长链非编码RNA作为胃癌诊断标志物的研究新进展
New Progress of Long Non-Coding RNA as a Diagnostic Marker for Gastric Cancer
DOI: 10.12677/ACM.2022.124527, PDF, HTML, XML, 下载: 355  浏览: 500 
作者: 李蓉蓉:延安大学附属医院,陕西 延安
关键词: 胃癌长链非编码RNA肿瘤标志物Gastric Cancer IncRNA Tumor Marker
摘要: 胃癌是常见的恶性肿瘤之一,早期诊断的效果还不理想。近几年研究表明,胃癌患者中一些长链非编码RNA表达异常,可作为胃癌诊断的标志物,治疗及预后监测的指标。本文就长链非编码RNA作为胃癌诊断标志物的研究新进展作一综述。
Abstract: Gastric cancer is one of the common malignant tumors, and the early diagnosis is not satisfactory. Research in recent years has shown that abnormal expression of some LncRNAs in patients with gastric cancer can be used as markers for diagnosis, treatment and prognostic monitoring of gastric cancer. This article reviews the recent progress of long non-coding RNA as a diagnostic marker for gastric cancer.
文章引用:李蓉蓉. 长链非编码RNA作为胃癌诊断标志物的研究新进展[J]. 临床医学进展, 2022, 12(4): 3635-3640. https://doi.org/10.12677/ACM.2022.124527

1. 引言

胃癌是世界上所有恶性肿瘤中诊断率第五高的癌症,是全球癌症死亡的第三大原因 [1]。尽管内窥镜活检和病理检查被认为是诊断胃癌的金标准,但目前缺乏非侵入性的方法或有效的早期胃癌生物标志物。因此,大多数患者在被发现时已是晚期胃癌,预后很差。迄今为止,碳水化合物抗原癌胚抗原(CEA)、碳水化合物抗原CA19-9和CA72-4是目前在临床上被用作胃癌相关的循环肿瘤标志物,其敏感性和特异性都比较低 [1] [2]。因此,寻找新的非侵入性的胃癌诊断生物标志物是非常迫切的。随着第八次测序技术的发展,肿瘤血浆中的循环RNA水平已被确定为几种癌症类型的新的非侵入性诊断生物标志物 [3]。

最初,lncRNA (Long non-coding RNA)被认为是基因组的“噪音”转录,是RNA聚合酶转录的副产品,不具有任何生物功能。但越来越多的研究表明,lncRNA起着重要的作用 [4] [5] [6]。长链非编码RNA (lncRNA)是一类长于200个核苷酸的非编码RNA,具有有限的蛋白质编码能力 [7]。LncRNA可以在多个层面上调控生物过程,如转录、转录后和表观遗传调控 [8]。已经证明,lncRNA在胃癌生物学的调控中发挥了重要作用,并与胃癌的发生、发展、侵袭转移和预后密切相关 [9] [10] [11] [12]。LncRNA可以参与许多重要的调控过程,如X染色体剪裁、基因组印记、染色质修饰、转录激活和核运输 [13] [14] [15] [16]。LncRNA在生物过程中也发挥着重要作用,如细胞凋亡和细胞周期,以及肿瘤的发生和发展 [17] [18] [19] [20]。LncRNA通过调节涉及细胞周期、增殖、凋亡、侵袭、转移和上皮细胞向间质转化的基因表达网络,在表观遗传、转录和转录后水平上参与胃癌的进展 [21] [22]。

