基于网络药理学探讨乳香的抗炎作用机制
Studies on the Anti-Inflammatory Mechanism of Frankincense Based on Network Pharmacology
DOI: 10.12677/TCM.2022.113050, PDF, HTML, XML, 下载: 406  浏览: 943  科研立项经费支持
作者: 王璐琼*, 辛 敏, 徐瑶瑶, 王 革, 高银鹤, 赵 烽#:烟台大学药学院分子药理学与药物评价教育部重点实验室,山东省高校新型药物传递系统与生物技术药物协同创新中心,山东 烟台
关键词: 乳香炎症网络药理学基因靶点炎症通路Frankincense Inflammation Network Pharmacology Gene Target Inflammatory Pathways
摘要: 目的:乳香是橄榄科乳香属植物乳香树树皮渗出的树脂。现代临床研究表明,乳香的主要药理有抗炎活性、抗肿瘤活性、神经保护活性及抗病毒、抗菌活性,但其抗炎活性的机制尚不明确。方法:本研究通过TCMSP、Swiss、Venny2.1、Gene Cards等数据库进行检索,对乳香的有效活性成分,有效活性成分对应的靶点基因及相关的抗炎信号通路进行了研究。构建了“成分–靶点”网络,进行了靶点蛋白的相互作用分析、GO生物功能和KEGG通路富集分析。结果:从乳香中分析筛选出12个活性成分,包括乳香脂酸、因香酚、甘遂醇等;52个靶点基因,包括PRKCH、PRKCG、NOS2、PTPN2、PRKCE等;8条炎症相关的信号通路,如NF-κB信号通路,TRP信号通路等。讨论:乳香可以通过PRKCH、PRKCG等靶点基因,以及NF-κB,TRP等信号通路发挥抗炎作用,乳香“多成分–多靶点–多通路”的作用特点,为乳香及其成分的临床应用提供了研究方向和科学依据。
Abstract: Objective: Frankincense is a resin exudated from the bark of frankincense trees in the genus Frankincense of olive family. Modern clinical studies show that the main pharmacological activi-ties of Frankincense include anti-inflammatory, anti-tumor, neuroprotective, antiviral and anti-bacterial activities, but the mechanism of its anti-inflammatory activity remains unclear. Methods: In this study, the active ingredients of frankincense, corresponding target genes of active ingredients and related anti-inflammatory signaling pathways were studied by searching TCMSP, Swiss, Venny2.1, Gene Cards and other databases. The “component-target” network was constructed to analyze the interaction of target proteins, GO biological function and KEGG pathway enrichment. Results: According to the research results, 12 active components were screened out from frankincense, including frankincense lipoic acid, fenol, glycerol, etc. 52 target genes, including PRKCH, PRKCG, NOS2, PTPN2, PRKCE, etc. 8 inflammatory related signaling pathways, such as NF-κB signaling pathway, TRP signaling pathway, etc. Discussion: Frankincense can exert anti-inflammatory effects through target genes such as PRKCH and PRKCG, as well as NF-κB and TRP signaling pathways. The “multi-component-multi-target-multi-pathway” action characteristics of frankincense provide research direction and scientific basis for clinical application of frankincense and its components.
文章引用:王璐琼, 辛敏, 徐瑶瑶, 王革, 高银鹤, 赵烽. 基于网络药理学探讨乳香的抗炎作用机制[J]. 中医学, 2022, 11(3): 345-352. https://doi.org/10.12677/TCM.2022.113050

1. 引言

炎症是机体为了确保在感染和组织损伤期间的正常运转,由免疫系统提供的一种基本反应,炎症反应是维持正常组织稳态所必需的 [1] [2]。炎症的分子机制是一个非常复杂的过程,它是通过识别与感染或组织损伤相关的特定分子模式而启动的,整个过程由参与促炎分子选择性表达的几个关键调控因子介导,长期的慢性炎症对机体损伤极大 [3] [4] [5]。

乳香作为传统中药,功效为活血定痛,消肿生肌 [6]。现有研究表明乳香具有抗炎的药理活性 [7] [8] [9] [10],但其抗炎活性的机制尚不明确。网络药理学是研究植物中各个成分和靶点的药理相关作用机制的一门学科 [11] [12] [13],本文通过构建乳香、炎症、靶点三者之间的相互作用关系,对乳香的主要抗炎成分及发挥抗炎机制的主要通路进行了研究,以期为乳香及其成分的临床应用提供科学依据。

