电针对早期糖尿病周围神经病变大鼠下肢疼痛的治疗作用及脊髓自噬异常的影响
Therapeutic Effect of Electroacupuncture on Lower Limb Pain in Rats with Early Diabetic Peripheral Neuropathy and the Effect of Abnormal Autophagy in the Spinal Cord
DOI: 10.12677/TCM.2022.112030, PDF, HTML, XML, 下载: 300  浏览: 464  科研立项经费支持
作者: 胡俊威, 李 旭:上海中医药大学附属龙华医院,上海;李 雯, 金 珠:上海中医药大学附属第七人民医院,上海
关键词: 电针透刺法糖尿病周围神经病变下肢疼痛脊髓自噬Electroacupuncture Penetration Method Diabetic Peripheral Neuropathy Lower Limb Pain Spinal Cord Autophagy
摘要: 目的:电针(EA)治疗糖尿病周围神经病变(DPN)已在临床上得到广泛应用,但其相关机制尚待研究。本研究旨在评价EA对DPN大鼠治疗效果,并探索其是否与脊髓细胞自噬相关,并从机械缩足阈值、Beclin-1和补体C3蛋白表达以及血糖的变化等方面探讨其可能的机制。方法:将18只大鼠随机分为3组,空白组不进行任何处理;采用高脂高糖饲养6周后按35 mg/kg单次腹腔注射STZ的造模方法建立DPN大鼠模型;模型组在造模成功后不进行任何治疗;电针组选择“阴陵泉”透刺“阳陵泉”,“内关”透刺“外关”,并连接电针进行治疗,隔日一次,治疗7次,共2周。电针治疗仪参数设置为:连续波,20 Hz,1 mA。2周后检测各组血糖值及机械缩足阈值的变化,利用Western blot法和免疫组化染色法检测Beclin-1和补体C3蛋白的表达。结果:结果表明,与空白组相比较,模型组和电针组体质量下降、血糖升高,机械缩足阈值下降,Beclin-1、补体C3蛋白表达和平均光密度值均升高;与模型组相比较,电针组大鼠体质量和血糖无明显差异,但机械缩足阈值提高,Beclin-1、补体C3蛋白表达和平均光密度值均降低。提示大鼠经电针治疗后DPN症状减轻,脊髓细胞自噬水平降低。结论:电针治疗大鼠DPN的效果显著,电针治疗后降低了DPN大鼠Beclin-1、补体C3的表达,电针治疗大鼠DPN可能是通过抑制脊髓细胞自噬发挥作用的。
Abstract: Purpose: Electroacupuncture (EA) for the treatment of diabetic peripheral neuropathy (DPN) has been widely used in clinical practice, but its related mechanisms have yet to be investigated. The aim of this study was to evaluate the therapeutic effect of EA on DPN rats and to explore whether it was associated with spinal cord cell autophagy, and to explore the possible mechanisms in terms of mechanical foot shrinkage threshold, Beclin-1 and complement C3 protein expression and changes in blood glucose. Methods: Eighteen rats were randomly divided into three groups, and the blank group was not treated; the DPN rat model was established by a single intraperitoneal injection of STZ at 35 mg/kg after 6 weeks of high-fat and high-sugar feeding; the model group was not treated after successful modeling; the electroacupuncture group selected “Yinlingquan” for penetration. In the electro-acupuncture group, “Yanglingquan” and “Neiguan” were used to penetrate “Waiguan”, and electro-acupuncture was connected to the treatment. The parameters of the electroacupuncture instrument were set as follows: continuous wave, 20 Hz, 1 mA. 2 weeks later, the changes of blood glucose value and mechanical foot contraction threshold of each group were detected, and the expression of Beclin-1 and complement C3 protein were detected by Western blot and immunohistochemical staining. Results: The results showed that compared with the blank group, the body mass and blood glucose of the model and electroacupuncture groups decreased, the mechanical foot shrinkage threshold decreased, and the expression of Beclin-1 and complement C3 protein and the mean optical density value increased; compared with the model group, the body mass and blood glucose of the electroacupuncture group did not differ significantly, but the mechanical foot shrinkage threshold increased, and the expression of Beclin-1 and complement C3 protein and the mean optical density value decreased. Values were reduced. It was suggested that DPN symptoms were reduced and spinal cord cell autophagy level was decreased after electroacupuncture treatment in rats. Conclusion: The effect of electroacupuncture treatment for DPN in rats was significant, and the expression of Beclin-1 and complement C3 in DPN rats was reduced after electroacupuncture treatment, and electroacupuncture treatment for DPN in rats may act through the inhibition of spinal cord cell autophagy.
文章引用:胡俊威, 李雯, 李旭, 金珠. 电针对早期糖尿病周围神经病变大鼠下肢疼痛的治疗作用及脊髓自噬异常的影响[J]. 中医学, 2022, 11(2): 180-188. https://doi.org/10.12677/TCM.2022.112030

