3D-PcASL和SWI在鉴别胶质瘤术后复发和假性进展中的价值
The Value of 3D-PcASL and SWI in Differentiating Postoperative Recurrence and Pseudoprogression of Glioma
DOI: 10.12677/ACM.2022.123339, PDF, HTML, XML, 下载: 217  浏览: 366 
作者: 刁艳照:山东大学齐鲁医学院,山东 济南;山东大学附属省立医院医学影像科,山东 济南;袁振国#:山东大学附属省立医院医学影像科,山东 济南;山东第一医科大学附属省立医院医学影像科,山东 济南
关键词: 三维伪连续动脉自旋标记磁敏感加权成像假性进展肿瘤复发胶质瘤3D Pseudo-Continuous Arterial Spin Labeling Susceptibility-Weighted Imaging Pseudo-Progression Tumor Recurrence Glioma
摘要: 目的:分析三维伪连续式动脉自旋标记(3D-PcASL)和磁敏感加权成像(SWI)在鉴别原发性胶质瘤复发和假性进展中的诊断价值。材料与方法:纳入37例术后并放疗后出现新发强化灶的患者,采用二次手术或参考RANO标准进行3~6个月纵向MRI随访用于明确诊断。计算病灶强化区域的最大脑血流量(rCBFmax)、出血灶与强化区域面积占比(proSWI),分析两组间rCBF和proSWI值的统计学差异并评估两参数间的相关性,ROC曲线分析评价诊断性能并确定截断值。结果:复发组proSWI均值显著低于假性进展组(0.070 vs 0.270; p < 0.001),rCBFmax显著高于假性进展组(2.189 vs 1.258; p < 0.001),AUC可达到0.856、0.869,联合二个评价参数诊断,AUC可以达到0.944。proSWI与rCBF值呈负相关。结论:proSWI和rCBF值是鉴别胶质瘤复发和假性进展的可靠参数,ASL和SWI联合成像可以提高鉴别诊断的能力。
Abstract: Objective: To assess and compare the diagnostic performance of 3D pseudo-continuous arterial spin labeling (3D-PcASL) imaging and susceptibility-weighted imaging (SWI) in distinguishing tumor recurrence from pseudo-progression in post-treatment glioma patients. Materials and Methods: The study enrolled 37 patients who underwent resection and chemoradiation for pathologically verified gliomas with new enhancing lesions. They underwent magnetic resonance imaging (MRI) examination that included conventional MRI sequences, SWI and 3D-PcASL sequences. Longitudinal MRI for 3~6 months follow-up or repeat surgery was used to define the diagnosis. We calculated the proportion of hemorrhagic foci for the enhancing lesions (proSWI) on magnitude image of SWI. The CBF was obtained from ASL and compared with the contralateral normal gray matter. Further comparison will use student’s t-test or Mann-Whitney U test to evaluate parameter performance and receiver-operating characteristic (ROC) analyses were conducted to evaluate the diagnostic performance of the parameters. Results: The proSWI in tumor recurrence group was significantly lower than in the pseudo-progression (0.070 vs 0.270; p < 0.001) and rCBF was significantly higher in the tumor recurrence group (2.189 vs 1.258; p < 0.001), with the area under the ROC curve (AUCs) of 0.856 and 0.869. By adding proSWI to rCBF values, AUC can reach 0.944. The proSWI was negatively correlated with the rCBF. Conclusion: proSWI and rCBF are both valuable and complementary parameters in differentiating tumor recurrence from pseudo-progression. The combination of SWI and ASL imaging has the potential to improve diagnostic performance.
文章引用:刁艳照, 袁振国. 3D-PcASL和SWI在鉴别胶质瘤术后复发和假性进展中的价值[J]. 临床医学进展, 2022, 12(3): 2353-2359. https://doi.org/10.12677/ACM.2022.123339