2. 方法

2.1. 数据库与软件

TCMSP分析平台(http://tcmspw.com/tcmsp.php);GeneCards数据库(http://www.swisstargetprediction.ch/);Swiss分析平台(https://www.genecards.org/);生物信息在线工具Venny2.1 (https://bioinfogp.cnb.csic.es/tools/venny/);蛋白质相互作用数据库String (https://string-db.org/);Cytoscape3.8.0软件。

2.2. 乳香活性成分的筛选

通过中药系统药理学数据库与分析平台(TCMSP),以口服生物利用度(oral bioavilability, OB) ≥ 30%、类药性(druglikeness, DL) ≥ 0.18为筛选原则 [14],检索出乳香中主要活性成分,将活性成分输入swiss网站,得到其对应的靶点蛋白及相应的基因名。

2.3. 炎症相关靶点筛选

以“inflammation”为关键词,在GeneCards数据库中检索炎症相关基因并去重 [15]。

2.4. 获得乳香治疗炎症的靶基因

将乳香活性成分基因与炎症基因导入Venny2.1中,得到交集靶基因,即为乳香潜在的抗炎靶点基因。

2.5. 构建蛋白质相互作用(PPI)网络分析

将2.3项下获取的共同靶基因所对应的靶蛋白上通过String平台进行蛋白质–蛋白质相互作用(proteinproteininteraction, PPI)网络分析 [16] [17] [18]。将乳香潜在的抗炎靶点基因导入,并将其TSV格式的结果导入Cytoscape3.8.0软件中 [19],构建PPI网络图,并构建“关键活性成分–核心靶点“网络图。

2.6. GO分析和KEGG通路富集分析

通过微生信网站在线工具对乳香抗炎相对应的抗炎靶点基因集进行分析,并绘制GO气泡图和KEGG条形图 [20]。

3. 结果

3.1. 乳香中含有的活性成分

在乳香的127个化学成分中,根据筛选条件获得12个活性成分,具体信息见表1。12个活性成分对应的靶基因去除重复项共60个。

Table 1. Active pharmaceutical ingredients in olibanum

表1. 乳香中含有的活性成分

3.2. 筛选炎症相关靶点

经GeneCards数据库检索并去除重复靶点基因,共得到43491个炎症相关靶点基因,以Score ≥ 3筛选,获得2773个相关基因;将乳香的60个活性成分靶点基因与筛选出的2773个炎症靶点基因通过Venny2.1取交集,得到52个共同靶点基因即潜在的抗炎靶点,如图1

Figure 1. Venn plot of compositional targets and inflammation-related targets in olibanum

图1. 乳香的成分靶点与炎症相关靶点的韦恩图

3.3. 构建蛋白质相互作用(PPI)网络

构建52个乳香潜在抗炎靶点的PPI网络图可以预测各靶点蛋白的相互作用关系 [21] [22]。如图2所示,该网络图包含节点52个,边147条,其中ESR1、PTGS2、CYP3A4、PRKCD等靶点在该PPI网络中位于核心位置,提示在抗炎作用中起关键调控作用。

Figure 2. The protein interaction network of olibanum

图2. 乳香靶点蛋白相互作用网络

3.4. 构建“活性成分–核心靶点”网络

对乳香的12个活性成分所对应的52个核心靶点构建“活性成分–核心靶点”网络图,见图3。该网络共有节点64个,边226条,图中黄色代表活性成分(序列号),红色代表靶点,化合物和靶点的关联由各条边来表示。活性成分对应核心靶点的度值如表2所示,RX4和RX10都作用于32个核心靶点,提示这两个成分是乳香发挥抗炎作用的主要活性成分。

Figure 3. The network diagram of active components and targets

图3. 活性成分和靶点的网络作用图

Table 2. Active pharmaceutical ingredients and degree in olibanum

表2. 乳香中活性成分的度值信息

3.5. GO富集分析

对乳香抗炎靶点进行GO功能富集,获得功能注释 [23]。乳香抗炎靶点被功能注释到的前8个生物过程GO-BP (Biological Process),分子功能GO-MF (Molecular Function)和细胞组成GO-CC (Cellular Component)如图4所示。

Figure 4. The biological process, cell composition, molecular function of GO analysis

图4. GO分析的生物过程,细胞成分,分子功能

3.6. KEGG通路富集分析

对乳香的52个抗炎靶点基因进行KEGG通路富集分析,选取KEGG富集显著性统计前8条通路(P < 0.05,FDR < 0.05)绘制气泡图 [24]。如图5所示,乳香抗炎靶点涉及的NF-κB信号通路,TRP信号通路等多条信号通路与炎症密切相关,故推测乳香主要通过这些途径起到抗炎作用。