1. 引言

糖尿病是目前最常见的内分泌疾病 [1]。国际糖尿病联合会估计,全世界有4.25亿人患有糖尿病 [2]。糖尿病周围神经病变(DPN)是糖尿病最为常见的慢性并发症之一,近50%的糖尿病患者将会患上糖尿病周围神经病变 [3]。并随着年龄增大,DPN的患病率提高 [4] [5]。典型症状表现为下肢疼痛 [6]。

由于近年来未有研发成功的DPN对因治疗的新型药物 [7],而已有的药物的疗效仅限于轻度的DPN [8]。针对糖尿病神经病变的管理方法仍侧重于对症治疗,如改善血糖 [9] [10]、改变生活方式 [11] [12]、神经病变疼痛管理 [13] [14] 等。因此,现在越来越多的患者将目光投向非药物治疗手段,针灸自古以来就有治疗消渴及四肢痛症、运动不遂的记载,并在治疗外周神经病变疼痛方面显示出疗效 [15]。临床试验证明针刺治疗DPN具有可行性和有效性,接受针刺治疗后患者的疼痛症状得到了明显改善 [16] [17]。DPN引发下肢疼痛的发病机制尚未完全明确,目前的发现主要包括糖脂代谢紊乱、氧化应激反应、微血管异常等,其中氧化应激反应是导致DPN等神经病变的重要原因,可以激活神经元的自噬功能,过度的自噬激活导致神经元丢失,进而维持神经病理性疼痛的持续发生。研究发现针刺可以有效调节大鼠细胞的自噬水平 [18] [19]。因此,调节机体细胞的自噬水平,可能是治疗DPN下肢疼痛和阻止DPN进展的一种很有前途的治疗手段。而研究发现过度的脊髓自噬会导致Beclin-1和补体C3表达上升 [20]。

在本研究中,将进一步验证电针治疗是否可以改善大鼠DPN状态;并通过观察DPN大鼠、脊髓的Beclin-1和补体C3表达的变化,探索电针改善大鼠DPN状态的作用机理是否与调控脊髓细胞自噬相关,为电针治疗DPN提供相关依据。

2. 材料和方法

2.1. 实验动物

采用SPF级雄性SD大鼠共18只,体质量在180~200 g,由北京维通利华实验动物有限责任公司提供,实验动物生产许可证编号SCXK(京)2016-0011,动物实验期间均在上海中医药大学实验动物中心饲养。饲养环境安静,每日光照12小时,自由摄水饮食。室内恒温22℃ ± 2℃,湿度60%~70%,每笼饲养5~6只大鼠,每日保持清洁干燥。大鼠按随机数字表分为空白组、模型组和电针组,每组6只。本实验方案已通过上海中医药大学动物实验伦理委员会审查,伦理编号为:PZSHUTCM201030022,操作均符合实验动物伦理标准。