2. 胃癌组织中LncRNAs H19和UCA1

幽门螺旋杆菌是75%的胃癌病例的罪魁祸首 [23],幽门螺杆菌感染的作用机制涉及控制癌细胞生存代谢的细胞途径 [24],其他生物标志物可能通过影响幽门螺杆菌作用的基本途径或增加幽门螺杆菌感染的风险而对胃癌作出贡献 [25]。长链非编码RNAs有能力改变对幽门螺杆菌的敏感性,从而改变胃癌的发病率 [26]。Sajjad Ghalib Ibrahim Alnajar等人 [27] 研究了LncRNAs H19和UCA1在考虑幽门螺杆菌感染的胃癌组织中的表达水平及其与临床病理特征的关系。通过101个胃肿瘤和邻近的非肿瘤组织,然后分离出总RNA,使用qRT-PCR测量H19和UCA1的表达,结果显示与边缘非肿瘤组织相比,H19和UCA1在肿瘤组织中的表达明显较高,此外,H19在胃癌中的过量表达与淋巴结转移和幽门螺杆菌感染有关。然而,UCA1的表达与患者的临床病理特征(包括年龄、性别、肿瘤大小、淋巴结转移、分期和幽门螺杆菌)之间没有发现明显的关联。此外,还评估了H19与UCA1与之前研究的lncRNA DLEU1 [28]、KRT18P55 [29] 和HOXA-AS2 [30] 在同一队列中的相关性,结果显示H19和KRT18P55、H19和HOXA-AS2以及HOXA-AS2和KRT18P55之间存在着明显的正相关,而UCA1与DLEU1、KRT18P55、HOXA-AS2没有明显的相关性。将H19和UCA1与之前在同一队列中调查的lncRNAs DLEU1 [28],KRT18P55 [29] 和HOXA-AS2 [30] 进行比较,HOXA-AS2的AUC为0.82,敏感性为92%,特异性为70%,诊断价值最高;UCA1的AUC为0.62,敏感性为63%,特异性为57%,诊断价值最低。

一项对15项研究1505名患者进行的荟萃分析表明,有5个lncRNAs与胃癌相关。其中,H19和UCA1在GC组织中表现出过量表达,它们的上调表现出不良的预后价值 [31]。以前的一项研究表明,与相应的非肿瘤样本相比,H19在74个GC组织中的过表达量为6倍 [32],他们还显示了H19的表达与淋巴结转移之间的显著关联 [32],通过生成H19的突变转录本,作者发现H19与miR-675一起介导胃癌的细胞迁移和入侵,因此,有助于转移 [32]。UCA1的上调已被证明可以通过PI3K、Wnt或Akt信号通路在各种癌症类型中增强细胞增殖和转移,包括食道鳞状细胞癌、肝细胞癌、结肠直肠癌和卵巢癌 [33] [34]。

3. 循环长链非编码RNA PCGEM1

Hong Jiang等 [35] 共招募了317名GC患者和100名健康人,通过qRT-PCR检测循环PCGEM1,表明胃癌组中PCGEM1的表达水平明显高于健康对照组。此外,血浆中PCGEM1的表达水平与TNM阶段相关,并随着恶性肿瘤的加重而增加。此外,手术后血浆中PCGEM1的主表达量明显减少,表明肿瘤组织和循环中PCGEM1的表达有直接关系。然而,PCGEM1的表达与其他临床特征如年龄、性别、肿瘤大小、位置、Borman类型和Laurent类型没有关系。此外,Hong Jiang等 [35] 还评估了CEA、CA12-5、CA72-4、AFP、CA19-9和PCGEM1联合诊断GC的价值,发现其AUC值高于任何生物标志物,PCGEM1的敏感性和特异性分别为72.9%和88.9%。该研究还表明了PCGEM1诊断的敏感性和特异性比H19 [36] 更高。

PCGEM1位于染色体2q32.3,其致癌作用最初在侵袭性前列腺癌中得到证明,是一种与前列腺相关的基因,受雄性激素调控 [37] [38]。同样,P54/nrb可以调节PCGEM1的表达,而PCGEM1的表达与前列腺癌的抗癌性有关 [39]。此外,PCGEM1可以通过调节RhoA [40] 或STAT3 [41] 途径,加剧变异性癌症的侵袭和转移,PCGEM1也是子宫内膜癌 [41] 和胶质瘤 [42] 的恶性生物标志物。