1. 引言

胶质瘤是最常见的脑内原发性恶性肿瘤,通常伴随着较高的复发率,尤其是高级别胶质瘤 [1]。目前的标准治疗策略是最大范围地手术切除病灶,再辅助放疗或同步放化疗 [2]。但即使如此,肿瘤复发的风险依旧很高。术后常规通过MRI扫描无创性的评估治疗效果,从而避免穿刺或再切除造成的二次损伤。在随访过程中,新出现的增强病灶可能意味着复发,也可能是假性进展,常规MRI往往难以区分 [3] [4]。后者的病灶强化及T2-FLAIR病灶周围的高信号可以由治疗后血脑屏障破坏、放化疗联合诱导血管内皮细胞和组织的炎症反应,伴有水肿和血管通透性增加引起 [5]。二者的机制和随后的治疗策略大相径庭 [6]。一项meta分析显示,胶质母细胞瘤治疗期间假性进展的总发生率为36% (95% CI: 33~40),其中O6-甲基鸟嘌呤DNA甲基转移酶(O6-methylguanine-DNA methyltransferase, MGMT)甲基化及IDH突变型假性进展率会更高;而肿瘤复发的发生率为60% [7]。术后复发和假性进展的误诊容易造成对病人治疗不及时或过度治疗,从而严重影响患者生存及预后。因此,用影像学辅助评价胶质瘤术后复发和假性进展具有重要的临床意义,有助于临床选择合适的治疗方案或及早终止无效的治疗计划。

虽然动态磁敏感对比增强灌注成像(DSC-PWI)是描述新生血管的可靠的影像标志物,但它极易受磁敏感伪影影响,以至于不能准确描述血流灌注情况 [8] [9],且存在造影剂外溢造成rCBV减低。ASL将动脉血流作为内源性示踪剂,通过射频(RF)反转脉冲磁标记流入的动脉血液,最终实现绝对组织灌注测量。3D-PcASL可以定量脑血流量(CBF)来反映脑血流灌注,评价微循环改变。已有一些研究使用这种技术来评估胶质瘤的分级和肿瘤血管生成 [10] [11] [12]。3D-PcASL具有以下优势:首先,它不依赖于对比剂注射。这对肾功能不全或严重过敏的患者尤为重要 [13]。此外,ASL较少受敏感性伪影及血脑屏障的影响,可以很准确地测量绝对灌注值。

SWI能利用组织之间的磁敏感性差异来提供大脑不同组织间的对比,如通过顺磁性的脱氧血红蛋白含铁血黄素,更好地显示小静脉和出血灶。目前已有研究通过SWI定量磁化率预测胶质瘤分级 [14]。一般认为,放射性坏死在组织学上与出血性凝固性坏死伴有血管玻璃样变和反应性胶质细胞增生相对应 [15] [16]。因此,SWI可以为区分假性进展和复发提供额外的信息。

本文通过用ASL及SWI技术对胶质瘤术后MRI异常强化灶分析,探讨ASL及SWI鉴别两者的临床应用价值。

2. 材料与方法

2.1. 临床资料

本研究前瞻性收集了2019年10月至2021年5月我院37位胶质瘤术后且放化疗结束后出现异常强化病灶的患者,其中男性21例、女性16例,平均年龄为50岁(范围18岁~72岁),术前病理诊断均为胶质瘤。

2.2. 纳入排除标准

纳入标准为:1) 根据世界卫生组织(WHO)的标准,原发肿瘤的组织病理学诊断均为胶质瘤(WHO II-IV级),全部或大部切除脑肿瘤;2) 所有患者手术后24~48 h进行基线增强MRI检查;3) 在放射治疗或辅助替莫唑胺治疗结束后6个月内,放射视野内出现新发或扩大的强化病灶。在静脉注射造影剂之前或者强化之后24 h,加扫3D-PcASL、SWI序列。

排除标准:1) 手术结束后24~48 h未行MRI增强;2) 随访过程中没有出现新发或增大的增强灶;3) 患者没有完成3~6个月MRI随访或二次手术;

