model. Brain, 143, 1350-1367.
https://doi.org/10.1093/brain/awaa076
[51] De Santis, R., Alfano, V., De Turris, V., Colantoni, A., Santini, L., Garone, M.G., et al. (2019) Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Reports, 27, 3818-3831.e5.
https://doi.org/10.1016/j.celrep.2019.05.085
[52] Ryu, H.H., Jun, M.H., Min, K.J., Jang, D.J., Lee, Y.S., Kim, H.K., et al. (2014) Autophagy Regulates Amyotrophic Lateral Sclerosis-Linked Fused in Sarcoma-Positive Stress Granules in Neurons. Neurobiology of Aging, 35, 2822-2831.
https://doi.org/10.1016/j.neurobiolaging.2014.07.026
[53] Zhang, T., Jiang, X., Xu, M., Wang, H., Sang, X., Qin, M., et al. (2018) Sleep and Circadian Abnormalities Precede Cognitive Deficits in R521C FUS Knockin Rats. Neurobiology of Aging, 72, 159-170.
https://doi.org/10.1016/j.neurobiolaging.2018.08.025
[54] Guo, W., Naujock, M., Fumagalli, L., Vandoorne, T., Baatsen, P., Boon, R., et al. (2017) HDAC6 Inhibition Reverses Axonal Transport Defects in Motor Neurons Derived from FUS-ALS Patients. Nature Communications, 8, Article No. 861.
https://doi.org/10.1038/s41467-017-00911-y
[55] Guo, L., Kim, H.J., Wang, H., Monaghan, J., Freyermuth, F., Sung, J.C., et al. (2018) Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-Like Domains. Cell, 173, 677-692.e20.
https://doi.org/10.1016/j.cell.2018.03.002
[56] Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., Niedner-Boblenz, A., Schifferer, M., et al. (2018) Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell, 173, 706-719.e13.
https://doi.org/10.1016/j.cell.2018.03.004
[57] Naumann, M., Pal, A., Goswami, A., Lojewski, X., Japtok, J., Vehlow, A., et al. (2018) Impaired DNA Damage Response Signaling by FUS-NLS Mutations Leads to Neurodegeneration and FUS Aggregate Formation. Nature Communications, 9, Article No. 335.
https://doi.org/10.1038/s41467-017-02299-1
[58] Lo Bello, M., Di Fini, F., Notaro, A., Spataro, R., Conforti, F.L. and La, B.V. (2017) ALS-Related Mutant FUS Protein Is Mislocalized to Cytoplasm and Is Recruited into Stress Granules of Fibroblasts from Asymptomatic FUS P525L Mutation Carriers. Neurodegenerative Diseases, 17, 292-303.
https://doi.org/10.1159/000480085
[59] Birsa, N., Ule, A.M, Garone, M.G., Tsang, B., Mattedi, F., Chong, P.A., et al. (2021) FUS-ALS Mutants Alter FMRP Phase Separation Equilibrium and Impair Protein Translation. Science Advances, 7, Article No. eabf8660.
https://doi.org/10.1126/sciadv.abf8660
[60] Salam, S., Tacconelli, S., Smith, B.N., Mitchell, J.C., Glennon, E., Nikolaou, N., et al. (2021) Identification of a Novel Interaction of FUS and Syntaphilin May Explain Synaptic and Mitochondrial Abnormalities Caused by ALS mutations. Scientific Reports, 11, Article No. 13613.
https://doi.org/10.1038/s41598-021-93189-6
[61] Ling, S.C., Dastidar, S.G., Tokunaga, S., Ho, W.Y., Lim, K., Ilieva, H., et al. (2019) Overriding FUS Autoregulation in Mice Triggers Gain-of-Toxic Dysfunctions in RNA Metabolism and Autophagy-Lysosome Axis. eLife, 8, e40811.
https://doi.org/10.7554/eLife.40811
[62] Ho, W.Y., Agrawal, I., Tyan, S.H., Sanford, E., Chang, W.T., Lim, K., et al. (2021) Dysfunction in Nonsense-Mediated Decay, Protein Homeostasis, Mitochondrial Function, and Brain Connectivity in ALS-FUS Mice with Cognitive Deficits. Acta Neuropathologica Communications, 9, Article No. 9.
https://doi.org/10.1186/s40478-020-01111-4
[63] Baron, D.M., Matheny, T., Lin, Y.C., Sanford, E., Chang, W.T., Lim, K., et al. (2019) Quantitative Proteomics Identifies Proteins that Resist Translational Repression and Become Dysregulated in ALS-FUS. Human Molecular Genetics, 28, 2143-2160.
https://doi.org/10.1093/hmg/ddz048
[64] Nakaya, T. and Maragkakis, M. (2018) Amyotrophic Lateral Sclerosis associated FUS Mutation Shortens Mitochondria and Induces Neurotoxicity. Scientific Reports, 8, Article No. 15575.