2.2. 实验器材及药物

毫针(0.25 mm × 25 mm,苏州华佗医疗器械有限公司),华佗牌SDZ-V型电子针疗仪(苏州医疗用品厂有限公司),血糖仪(德国罗氏公司),可调型移液器(德国Eppendorf公司),Nikon DS-U3成像系统、Nikon Eclipse C1光学显微镜(日本尼康仪器有限公司),小垂直板电泳槽(美国bio-rad公司),超灵敏多功能成像仪(美国GE公司);BCA蛋白浓度测定试剂盒、QuickBlock Western封闭液(中国碧云天公司),RIPA裂解液、凝胶快速配制试剂盒(大连美仑生物技术有限公司);Von Frey细丝(中国上海宇研仪器);D12451高糖高脂饲料(北京科奥协力公司),链脲佐菌素(streptozotocin,STZ,美国sigma公司),Anti-C3抗体(成都正能生物公司),Anti-Beclin 1 (成都正能生物公司)。

2.3. 造模处理

所有大鼠在适应性喂养1周后,随机分为正常对照组(n = 6)和糖尿病组(n = 12)。

糖尿病组给予高糖高脂饲料喂养6周;正常对照组给予维持饲料喂养6周。随后,糖尿病组按体质量腹腔注射35 mg/kg的STZ缓冲液(pH = 4.1);正常对照组腹腔注射等量的缓冲液。评价48 h后糖尿病组大鼠的随机血糖,若大于16.7 mmol/L,则根据HE等人 [21] 的方法建立早期DPN模型。造模成功后,按照随机数字表法分成为2组,分别为DPN模型组和电针组。

2.4. 电针治疗

DPN大鼠模型造模成功后开始电针干预 [22]。使用25*25 mm的毫针,将大鼠在自制鼠架上固定针刺,将毫针从阴陵泉透刺到阳陵泉、内关透刺到外关,并连接电针治疗仪,波形选取连续波,频率为2 Hz,电流强度为1 mA,20 min/次,隔日1次,共治疗7次,共2周。

2.5. 血糖测定

使用便携式血糖仪(ACCU-Check;罗氏公司),采用尾静脉取血法,检测空腹血糖。若血糖值均 > 16.7 mmol/L则糖尿病造模成功 [23] [24]。

2.6. 机械缩足阈值(MWT)

在安静环境中,将大鼠单独置入多孔钢丝笼中。待大鼠适应环境15 min后,以Von Frey仪刺激针刺激大鼠后肢足底中部,力度由小到大逐渐增加,当大鼠出现缩足反应时,记录Von Frey仪上显示的压力数值。重复测量5次,每次间隔3 min以上,取平均值 [25]。

2.7. Western Blot

提取脊髓组织蛋白,使用BCA试剂盒(中国碧云天公司)测定蛋白浓度。于聚丙烯酰胺凝胶电泳进行蛋白分离,将分离后的蛋白电转移膜上。室温室温孵育抗体后TBST清洗,分别加入Anti-C3一抗(浓度约为1:1000)、Anti-Beclin 1一抗(浓度约为1:1000),4℃孵育过夜。次日TBST清洗后加入二抗,室温孵育1 h小时,TBST清洗。PVDF膜的蛋白面朝上,按照说明书配置ECL发光液,混匀后滴加置膜上,成像仪检测,计算灰度值。

2.8. 免疫组化

石蜡切片脱蜡至水后,进行抗原修复,自然冷却后PBS清洗,甩干后3% BSA封闭,去除BSA液,分别加入Anti-C3一抗(浓度约为1:200)、Anti-Beclin 1一抗(浓度约为1:200),覆盖组织,4℃过夜孵育。次日PBS清洗加50~100 μl相应种属的二抗,常温孵育50 min。PBS清洗后加50~100 μl新鲜配制DAB溶液,显微镜控制显色。显色完全后,超纯水冲洗3次后梯度酒精脱水,最后封片并于显微镜下观察并采集图像。