根据神经肿瘤学反应评估标准(RANO标准) [17] [18],如果在不改变治疗策略的前提下,增强的病灶的大小在3~6个月保持不变或缩小,则可确定为假性进展。相反,如果病灶在3~6个月的范围内增大,则考虑复发。我们通过对增强区域进行二次手术切除或3~6个月MRI随访,明确诊断肿瘤复发或假性进展。

本研究经过山东省立医院伦理委员会批准,所有患者行磁共振检查前,监护人均已签署知情同意书。

2.3. 检查方法

MRI图像采集采用3.0T MRI (Ingenia CX; Philips Healthcare, Best, the Netherlands)成像系统,专门用于头部成像的32通道线圈,头部固定海绵衬垫,防止被扫描者头部移位。除MRI常规序列外,在强化扫描之前或强化后24 h加扫3D T1WI、3D-PcASL及SWI序列。

薄层结构像3D T1WI序列参数如下:TR = 2300 ms;TE = 2.29 ms;翻转角:8˚,FOV 256 mm × 256 mm,体素大小 1 mm × 1 mm × 1 mm,层厚1.0 mm,层数192。

3D-PcASL参数:TR/TE = 4034/10,矩阵64 × 60,激励次数8次,标记后延迟时间 = 1.8 s,视野 = 240 × 240 mm,层厚6.0 mm。扫描基线垂直于颈总动脉,扫描范围需包括病灶。

SWI序列参数:TR = 31 ms;TE = 7.2 ms;FOV 230 mm × 189 mm,体素大小0.6 mm × 0.6 mm × 2 mm。

2.4. 图像处理

在飞利浦工作站“IntelliSpace Portal”进行图像处理。将CBF图及SWI图与高分辨3D-T1WI共配准。

ASL生成CBF图,根据强化区域绘制3到5个圆形ROI放置在CBF信号最高的区域,面积20~30 mm2,以对侧丘脑作为校正得到最大脑血流量(rCBFmax)。记录3~5个ROI中最高rCBF值,并进行统计学分析。根据常规MRI及增强图像,在勾画ROI时,避免大血管、囊肿、坏死或出血区域。所有ROI均由两名医师分组双盲独立勾画。

对于SWI图像,在T1增强图像上每一层强化的区域进行勾画ROI1,采用ITK-SNAP设置阈值,勾画幅度图上强化区域范围内的低信号出血灶为ROI2。然后,低信号出血灶面积除以强化灶面积,最终计算SWI图像上出血灶与强化区域的面积占比(proSWI)。根据相位图排除感兴趣区的钙化。

2.5. 统计学方法

使用SPSS 22.0软件进行统计学分析进行。根据正态性检验采用独立样本t检验或Mann-Whitney U检验进行组间比较,用Spearman等级分析评估rCBF与proSWI之间的相关性。利用MedCalc软件绘制ROC曲线,根据AUC值评价相应指标在鉴别复发和假性进展方面的效能,通过最大限度地提高灵敏度和特异性来确定最佳临界值。p < 0.05为有统计学意义。对侧丘脑的CBF值没有统计学差异。

3. 结果

3.1. 临床资料比较

表1显示了入组患者的几个临床特征,我们发现复发组和假性进展组在年龄、性别、放疗剂量等临床参数方面均无显著差异。

Table 1. Clinical characteristics of the patients

表1. 病人临床信息

3.2. 复发和假性进展患者proSWI、rCBF相关参数比较

表2是proSWI与rCBF在复发和假性进展组间差异表。在强化区域内,假性进展组的出血面积占比高于复发组(0.270 vs 0.070; p < 0.001),复发组的rCBF高于假性进展组,差异有统计学意义(2.189 vs 1.258; p < 0.001)。

proSWI与rCBF值之间呈负相关关系(rs = −0.430, p = 0.008)。

Table 2. Analysis results of proSWI, rCBFmax values in tumor recurrence and pseudo-progression