https://doi.org/10.1038/s41598-018-33964-0
[65] Kawahara, D., Suzuki, T. and Nakaya, T. (2021) Cytoplasmic Granule Formation by FUS-R495X Is Attributable to Arginine Methylation in All Gly-Rich, RGG1 and RGG2 Domains. Genes to Cells, 26, 190-197.
https://doi.org/10.1111/gtc.12827
[66] Shiihashi, G., Ito, D., Yagi, T., Nihei, Y., Ebine, T. and Suzuki, N. (2016) Mislocated FUS Is Sufficient for Gain-of-Toxic- Function Amyotrophic Lateral Sclerosis Phenotypes in Mice. Brain, 139, 2380-2394.
https://doi.org/10.1093/brain/aww161
[67] Picchiarelli, G., Demestre, M., Zuko, A., Been, M., Higelin, J., Dieterle, S., et al. (2019) FUS-Mediated Regulation of Acetylcholine Receptor Transcription at Neuromuscular Junctions Is Compromised in Amyotrophic Lateral Sclerosis. Nature Neuroscience, 22, 1793-1805.
https://doi.org/10.1038/s41593-019-0498-9
[68] Scekic-Zahirovic, J., Sanjuan-Ruiz, I., Kan, V., Megat, S., De Rossi, P., Dieterle, S., et al. (2021) Cytoplasmic FUS Triggers Early Behavioral Alterations Linked to Cortical Neuronal Hyperactivity and Inhibitory Synaptic Defects. Nature Communications, 12, Article No. 3028.
https://doi.org/10.1038/s41467-021-23187-9
[69] Sahadevan, S., Hembach, K.M., Tantardini, E., Perez-Berlanga, M., Hruska-Plochan, M., Megat, S., et al. (2021) Synaptic FUS Accumulation Triggers Early Misregulation of Synaptic RNAs in a Mouse Model of ALS. Nature Communications, 12, Article No. 3027.
https://doi.org/10.1038/s41467-021-23188-8
[70] Markert, S.M., Skoruppa, M., Yu, B., Mulcahy, B., Zhen, M., Gao, S., et al. (2020) Overexpression of an ALS-Associated FUS Mutation in C. elegans Disrupts NMJ Morphology and Leads to Defective Neuromuscular Transmission. Biology Open, 9, Article No. bio055129.
https://doi.org/10.1242/bio.055129
[71] Rhine, K., Makurath, M.A., Liu, J., Skanchy, S., Lopez, C., Catalan, K.F., et al. (2020) ALS/FTLD-Linked Mutations in FUS Glycine Residues Cause Accelerated Gelation and Reduced Interactions with Wild-Type FUS. Molecular Cell, 80, 666-681.e8.
https://doi.org/10.1016/j.molcel.2020.10.014
[72] Reber, S., Jutzi, D., Lindsay, H., Devoy, A., Mechtersheimer, J., Levone, B.R., et al. (2021) The Phase Separation-Depen- dent FUS Interactome Reveals Nuclear and Cytoplasmic Function of Liquid-Liquid Phase Separation. Nucleic Acids Research, 49, 7713-7731.
https://doi.org/10.1093/nar/gkab582
[73] Plaitakis, A. and Caroscio, J.T. (1987) Abnormal Glutamate Metabolism in Amyotrophic Lateral Sclerosis. Annals of Neurology, 22, 575-579.
https://doi.org/10.1002/ana.410220503
[74] Amyotrophic Lateral Sclerosis/Riluzole Study Group II, Lacomblez, L., Bensimon, G., Leigh, P.N., Guillet, P. and Meininger, V. (1996) Dose-Rang ing Study of Riluzole in Amyotrophic Lateral Sclerosis. Lancet, 347, 1425-1431.
https://doi.org/10.1016/S0140-6736(96)91680-3
[75] Watanabe, T., Yuki, S., Egawa, M. and Nishi, H. (1994) Protective Effects of MCI-186 on Cerebral Ischemia: Possible Involvement of Free Radical Scavenging and Antioxidant Actions. Journal of Pharmacology and Experimental Therapeutics, 268, 1597-1604.
[76] Arenas, A., Chen, J., Kuang, L., Barnett, K.R., Kasarskis, E.J., Gal, J., et al. (2020) Lysine Acetylation Regulates the RNA Binding, Subcellular Localization and Inclusion Formation of FUS. Human Molecular Genetics, 29, 2684-2697.
https://doi.org/10.1093/hmg/ddaa159
[77] Fang, M.Y., Markmiller, S., Vu, A.Q., Javaherian, A., Dowdle, W.E., Jolivet. P., et al. (2019) Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD. Neuron, 103, 802-819.e11.
https://doi.org/10.1016/j.neuron.2019.05.048