4. 长链非编码RNA LINC01279

Song Meng等 [43] 收集了90位经手术治疗的胃癌患者的血清、胃癌和邻近组织样本以及90位健康成人的血清样本,通过RT-PCR分析LINC01279的表达水平,AUC值为0.82,敏感性和特异性分别为62.2%和95.6%,因此LINC01279的诊断价值比CEA和CA199要高。LINC01279的表达与神经侵袭、血管侵袭、临床阶段、T分类和N分类之间存在显著关联。LINC01279的表达水平与患者的生存时间相关,使用多变量Cox回归分析,高LINC01279表达水平的患者与低LINC01279表达水平的患者相比,生存时间更短。LINC01279的表达与胃癌患者不利的临床特征和不良的预后有关,这表明LINC01279可能通过作为诱因或促进基因而对胃癌起到积极的调节作用。

5. 循环长链非编码RNA FEZF1-AS1和AFAP1-AS1

Wenwen Liu等 [44] 为了验证FEZF1-AS1和AFAP1-AS1的血清表达水平,通过qRT-PCR进行测量,这些物质在GC患者中的表达量上升,而且高表达水平与肿瘤大小、肿瘤结节转移(TNM)阶段和淋巴结转移有关。为了确定这些lncRNAs的诊断能力,将两个lncRNA组合来构建诊断模型,该模型产生的AUC值为0.866,高于单独的lncRNAs,表明其对胃癌的预测性更好,此外,当将模型与CEA、模型与CA19-9或模型与CEA和CA19-9相结合时,诊断效用和敏感性可得到明显改善,最高AUC值为0.894。因此,所有这些结果表明,将FEZF1-AS1和AFAP1-AS1与CEA和CA19-9结合在一起,可以提高诊断GC的敏感度。此外,循环的FEZF1-AS1和AFAP1-AS1在胃癌患者接受手术后明显减少,这两个LncRNA的组合可能被用作胃癌的潜在预后指标。

机制研究表明,FEZF1-AS1招募了LSD1并导致H3K4me2去甲基化,从而促进了胃癌的p21转录并加速了细胞增殖。另一项研究表明,上调的FEZF1-AS1可以激活Wnt/β-catenins信号,促进胃癌的发生 [45]。另一方面,Guoetal发现AFAP1-AS1在GC细胞中高度表达,并能通过PTEN/p-AKT途径调控细胞周期和凋亡 [46]。

6. 血清长链非编码RNA RP11-731F5.2

Sinan Liu等 [47] 用qRT-PCR技术比较了104名GC患者和80名健康对照者的血清RP11-731F5.2水平,发现RP11-731F5.2的表达水平明显高于健康对照,相应的AUC为0.78,敏感性为81.63%,特异性为63.64%。为了验证循环lncRNA的稳定性,将血清在室温下放置24小时,反复冻融7次,血清RP11-731F5.2的表达水平变化不大,说明血清受外界影响较小,相对稳定。此外,用CEA、CA19-9及RP11-731F5.2做了一个联合诊断模型,发现AUC值为0.84,RP11-731F5.2的诊断性能远远优于两个传统生物标志物,联合诊断可以提高诊断价值。同时,胃癌术后样本中血清RP11-731F5.2的水平与术前样本相比明显下降。RP11-731F5.2的水平与患者年龄、性别、肿瘤大小、分期、CEA或CA19-9之间没有相关性。

7. 小结

由于胃癌早期临床症状不明显,就诊时大多是晚期,因此,寻找肿瘤标志物是实现胃癌早期检测,改善预后的有效手段,除了CA199、CA125、CA724等用于胃癌诊断,但由于它们的敏感度及特异性都不够理想,因此许多研究一直在致力于发现新的血液肿瘤标志物用于胃癌诊断,近几年,越来越多的lncRNA分子的发现,为早期发现和诊断胃癌提供了手段。大量的研究发现,lncRNA分子和其他肿瘤标志物联合检测可提高诊断精确度。进一步的研究应着重于大规模、长期的随访,以证实这种临床应用,而这些lncRNAs在胃癌中的机理也有待于完全探索。