表2. 复发和假性进展患者proSWI、CBF相关参数比较

rCBF:最大脑血流量,ml/100g/min。

3.3. ROC曲线分析结果

图1为相关参数及联合proSWI及rCBF的ROC曲线分析。ROC曲线分析显示,proSWI、CBF值AUC分别为0.856、0.869。当proSWI为临界值0.155时,其评估复发和假性进展的敏感度为85%,特异度为82.4%。当rCBFmax为临界值1.85时,其评估复发和假性进展的敏感度为75%,特异度为94.1%。联合proSWI及rCBFmax二个评价参数,ROC曲线下面积可以达到0.944。

Figure 1. The diagnostic performance of proSWI, rCBFmax, the combination of proSWI and rCBFmax parameters in differentiating tumor recurrence from pseudo-progression

图1. proSWI、rCBFmax及联合二者参数在鉴别胶质瘤复发和假性进展方面的诊断效能

4. 讨论

在本研究中,我们采用两种不同的MRI成像技术对原发性脑肿瘤患者新出现的增强病灶进行鉴别。我们发现,与假性进展患者相比,复发组rCBF显著升高,proSWI显著降低。两个参数结合进行诊断,诊断价值最高,高达0.944。

我们的研究结果表明假性进展比复发存在更多的微出血灶,且与CBF呈显著负相关。假性进展可能是由于放、化疗损伤引起的血管舒张、血脑屏障破裂以及血管源性水肿 [19],在放射性坏死中,可出现不可逆的纤维素样坏死、纤维化、反应性胶质细胞增生、脱髓鞘和血管玻璃样变 [20]。至于与CBF呈负相关,我们推测是由于放疗导致血管损伤,导致组织间铁蛋白渗漏,含铁血黄素沉积,进一步加重了血管损伤。

在本研究中,我们选择3D-PcASL灌注方式通过测量相对脑血流量(rCBF)来描述肿瘤新生血管。该序列对磁敏感伪影的敏感性较低,可以对磁敏感伪影区域提供更多的信息,如颅底和邻近有残留血液的手术切除区,较动态磁敏感对比增强(DSC)更准确。我们的结果表明,肿瘤复发时的血流灌注显著高于假性进展,具有区分肿瘤复发和假性进展的潜力,这与以前的研究一致 [17] [21] [22],这是因为肿瘤复发时的血流量会随着新生毛细血管的增多及血管扩张而增加 [23]。而假性进展血流量较低似乎可以用血管周围的炎性反应/氧化应激反应来解释。可能是由于这项研究纳入的高级别胶质瘤样本量较多,所以rCBF的截断值高于以前的一些研究 [17] [24],但是较Manning的截断值低 [25]。SWI和ASL的联合指标提高了MR成像在区分胶质瘤复发和假性进展方面的准确性。

结果表明,SWI和3D-PcASL能从不同的方面准确地鉴别胶质瘤患者的复发和假性进展,一定程度上解释了复发及假性进展不同的病理生理机制。联合SWI和ASL相关参数可以帮助评估胶质瘤的治疗反应,对脑放疗后新出现的强化区域及早判断,并为临床医生提供合适的治疗方案,从而改善患者的整体预后,提高生活质量。