2.9. 数据分析

采用SPSS 22.0统计软件对数据进行分析,所有数据用均数 ± 标准差( x ¯ ± s )表示。组内比较用配对t检验,组间均数比较用单因素方差分析,进一步两两比较用LSD法检验。以P ≤ 0.05表示差异有统计学意义的标准。

3. 结果

3.1. 电针对血糖和体重的影响

与对照组相比较,模型组和电针组体质量均下降、血糖均明显升高,提示针刺对DPN大鼠体质量和血糖无明显调节作用。见表1

Table 1. Effects of electroacupuncture on blood glucose and body weight

表1. 电针对血糖和体重的影响

注:*与对照组相比,P < 0.05。

3.2. 电针对MWT的影响

为了评价两种治疗方案对大鼠疼痛行为学的影响,我们采用MWT进行比较。组间比较显示:糖尿病成模后第17天,模型组、预电针组和电针组机械缩足阈值较对照组均下降;电针干预后,机械缩足阈值较模型组提高,提示电针可有效提高大鼠机械缩足阈值,缓解大鼠异常疼痛行为。见表2

Table 2. Effects of electroacupuncture on MWT

表2. 电针对MWT的影响

注:*与对照组相比,P < 0.05;与模型组比较,P < 0.05。

(a) (b) (c)

Figure 1. Representative immunostaining image of C3 in spinal cord (×400). (a) Control; (b) Model; (c) Electroacupuncture

图1. 脊髓C3的代表性免疫染色图像(×400)。(a) 空白组;(b) 模型组;(c) 电针组

(a) (b) (c)

Figure 2. Representative immunostaining image of Beclin-1 in spinal cord (×400). (a) Control; (b) Model; (c) Electroacupuncture

图2. Beclin-1在脊髓中的代表性免疫染色图像(×400)。(a) 空白组;(b) 模型组;(c) 电针组

3.3. 电针对脊髓自噬水平的影响

为了评价两种治疗方案对大鼠脊髓的自噬水平的影响,我们进行了WB实验和免疫组化实验。组间比较显示:与空白组相比,模型组的补体C3、Beclin-1蛋白表达和平均光密度值均升高;与模型组相比,电针组的Beclin-1、补体C3蛋白表达和平均光密度值均降低;提示电针可降低自噬相关因子的表达,从而抑制高糖状态下脊髓的过度自噬。见图1~4。

(a) (b)注:*与对照组相比,P < 0.05;与模型组比较,P < 0.05。

Figure 3. (a) The mean density of C3 in spinal cord; (b) The Mean Density of Beclin-1 in spinal cord

图3. (a) 脊髓中C3的平均密度;(b) 脊髓中Beclin-1的平均密度

(a) (b) (c)注:*与对照组相比,P < 0.05;与模型组比较,P < 0.05。

Figure 4. (a) C3, Beclin-1 protein expression in spinal cord cells of each group; (b) Relative expression level of the C3 protein in spinal cord; (c) Relative expression level of the Beclin-1 protein in spinal cord

图4. (a) 各组脊髓细胞中C3、Beclin-1蛋白表达;(b) C3蛋白在脊髓中的相对表达量;(c) Beclin-1蛋白在脊髓中的相对表达量

4. 讨论

DPN可以导致脊髓等神经结构和功能损伤 [26] [27] [28]。其主要临床特征为四肢远端感觉、运动障碍,其中感觉神经病变最为常见。表现为疼痛、肢体麻木、挛急、肌肉无力和萎缩、腱反射减弱或消失等,本研究表明,电针可改善糖尿病周围神经病变大鼠痛觉异常。电针可能通过抑制大鼠脊髓自噬的发生来发挥作用。