参考文献

[1] Jing, J.X., Wang, Y., Xu, X.Q., et al. (2014) Tumor Markers for Diagnosis, Monitoring of Recurrence and Prognosis in Patients with Upper Gastrointestinal Tract Cancer. Asian Pacific Journal of Cancer Prevention, 15, 10267-10272.
https://doi.org/10.7314/APJCP.2014.15.23.10267
[2] Zhou, Y.C., Zhao, H.J. and Shen, L.Z. (2015) Preoperative Serum CEA and CA19-9 in Gastric Cancer—A Single Tertiary Hospital Study of 1075 Cases. Asian Pacific Journal of Cancer Prevention, 16, 2685-2691.
https://doi.org/10.7314/APJCP.2015.16.7.2685
[3] Qi, P., Zhou, X.Y. and Du, X. (2016) Circulating Long Non-Coding RNAs in Cancer: Current Status and Future Perspectives. Molecular Cancer, 15, 39.
https://doi.org/10.1186/s12943-016-0524-4
[4] Peng, W., Wu, G., Fan, H., Wu, J. and Feng, J. (2015) Long Non-Coding RNASPRY4-IT1 Predicts Poor Patient Prognosis and Promotes Tumorigenesis in Gastric Cancer. Tumor Biology, 36, 6751-6758.
https://doi.org/10.1007/s13277-015-3376-4
[5] Chen, B., Zhao, Q., Guan, L., et al. (2018) Long Non-Coding RNA NNT-AS1 Sponges miR424/E2F1 to Promote the Tumorigenesis and Cell Cycle Progression of Gastric Cancer. Journal of Cellular and Molecular Medicine, 22, 4751-4759.
https://doi.org/10.1111/jcmm.13726
[6] Qi, H., Xiao, Z. and Wang, Y. (2019) Long Non-Coding RNA LINC00665 Gastric Cancer Tumorigenesis by Regulation miR-149-3p/RNF2 Axis. OncoTargets and Therapy, 12, 6981-6990.
https://doi.org/10.2147/OTT.S214588
[7] Lau, E. (2018) Non-Coding RNA: Zooming in on lncRNA Functions. Nature Reviews Genetics, 15, 574-575.
https://doi.org/10.1038/nrg3795
[8] Kopp, F. and Mendell, J.T. (2018) Functional Classification and Experimental Dissection of Long Non-Coding RNAs. Cell, 172, 393-407.
https://doi.org/10.1016/j.cell.2018.01.011
[9] Zong, Z., Li, H., Yu, Z.M., et al. (2020) Prognostic Thirteen-Long Non-Coding RNAs (IncRNAs) Could Improve the Survival Prediction of Gastric Cancer. Gastroenterologia Y Hepatologia, 43, 598-606.
https://doi.org/10.1016/j.gastrohep.2020.01.016
[10] Zhu, L., Jia, R., Zhang, J., Li, X., Qin, C. and Zhao, Q. (2020) Quantitative Proteomics Analysis Revealed the Potential Role of lncRNA FTX in Promoting Gastric Cancer Progression. Proteomics: Clinical Applications, 14, e1900053.
https://doi.org/10.1002/prca.201900053
[11] Zhou, X., Fan, Y., He, Y., et al. (2020) Clinicopathological and Prognostic Value of Gastric Carcinoma Highly Expressed Transcript 1 in Cancer: A Meta-Analysis. Journal of Oncology, 2020, Article ID: 6341093.
https://doi.org/10.1155/2020/6341093
[12] Zhou, J., Wu, L., Li, W., et al. (2020) Long Non-Coding RNALINC01485 Promotes Tumor Growth and Migration via Inhibiting EGFR Ubiquitination and Activating EGFR/Akt Signaling in Gastric Cancer. OncoTargets and Therapy, 13, 8413-8425.
https://doi.org/10.2147/OTT.S257151