Figure 5. KEGG pathway analysis

图5. KEGG通路分析

4. 结论

乳香作为传统天然药物,具有多成分、多靶点和多通路的作用特点。本文通过网络药理学方法,对乳香活性成分及其对应抗炎靶点进行筛选和分析,构建了抗炎的“成分–靶点–通路”作用机制。结果表明,乳香主要是以乳香脂酸、因香酚、甘遂醇等12种活性成分为物质基础,以PRKCH、PRKCG、NOS2、PTPN2、PRKCE等52个蛋白作为主要作用靶点,经由NF-κB信号通路,TRP信号通路等抗炎相关通路起到抗炎作用。本文对乳香抗炎机制的分析研究,可为进一步深入开展乳香的抗炎作用机制研究提供新的思路和方向。

基金项目

本研究由烟台大学研究生科技创新基金项目(YDYB2124)资助。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Liu, F.Z., Li, Y.B., Yang, Y., et al. (2021) Study on Mechanism of Matrine in Treatment of COVID-19 Combined with Liver Injury by Network Pharmacology and Molecular Docking Technology. Drug Delivery, 28, 325-342.
https://doi.org/10.1080/10717544.2021.1879313
[2] Qin, L.R., Chen, H.Y., Ding, X.Q., et al. (2021) Utilizing Network Pharmacology to Explore Potential Mechanisms of YiSui NongJian Formula in Treating Myelodysplastic Syndrome. Bioengineered, 12, 2238-2252.
https://doi.org/10.1080/21655979.2021.1933867
[3] Wang, Y., Chu, F.H., Lin, J., et al. (2021) Erianin, the Main Active Ingredient of Dendrobium chrysotoxum Lindl, Inhibits Precancerous Lesions of Gastric Cancer (PLGC) through Suppression of the HRAS-PI3K-AKT Signaling Pathway as Revealed by Network Pharmacology and in Vitro Experimental Verification. Journal of Ethnopharmacology, 279, Article ID: 114399.
https://doi.org/10.1016/j.jep.2021.114399
[4] Di, S., Han, L., An, X.D., et al. (2021) In Silico Network Pharmacology and in Vivo Analysis of Berberine-Related Mechanisms against Type 2 Diabetes Mellitus and Its Complications. Journal of Ethnopharmacology, 276, Article ID: 114180.
https://doi.org/10.1016/j.jep.2021.114180
[5] Wei, J., Ma, L.Y., Liu, W.P., et al. (2021) Identification of the Molecular Targets and Mechanisms of Compound Mylabris Capsules for Hepatocellular Carcinoma Treatment through Network Pharmacology and Bioinformatics Analysis. Journal of Ethnopharmacology, 276, Article ID: 114174.
https://doi.org/10.1016/j.jep.2021.114174
[6] Zhang, Z.M., Yang, L., Wan, Y., et al. (2021) The Synergic Renoprotective Effect of Rehmanniae Radix Preparata and Corni Fructus on Adenine-Induced Chronic Kidney Disease Rats Based on Integrated Plasma Metabolomics and Network Pharmacology Approach. Life Sciences, 278, Article ID: 119545.
https://doi.org/10.1016/j.lfs.2021.119545
[7] Zheng, D.D., Wang, J.L., Li, G.J., et al. (2021) Preliminary Therapeutic and Mechanistic Evaluation of S-Allylmercapto- N-Acetylcysteine in the Treatment of Pulmonary Emphysema. International Immunopharmacology, 98, Article ID: 107913.
https://doi.org/10.1016/j.intimp.2021.107913
[8] Sun, G.J., Li, X.M., Wei, J.X., et al. (2021) Pharmacodynamic Substances in Salvia miltiorrhiza for Prevention and Treatment of Hyperlipidemia and Coronary Heart Disease Based on Lipidomics Technology and Network Pharmacology Analysis. Biomedicine & Pharmacotherapy, 141, Article ID: 111846.
https://doi.org/10.1016/j.biopha.2021.111846
[9] Song, X.H., He, Y., Liu, M., et al. (2021) Mechanism Underlying Polygonum capitatum Effect on Helicobacter pylori-Associated Gastritis Based on Network Pharmacology. Bioorganic Chemistry, 114, Article ID: 105044.
https://doi.org/10.1016/j.bioorg.2021.105044
[10] Wu, Y., Yang, X.K., Li, G.W., et al. (2021) Molecular Mechanism of Huaihuasan in Treatment of Ulcerative Colitis Based on Network Pharmacology and Molecular Docking. Phytomedicine Plus, 1, Article ID: 100081.
https://doi.org/10.1016/j.phyplu.2021.100081
[11] Min, L.T., Wu, Y., Cao, G., et al. (2021) A Network Pharmacology Strategy to Investigate the Anti-Osteoarthritis Mechanism of Main Lignans Components of Schisandrae Fructus. International Immunopharmacology, 98, Article ID: 107873.