电针疗法是针刺与电刺激相结合的一种方法,其电针仪的电流可通过针身传入体内,作用于神经。电针作为一种独特的中医治疗方法,近年来,在治疗DPN和痛症中的潜在价值及作用已经逐渐被学术界认识到。电针治疗DPN是在中医的整体观念和辨证论治的理论基础上,进行因人制宜的个体化治疗,具有平衡阴阳、理气活血、疏通经络、扶正固本的作用,尤其是在一些症状的治疗和控制方面体现了优势,其临床有效性已被证明 [29]。内关穴与外关穴、阴陵泉与阳陵泉是人体的两对相对穴,相对穴的透刺法治疗在古今医书上皆有记载,经络理论和阴阳学说为其理论基础,透刺相对穴具有阴阳并治,气血同调和从阴引阳,从阳引阴两大治疗特点,本实验应用透刺相对穴治疗糖尿病周围神经病变,可以有效改善局部的血液循环和微循环障碍,促进神经功能的恢复。我们团队在既往的临床研究中发现,针刺内关可以作用于正中神经,有明显的触电感,中指、无名指、小指麻木明显 [30] [31]。阴陵泉和阳陵泉穴下有腓肠外侧神经、腓浅神经、腓深神经经过。应用内关透刺到外关,阴陵泉透刺阳陵泉的方法可明显提高腓总神经的运动神经传导速度以及正中神经和腓肠神经的感觉神经传导速度 [30]。因此,我们在本次实验中使用了相同的治疗方法进行进一步探究电针防止DPN的作用机理。

越来越多的证据表明,DPN的发病与细胞的自噬有着密切的联系。长期高糖状态,会导致细胞钙稳态被打破,诱发氧化应激反应 [32]。病理状态下氧化应激可以激活神经元的自噬功能 [33] [34],进而维持神经病理性疼痛的持续发生,机体功能性疼痛与病理状态下脊髓自噬介导的脊神经性疼痛关系密 [35] [36]。Beclin-1可介导其他自噬蛋白定位在前自噬小体的关键因子,启动自噬功能,调节自噬水平,并对细胞自噬活性进行动态监测 [37]。补体C3是胶质细胞主要组成单元,高活性胶质细胞能造成神经病理性疼痛 [38]。研究表明脊髓组织细胞内Beclin-1和补体C3的表达上调是脊髓自噬功能活性增高的表现 [39],相应的大鼠神经疼痛程度也越重。本实验结果显示,与空白组相比较,模型组大鼠机械疼痛阈值降低,且脊髓C3和Beclin-1的表达均升高,而电针治疗之后大鼠机械疼痛阈提高,脊髓C3和Beclin-1的表达降低,说明电针治疗后大鼠的DPN引发的肢体疼痛有了明显改善,并且C3和Beclin-1的激活参与了DPN大鼠疼痛感觉的调节。既往研究表明 [40],针灸可降低因过度自噬引起的自噬相关因子升高,从而提高大鼠痛阈值,减少疼痛模型大鼠抬足、舔爪、躲避等自发痛行为反应,降低伤害性刺激的疼痛敏感性 [41],证明了C3和Beclin-1对DPN异常疼痛感觉的形成以及发展中起着重要作用,与本实验的研究结果基本一致。

DPN对患者造成了严重的困扰,影响了他们的生活水平和幸福感,电针治疗是潜在的一种有效临床治疗方法,本研究结果为DPN的临床治疗和选穴提供了科学依据。

5. 结语

我们证实了电针对DPN大鼠坐骨神经损伤和异常疼痛感觉的改善作用。脊髓自噬相关受体的变化提示电针是通过抑制脊髓自噬发挥作用,为针灸临床治疗DPN提供理论基础和实践指导。自噬导致糖尿病周围神经病变大鼠疼痛的发生发展机制尚无统一定论,有实验研究证明自噬激活发挥了减轻疼痛的作用,但也有实验证明自噬会加重疼痛症状,针灸具有双向调节作用,其是否通过双向调节机体的自噬来改善DPN大鼠下肢疼痛症状,而不仅仅是简单地激活或者抑制产生效应,其原因有待进一步研究,为今后的深入研究提供新的思路和方向。