[13] Zhi, X.H., Jiang, K., Ma, Y.Y. and Zhou, L.Q. (2020) OIP5AS1 Promotes the Progression of Gastric Cancer Cells via the miR-153-3p/ZBTB2 Axis. European Review for Medical and Pharmacological Sciences, 24, 2428-2441.
[14] Zheng, P., Zhang, H., Gao, H., et al. (2020) Plasma Exosomal Long Non-Coding RNAlncSLC2A12-10:1 as a Novel Diagnostic Biomarker for Gastric Cancer. OncoTargets and Therapy, 13, 4009-4018.
https://doi.org/10.2147/OTT.S253600
[15] Zhao, Y., Chen, X., Jiang, J., Wan, X., Wang, Y. and Xu, P. (2020) Epigallocatechin Gallate Reverses Gastric Cancer by Regulating the Long Non-Coding RNALINC00511/miR29b/KDM2A Axis. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1866, Article ID: 165856.
https://doi.org/10.1016/j.bbadis.2020.165856
[16] Zhao, S., Fan, N.F., Chen, X.H., Zhuo, C.H., Xu, C.W. and Lin, R.B. (2020) Long Non-Coding RNAPVT1-214 Enhances Gastric Cancer Progression by Upregulating TrkC Expression in Competitively Sponging Way. European Review for Medical and Pharmacological Sciences, 24, 8245.
[17] Zhang, X., Jiang, Y., Xie, Y., Leng, X., He, M. and Song, F. (2020) Inhibition of Gastric Cancer Cell Apoptosis by Long-Non-Coding RNATRPM2-AS via Mitogen-Activated Protein Kinase and Activators of Transduction-3. Journal of Gastroenterology and Hepatology, 36, 186-195.
https://doi.org/10.1111/jgh.15108
[18] Yang, X., Xie, Z., Lei, X. and Gan, R. (2020) Long Non-Coding RNAGAS5 in Human Cancer. Oncology Letters, 20, 2587-2594.
https://doi.org/10.3892/ol.2020.11809
[19] Qiu, S., Chen, G., Peng, J., et al. (2020) LncRNA EGOT Decreases Breast Cancer Cell Viability and Migration via Inactivation of the Hedgehog Pathway. FEBS Open Bio, 10, 817-826.
https://doi.org/10.1002/2211-5463.12833
[20] Qian, Y., Song, W., Wu, X., et al. (2020) DLX6 Antisense RNA1 Modulates Glucose Metabolism and Cell Growth in Gastric Cancer by Targeting microRNA-4290. Digestive Diseases and Sciences, 66, 460-473.
https://doi.org/10.1007/s10620-020-06223-4
[21] Wu, Q., Ma, J., Wei, J., Meng, W., Wang, Y. and Shi, M. (2021) lncRNASNHG11 Promotes Gastric Cancer Progression by Activating the Wnt/Beta-Catenin Pathway and Oncogenic Autophagy. Molecular Therapy, 29, 1258-1278.
https://doi.org/10.1016/j.ymthe.2020.10.011
[22] Pan, H., Ding, Y., Jiang, Y., Wang, X., Rao, J., Zhang, X., Yu, H., Hou, Q. and Li, T. (2021) LncRNA LIFR-AS1 Promotes Proliferation and Invasion of Gastric Cancer Cell via miR-29a-3p/COL1A2 Axis. Cancer Cell International, 21, 7.
https://doi.org/10.1186/s12935-020-01644-7
[23] Amieva, M. and Peek Jr., R.M. (2016) Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology, 150, 64-78.
https://doi.org/10.1053/j.gastro.2015.09.004
[24] Toh, J.W. and Wilson, R.B. (2020) Pathways of Gastric Carcinogenesis, Helicobacter pylori Virulence and Interactions with Antioxidant Systems, Vitamin C and Phytochemicals. International Journal of Molecular Sciences, 21, 6451.