参考文献

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Klobukowski, L., Falkov, A., Chelimo, C. and Fogh, S.E. (2018) A Retrospective Review of Re-Irradiating Patients’ Recurrent High-Grade Gliomas. Clinical Oncology, 30, 563-570.
https://doi.org/10.1016/j.clon.2018.05.004
[2] 刘道佳, 吴君心, 唐明灯, 林端瑜, 张杰平, 李生栩, 等. (18)F-FLT PET/CT显像评估复发脑胶质瘤患者预后的价值[J]. 国际放射医学核医学杂志 2018, 42(5): 403-408.
[3] Kumar, A.J., Leeds, N.E., Fuller, G.N., Van Tassel, P., Maor, M.H., Sawaya, R.E., et al. (2000) Malignant Gliomas: MR Imaging Spectrum of Radiation Therapy- and Chemotherapy-Induced Necrosis of the Brain after Treatment1. Radiology, 217, 377-384.
https://doi.org/10.1148/radiology.217.2.r00nv36377
[4] Mullins, M.E., Barest, G.D., Schaefer, P.W., Hochberg, F.H., Gonzalez, R.G. and Lev, M.H. (2005) Radiation Necrosis versus Glioma Recurrence: Conventional MR Imaging Clues to Diagnosis. American Journal of Neuroradiology, 26, 1967-1972.
[5] Aronen, H.J., Gazit, I.E., Louis, D.N., Buchbinder, B.R., Pardo, F.S., Weisskoff, R.M., et al. (1994) Cerebral Blood Volume Maps of Gliomas: Comparison with Tumor Grade and Histologic Findings. Radiology, 191, 41-51.
https://doi.org/10.1148/radiology.191.1.8134596
[6] Ismail, M., Hill, V., Statsevych, V., Huang, R., Prasanna, P., Correa, R., et al. (2018) Shape Features of the Lesion Habitat to Differentiate Brain Tumor Progression from Pseudoprogression on Routine Multiparametric MRI: A Multisite Study. American Journal of Neuroradiology, 39, 2187-2193.
https://doi.org/10.3174/ajnr.A5858
[7] Abbasi, A.W., Westerlaan, H.E., Holtman, G.A., Aden, K.M., van Laar, P.J. and van der Hoorn, A. (2017) Incidence of Tumour Progression and Pseudoprogression in High-Grade Gliomas: A Systematic Review and Meta-Analysis. Clinical Neuroradiology, 28, 401-411.
https://doi.org/10.1007/s00062-017-0584-x
[8] Lindner, T., Ahmeti, H., Juhasz, J., Helle, M., Jansen, O., Synowitz, M., et al. (2018) A Comparison of Arterial Spin Labeling and Dynamic Susceptibility Perfusion Imaging for Resection Control in Glioblastoma Surgery. Oncotarget, 9, 18570-18577.
https://doi.org/10.18632/oncotarget.24970
[9] Muto, M., Frauenfelder, G., Senese, R., Zeccolini, F., Schena, E., Giurazza, F., et al. (2018) Dynamic Susceptibility Contrast (DSC) Perfusion MRI in Differential Diagnosis between Radionecrosis and Neoangiogenesis in Cerebral Metastases Using rCBV, rCBF and K2. La radiologia medica, 123, 545-552.
https://doi.org/10.1007/s11547-018-0866-7
[10] Furtner, J., Bender, B., Braun, C., Schittenhelm, J., Skardelly, M., Ernemann, U., et al. (2014) Prognostic Value of Blood Flow Measurements Using Arterial Spin Labeling in Gliomas. PLoS ONE, 9, Article ID: e99616.
https://doi.org/10.1371/journal.pone.0099616
[11] Zeng, Q., Jiang, B., Shi, F., Ling, C., Dong, F. and Zhang, J. (2017) 3D Pseudocontinuous Arterial Spin-Labeling MR Imaging in the Preoperative Evaluation of Gliomas. American Journal of Neuroradiology, 38, 1876-1883.
https://doi.org/10.3174/ajnr.A5299
[12] 张格, 陈旺生, 陈峰, 赵应满. 磁共振多模态影像在脑胶质瘤诊断及分级中的应用效果分析[J]. 中国CT和MRI杂志 2020, 18(2): 44-47.
[13] Hashido, T., Saito, S. and Ishida, T. (2020) A Radiomics-Based Comparative Study on Arterial Spin Labeling and Dynamic Susceptibility Contrast Perfusion-Weighted Imaging in Gliomas. Scientific Reports, 10, Article No. 6121.
https://doi.org/10.1038/s41598-020-62658-9