基金项目

本研究得到上海市卫生委员会项目(202040002)和浦东新区卫生委员会项目(PWRzj2020-03)的资助。

参考文献

[1] Amin, T.S. (2007) Is Diabetes Becoming the Biggest Epidemic of the Twenty-First Century? International Journal of Health Sciences (Qassim), 1, 5-8.
[2] International Diabetes Federation (2019) IDF Diabetes Atlas 8th Edition: Key Messages. https://diabetesatlas.org/key-messages.html
[3] Stino Amro, M. and Smith Albert, G. (2017) Peripheral Neuropathy in Prediabetes and the Metabolic Syndrome. Journal of Diabetes Investigation, 8, 646-655.
https://doi.org/10.1111/jdi.12650
[4] Callaghan, B.C., Price, R.S. and Feldman, E.L. (2015) Distal Symmetric Polyneuropathy: A Review. JAMA, 314, 2172-2181.
https://doi.org/10.1001/jama.2015.13611
[5] Visser Nora, A., Notermans Nicolette, C., Linssen Rosalie, S.N., et al. (2015) Incidence of Polyneuropathy in Utrecht, the Netherlands. Neurology, 84, 259-264.
https://doi.org/10.1212/WNL.0000000000001160
[6] Abbott, C.A., Malik, R.A., van Ross, E.R., et al. (2011) Prevalence and Characteristics of Painful Diabetic Neuropathy in a Large Community-Based Diabetic Population in the U.K. Diabetes Care, 34, 2220-22224.
https://doi.org/10.2337/dc11-1108
[7] Javed, S., Alam, U. and Malik, R.A. (2015) Treating Diabetic Neuropathy: Present Strategies and Emerging Solutions. The Review of Diabetic Studies, 12, 63-83.
https://doi.org/10.1900/RDS.2015.12.63
[8] Himeno, T., Kamiya, H. and Nakamura, J. (2020) Diabetic Polyneuropathy: Progress in Diagnostic Strategy and Novel Target Discovery, But Stagnation in Drug Development. Journal of Diabetes Investigation, 11, 25-27.
https://doi.org/10.1111/jdi.13188
[9] Martin, C.L., Albers, J.W. and Pop-Busui, R. (2014) Neuropathy and Related Findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care, 37, 31-38.
https://doi.org/10.2337/dc13-2114
[10] Ishibashi, F., Taniguchi, M., Kosaka, A., et al. (2019) Improvement in Neuropathy Outcomes with Normalizing HbA in Patients with Type 2 Diabetes. Diabetes Care, 42, 110-118.
https://doi.org/10.2337/dc18-1560
[11] Balducci, S., Iacobellis, G., Parisi, L., et al. (2006) Exercise Training Can Modify the Natural History of Diabetic Peripheral Neuropathy. Journal of Diabetic Complications, 20, 216-223.
https://doi.org/10.1016/j.jdiacomp.2005.07.005
[12] Kluding, P.M., Pasnoor, M., Singh, R., et al. (2012) The Effect of Exercise on Neuropathic Symptoms, Nerve Function, and Cutaneous Innervation in People with Diabetic Peripheral Neuropathy. Journal of Diabetic Complications, 26, 424-429.
https://doi.org/10.1016/j.jdiacomp.2012.05.007
[13] Bril, V., et al. (2011) Evidence-Based Guideline: Treatment of Painful Diabetic Neuropathy: Report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology, 76, 1758-1765.
https://doi.org/10.1212/WNL.0b013e3182166ebe