https://doi.org/10.3390/ijms21176451
[25] Liu, L., Shuai, T., Li, B., Zhu, L. and Li, X. (2018) Long Non-Coding RNA lnc-GNAT1-1 Inhibits Gastric Cancer Cell Proliferation and Invasion through the Wnt/β-Catenin Pathway in Helicobacter pylori Infection. Molecular Medicine Reports, 18, 4009-4015.
https://doi.org/10.3892/mmr.2018.9405
[26] Rajabi, A., Bastani, S., Maydanchi, M., Tayefeh-Gholami, S., Abdolahi, S., Saber, A., et al. (2021) Moderate Prognostic Value of lncRNA FOXD2-AS1 in Gastric Cancer with Helicobacter pylori Infection. Journal of Gastrointestinal Cancer.
https://doi.org/10.1007/s12029-021-00686-y
[27] Alnajar, S.G.I., et al. (2022) Overexpression of lncRNAs H19 and UCA1 in Gastric Cancer Tissues. Gene Reports, 27.
https://doi.org/10.1016/j.genrep.2022.101569
[28] Ghodrati, R., Safaralizadeh, R., Dastmalchi, N., Hosseinpourfeizi, M., Asadi, M., Shirmohammadi, M., et al. (2021) Overexpression of lncRNA DLEU1 in Gastric Cancer Tissues Compared to Adjacent Non-Tumor Tissues. Journal of Gastrointestinal Cancer.
https://doi.org/10.1007/s12029-021-00733-8
[29] Tayefeh-Gholami, S., Ghanbari, M., Aghazadeh, A., Rajabi, A., Saber, A. and Hussen, B.M., et al. (2021) Prognostic Value of LncRNA KRT18P55 in Patients with Intestinal Type of Gastric Cancer. Journal of Gastrointestinal Cancer.
https://doi.org/10.1007/s12029-021-00744-5
[30] Rajabi, A., Riahi, A., Shirabadi-Arani, H., Moaddab, Y., Haghi, M. and Safaralizadeh, R. (2020) Overexpression of HOXA-AS2 LncRNA in Patients with Gastric Cancer and Its Association with Helicobacter pylori Infection. Journal of Gastrointestinal Cancer, 53, 72-77.
[31] Zhang, J., Guo, S., Dong, Z., Zheng, Z. C., Wang, Y. and Zhao, Y. (2019) Prognostic Value of Hypoxia-Responsive Long Non-Coding RNAs in Gastric Cancer: A Meta-Analysis. International Journal of Clinical and Experimental Medicine, 12, 3558-3568.
[32] Li, H., Yu, B., Li, J., Su, L., Yan, M., Zhu, Z., et al. (2014) Overexpression of lncRNA H19 Enhances Carcinogenesis and Metastasis of Gastric Cancer. Oncotarget, 5, 2318-2329.
https://doi.org/10.18632/oncotarget.1913
[33] Han, Y., Yang, Y.-N., Yuan, H.-H., Zhang, T.-T., Sui, H., Wei, X.-L., et al. (2014) UCA1, a Long Non-Coding RNA Up-Regulated in Colorectal Cancer Influences Cell Proliferation, Apoptosis and Cell Cycle Distribution. Pathology, 46, 396-401.
https://doi.org/10.1097/PAT.0000000000000125
[34] Wang, F., Zhou, J., Xie, X., Hu, J., Chen, L., Hu, Q., et al. (2015) Involvement of SRPK1 in Cisplatin Resistance Related to Long Non-Coding RNA UCA1 in Human Ovarian Cancer Cells. Neoplasma, 62, 432-438.
https://doi.org/10.4149/neo_2015_051
[35] Jiang, H., et al. (2019) Circulating Long Non-Coding RNA PCGEM1 as a Novel Biomarker for Gastric Cancer Diagnosis. Pathology—Research and Practice, 215, Article ID: 152569.