[14] Grabner, G., Kiesel, B., Wohrer, A., Millesi, M., Wurzer, A., Göd, S., et al. (2017) Local Image Variance of 7 Tesla SWI Is a New Technique for Preoperative Characterization of Diffusely Infiltrating Gliomas: Correlation with Tumour Grade and IDH1 Mutational Status. European Radiology, 27, 1556-1567.
https://doi.org/10.1007/s00330-016-4451-y
[15] Fink, J., Born, D. and Chamberlain, M.C. (2012) Radiation Necrosis: Relevance with Respect to Treatment of Primary and Secondary Brain Tumors. Current Neurology Neuroscience Reports, 12, 276-285.
https://doi.org/10.1007/s11910-012-0258-7
[16] Zadeh, M., Chapman, C.H., Chenevert, T., Lawrence, T.S., Ten Haken, R.K., Tsien, C.I., et al. (2014) Response-Driven Imaging Biomarkers for Predicting Radiation Necrosis of the Brain. Physics in Medicine Biology, 59, 2535-2547.
https://doi.org/10.1088/0031-9155/59/10/2535
[17] Jing, Y., Bhagat, S.K., Li, H., Luo, X., Wang, B., Liu, L., et al. (2016) Differentiation between Recurrent Gliomas and Radiation Necrosis Using Arterial Spin Labeling Perfusion Imaging. Experimental Therapeutic Medicine, 11, 2432-2436.
https://doi.org/10.3892/etm.2016.3225
[18] Nasseri, M., Gahramanov, S., Netto, J.P., Fu, R., Muldoon, L.L., Varallyay, C., et al. (2014) Evaluation of Pseudoprogression in Patients with Glioblastoma Multiforme Using Dynamic Magnetic Resonance Imaging with Ferumoxytol Calls RANO Criteria into Question. Neuro-Oncology, 16, 1146-1154.
https://doi.org/10.1093/neuonc/not328
[19] Burger, P.C. and Boyko, O. (1991) The Pathology of Central Nervous System Radiation Injury. In: Gutin, P.H., Leibel, S.A. and Sheline, G.E., Eds., Radiation Injury to the Nervous System, Raven Press, New York, 191-208.
[20] Melguizo-Gavilanes, I., Bruner, J.M., Guha-Thakurta, N., Hess, K.R. and Puduvalli, V.K. (2015) Characterization of Pseudoprogression in Patients with Glioblastoma: Is Histology the Gold Standard? Journal of Neuro-Oncology, 123, 145-150.
https://doi.org/10.1007/s11060-015-1774-5
[21] 白玉萍, 张静, 欧阳红, 甘铁军, 王鹏飞. ASL联合DWI在恶性胶质瘤真假性进展鉴别诊断中的应用价值[J]. 中国CT和MRI杂志, 2018, 16(8): 1-3.
[22] Pellerin, A., Khalifé, M., Sanson, M., Rozenblum-Beddok, L., Bertaux, M., Soret, M., et al. (2021) Simultaneously Acquired PET and ASL Imaging Biomarkers May Be Helpful in Differentiating Progression from Pseudo-Progression in Treated Gliomas. European Radiology, 31, 7395-7405.
https://doi.org/10.1007/s00330-021-07732-0
[23] Hoefnagels, F., Lagerwaard, F.J., Sanchez, E., Haasbeek, C.J., Knol, D.L., Slotman, B.J., et al. (2009) Radiological Progression of Cerebral Metastases after Radiosurgery: Assessment of Perfusion MRI for Differentiating between Necrosis and Recurrence. Journal of Neurology, 256, Article No. 878.
https://doi.org/10.1007/s00415-009-5034-5
[24] Wang, Y.L., Chen, S., Xiao, H.F., Li, Y., Wang, Y., Liu, G., et al. (2018) Differentiation between Radiation-Induced Brain Injury and Glioma Recurrence Using 3D pCASL and Dynamic Susceptibility Contrast-Enhanced Perfusion-Weighted Imaging. Radiotherapy Oncology, 129, 68-74.
https://doi.org/10.1016/j.radonc.2018.01.009
[25] Manning, P., Daghighi, S., Rajaratnam, M.K., Parthiban, S., Bahrami, N., Dale, A.M., et al. (2020) Differentiation of Progressive Disease from Pseudoprogression Using 3D PCASL and DSC Perfusion MRI in Patients with Glioblastoma. Journal of Neuro-Oncology, 147, 681-690.
https://doi.org/10.1007/s11060-020-03475-y