[14] Finnerup, N.B., Attal, N., Haroutounian, S., et al. (2015) Pharmacotherapy for Neuropathic Pain in Adults: A Systematic Review and Meta-Analysis. The Lancet Neurology, 14, 162-173.
https://doi.org/10.1016/S1474-4422(14)70251-0
[15] Baute, V., Zelnik, D., Curtis, J., et al. (2019) Complementary and Alternative Medicine for Painful Peripheral Neuropathy. Current Treatment Options in Neurology, 21, 44.
https://doi.org/10.1007/s11940-019-0584-z
[16] Anne, B., Deborah, W., Matthew, A., et al. (2017) Acupuncture Treatment of Diabetic Peripheral Neuropathy in an American Indian Community. Journal of Acupuncture & Meridian Studies, 10, 90-95.
https://doi.org/10.1016/j.jams.2016.10.004
[17] Meyer-Hamme, G., Friedemann, T., Greten, J., et al. (2021) Electrophysiologically Verified Effects of Acupuncture on Diabetic Peripheral Neuropathy in Type 2 Diabetes: The Randomized, Partially Double-Blinded, Controlled ACUDIN Trial. Journal of Diabetes, 13, 469-481.
https://doi.org/10.1111/1753-0407.13130
[18] Sun, X.W., Liu, H., Sun, Z.R., et al. (2020) Acupuncture Protects against Cerebral Ischemia-Reperfusion Injury via Suppressing Endoplasmic Reticulum Stress-Mediated Autophagy and Apoptosis. Molecular Medicine, 26, 105.
https://doi.org/10.1186/s10020-020-00236-5
[19] Guan, R.Q., Li, Z.H., Dai, X.H., et al. (2021) Electroacupuncture at GV20-GB7 Regulates Mitophagy to Protect against Neurological Deficits Following Intracerebral Hemorrhage via Inhibition of Apoptosis. Molecular Medicine Reports, 24, Article No. 492.
https://doi.org/10.3892/mmr.2021.12131
[20] 徐娜, 何小景, 刚新玲, 付丽萍. 脊髓自噬功能与糖尿病神经病理性疼痛的相关性研究[J]. 中国糖尿病杂志, 2017, 25(2): 173-177.
[21] He, J., Yuan, G.H., Zhang, J.Q., et al. (2019) Approach to Creating Early Diabetic Peripheral Neuropathy Rat Model. Journal of Peking University. Health Sciences, 51, 1150-1154.
[22] Jiao, H.E., Yuan, G.H., Zhang, J.Q., et al. (2019) Approach to Creating Early Diabetic Peripheral Neuropathy Rat Model. Journal of Peking University (Health Sciences), 51, 1150-1154.
[23] Lin, C.-J., Lan, Y.-M., Ou, M.-Q., et al. (2019) Expression of miR-217 and HIF-1α/VEGF Pathway in Patients with Diabetic Foot Ulcer and Its Effect on Angiogenesis of Diabetic Foot Ulcer Rats. Journal of Endocrinological Investigation, 42, 1307-1317.
https://doi.org/10.1007/s40618-019-01053-2
[24] Shi, X.H., Chen, Y.H., Nadeem, L., et al. (2013) Beneficial Effect of TNF-α Inhibition on Diabetic Peripheral Neuropathy. Journal of Neuroinflammation, 10, Article No. 836.
https://doi.org/10.1186/1742-2094-10-69
[25] Sommer, C. and Kress, M. (2004) Recent Findings on How Proinflammatory Cytokines Cause Pain: Peripheral Mechanisms in Inflammatory and Neuropathic Hyperalgesia. Neuroscience Letters, 361, 184-187.