https://doi.org/10.1016/j.prp.2019.152569
[36] Zhou, X., Yin, C., Dang, Y., et al. (2015) Identification of the Long Non-Coding RNAH19 in Plasma ASA Novel Biomarker for Diagnosis of Gastric Cancer. Scientific Reports, 5, Article No. 11516.
https://doi.org/10.1038/srep11516
[37] Parolia, A., Crea, F., Xue, H., et al. (2015) The Long Non-Coding RNAPCGEM1 Is Regulated by Androgen Receptor Activity in Vivo. Molecular Cancer, 14, 46.
https://doi.org/10.1186/s12943-015-0314-4
[38] Srikantan, V., Zou, Z., Petrovics, G., et al. (2000) PCGEM1, a Prostate-Specific Gene, Is Overexpressed in Prostate Cancer. Proceedings of the National Academy of Sciences of the United States of America, 97, 12216-12221.
https://doi.org/10.1073/pnas.97.22.12216
[39] Ho, T.T., Huang, J., Zhou, N., et al. (2016) Regulation of PCGEM1 by p54/NRB in Prostate Cancer. Scientific Reports, 6, Article No. 34529.
https://doi.org/10.1038/srep34529
[40] Chen, S., Wang, L.L., Sun, K.X., et al. (2018) LncRNA PCGEM1 Induces Ovarian Carcinoma Tumorigenesis and Progression through RhoA Pathway. Cellular Physiology and Biochemistry, 47, 1578-1588.
https://doi.org/10.1159/000490931
[41] Li, Q., Shen, F. and Zhao, L. (2018) The Relationship between lncRNA PCGEM1 and STAT3 during the Occurrence and Development of Endometrial Carcinoma. Biomedicine & Pharmacotherapy, 107, 918-928.
https://doi.org/10.1016/j.biopha.2018.08.091
[42] Park, J.Y., Lee, J.E., Park, J.B., et al. (2014) Roles of Long Non-Coding RNAs on Tumorigenesis and Glioma Development. Brain Tumor Research and Treatment, 2, 1-6.
https://doi.org/10.14791/btrt.2014.2.1.1
[43] Meng, S., et al. (2021) Expression of Long Non-Coding RNA LINC01279 in Gastric Adenocarcinoma and Its Clinical Significance. Asian Journal of Surgery.
https://doi.org/10.1016/j.asjsur.2021.08.031
[44] Liu, W., et al. (2020) Circulating Long Non-Coding RNA FEZF1-AS1 and AFAP1-AS1 Serve as Potential Diagnostic Biomarkers for Gastric Cancer. Pathology—Research and Practice, 216, Article ID: 152757.
https://doi.org/10.1016/j.prp.2019.152757
[45] Wu, X., Zhang, P., Zhu, H., et al. (2017) Long Non-Coding RNAFEZF1-AS1 Indicates a Poor Prognosis of Gastric Cancer and Promotes Tumorigenesis via Activation of Wnt Signaling Pathway. Biomedicine & Pharmacotherapy, 96, 1103-1108.
https://doi.org/10.1016/j.biopha.2017.11.113
[46] Guo, J.Q., Li, S.J. and Guo, G.X. (2017) Long Non-Coding RNAAFAP1-AS1 Promotes Cell Proliferation and Apoptosis of Gastric Cancer Cells via PTEN/p-AKT Pathway. Digestive Diseases and Sciences, 62, 2004-2010.
https://doi.org/10.1007/s10620-017-4584-0
[47] Jing, R., et al. (2020) Determination of Serum RP11-731F5.2 as a Noninvasive Biomarker for Gastric Cancer Diagnosis and Prognosis. Pathology—Research and Practice, 216, Article ID: 153261.
https://doi.org/10.1016/j.prp.2020.153261