https://doi.org/10.1016/j.intimp.2021.107873
[12] Petraina, A., Nogales, C., Krahn, T., et al. (2021) Cyclic GMP Modulating Drugs in Cardiovascular Diseases: Mechanism-Based Network Pharmacology. Cardiovascular Research, cvab240.
https://doi.org/10.1093/cvr/cvab240
[13] Wen, S., Zhong, Z.T., He, L., et al. (2021) Network Pharmacology Dissection of Multiscale Mechanisms for Jiaoqi Powder in Treating Ulcerative Colitis. Journal of Ethnopharmacology, 275, Article ID: 114109.
https://doi.org/10.1016/j.jep.2021.114109
[14] Zhang, W.Y., Cao, Y., Chen, S., et al. (2021) Integrated Metabolomics and Network Pharmacology Approach to Exploring the Potential Mechanism of Tianxiang Capsule for Treating Motion Sickness. Journal of Ethnopharmacology, 275, Article ID: 114107.
https://doi.org/10.1016/j.jep.2021.114107
[15] Chen, Y., Chu, F.H., Lin, J., et al. (2021) The Mechanisms of Action of WeiChang’An Pill (WCAP) Treat Diarrhoea-Predominant Irritable Bowel Syndrome (IBS-D) Using Net-work Pharmacology Approach and in Vivo Studies. Journal of Ethnopharmacology, 275, Article ID: 114119.
https://doi.org/10.1016/j.jep.2021.114119
[16] Sun, W.L., Liu, P.P., Yang, B.D., et al. (2021) A Network Pharmacology Approach: Inhibition of the NF-κB Signaling Pathway Contributes to the NASH Preventative Effect of an Oroxylum indicum Seed Extract in Oleic Acid-Stimulated HepG2 Cells and High-Fat Diet-Fed Rats. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 88, Article ID: 153498.
https://doi.org/10.1016/j.phymed.2021.153498
[17] Ding, Q., Wu, Y.H. and Liu, W. (2021) Molecular Mechanism of Reproductive Toxicity Induced by Tripterygium wilfordii Based on Network Pharmacology. Medicine, 100, e26197.
https://doi.org/10.1097/MD.0000000000026197
[18] Wang, Y.F., Deng, Y., Zhang, S.Y., et al. (2021) Efficacy and Mechanism of Buxue Yimu Pills on Gynecological Anemia: A Combination of Clinical and Network Pharmacology Study. Chinese Journal of Integrative Medicine, 1, 1-9.
https://doi.org/10.1007/s11655-021-3296-7
[19] Duan, L.Y., Jin, D., An, X.D., et al. (2021) The Potential Effect of on Polycystic Ovary Syndrome Based on Network Pharmacology and Molecular Docking. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 5577610.
https://doi.org/10.1155/2021/5577610
[20] Zhang, X.N., Luo, J., Chen, C., et al. (2021) Cytoprotective Effects of Spleen-Invigorating Pill against 5-Fluorouracil Injury to Mouse Bone Marrow Stromal Cells. Journal of Ethnopharmacology, 280, Article ID: 114397.
https://doi.org/10.1016/j.jep.2021.114397
[21] Zhang, J.J., Peng, Q.Z., Deng, Y.P., et al. (2021) The Preventive Effects of Quercetin on Preterm Birth Based on Network Pharmacology and Bioinformatics. Reproductive Sciences, 29, 193-202.
https://doi.org/10.1007/s43032-021-00674-4
[22] Sidhu, H. and Capalash, N. (2021) Synergistic Anti-Cancer Action of Salicylic Acid and Cisplatin on HeLa Cells Elucidated by Network Pharmacology and in Vitro Analysis. Life Sciences, 282, Article ID: 119802.
https://doi.org/10.1016/j.lfs.2021.119802
[23] Yu, Y.D., Xiu, Y.P., Li, Y.F., et al. (2021) To Explore the Mechanism and Equivalent Molecular Group of Radix Astragali and Semen Lepidii in Treating Heart Failure Based on Network Pharmacology. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 5518192.
https://doi.org/10.1155/2021/5518192
[24] Yu, S.X., Gao, W.H., Zeng, P.H., et al. (2021) Exploring the Effect of Gupi Xiaoji Prescription on Hepatitis B Virus-Related Liver Cancer through Network Pharmacology and in Vitro Experiments. Biomedicine & Pharmacotherapy, 139, Article ID: 111612.
https://doi.org/10.1016/j.biopha.2021.111612