https://doi.org/10.1016/j.neulet.2003.12.007
[26] Rahman Md, H., Jha, M.K., Kim, J.-H., et al. (2016) Pyruvate Dehydrogenase Kinase-Mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic Neuropathy. Journal of Biological Chemistry, 291, 6011-6025.
https://doi.org/10.1074/jbc.M115.699215
[27] Sandireddy, R., Yerra, V.G., Areti, A., et al. (2014) Neuroinflammation and Oxidative Stress in Diabetic Neuropathy: Futuristic Strategies Based on These Targets. International Journal of Endocrinology, 2014, Article ID: 674987.
https://doi.org/10.1155/2014/674987
[28] Tomlinson, D.R. and Gardiner, N.J. (2008) Diabetic Neuropathies: Components of Etiology. Journal of the Peripheral Nervous System, 13, 112-121.
https://doi.org/10.1111/j.1529-8027.2008.00167.x
[29] Dimitrova, A., Murchison, C. and Oken, B. (2017) Acupuncture for the Treatment of Peripheral Neuropathy: A Systematic Review and Meta-Analysis. Journal of Integrative and Complementary Medicine, 23, 164-179.
https://doi.org/10.1089/acm.2016.0155
[30] 陈跃来, 马雪梅, 侯文光, 岑珏, 虞先敏, 张丽. 针刺透穴法对糖尿病周围神经病变神经传导速度的影响: 随机对照试验[J]. 中西医结合学报, 2009, 7(3): 273-275.
[31] Xu, P., Fan, Y.H. and Kan, H.M. (2020) Relationship between Deqi and Surrounding Anatomical Tissue of PC6 under Ultrasound Intervention. JCAM, 36, 16-20.
[32] Ozkan, Y., Yardým-Akaydýn, S., Sepici, A., et al. (2007) Oxidative Status in Rheumatoid Arthritis. Clinical Rheumatology, 26, 64-68.
https://doi.org/10.1007/s10067-006-0244-z
[33] Wei, Y., Tang, X.-L., Zhou, Y., et al. (2018) DEHP Exposure Destroys Blood-Testis Barrier (BTB) Integrity of Immature Testes through Excessive ROS-Mediated Autophagy. Genes and Diseases, 5, 263-274.
https://doi.org/10.1016/j.gendis.2018.06.004
[34] Ma, Z.C., Han, Q., Wang, X.L., et al. (2016) Galectin-3 Inhibition Is Associated with Neuropathic Pain Attenuation after Peripheral Nerve Injury. PLoS ONE, 11, e0148792.
https://doi.org/10.1371/journal.pone.0148792
[35] 潘勤, 柏晓勇. 脊髓神经元自噬与大鼠糖尿病神经病理性疼痛关系的研究[J]. 中国糖尿病杂志, 2016, 24(11): 1016-1020.
[36] 朱雅冰, 贾改丽, 陆嘉辉, 张茂表, 李军, 曹红. 脊髓自噬功能激活与大鼠2型糖尿病神经病理性疼痛的关系[J]. 中国应用生理学杂志, 2018, 34(4): 318-323+386.
[37] Klionsky, D.J., Abdel-Aziz, A.K., Abdelfatah, S., et al. (2021) Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th Edition). Autophagy, 17, 1-382.
https://doi.org/10.1080/15548627.2020.1797280
[38] 金桂林, 何赛娣, 洪丽绵, 俞昌喜. 钩吻素子抗大鼠神经病理性疼痛及对星形胶质细胞活化和自噬的作用[J]. 中国药理学与毒理学杂志, 2018, 32(9): 719.
[39] Klionsky, D.J., Abeliovich, H., Agostinis, P., et al. (2008) Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy in Higher Eukaryotes. Autophagy, 4, 151-175.
https://doi.org/10.4161/auto.5338
[40] 杨波, 隋汝波. 电针对继发性脊髓损伤后大鼠神经元自噬及相关蛋白轻链3II和bcl-2/腺病毒E1B19000相互作用蛋白3表达的影响[J]. 中国老年学杂志, 2015(9): 2339-2341.
[41] 周晔, 吴巧云, 屠文展. 电针对神经病理性疼痛大鼠损伤处脊髓背角形态及p38MAPK蛋白表达的影响[J]. 针刺研究, 2020, 45(5): 368-372.