异常血压节律与糖尿病慢性并发症研究进展
Research Progress of Abnormal Blood Pressure Rhythm and Chronic Complications of Diabetes
DOI: 10.12677/ACM.2022.1281124, PDF, HTML, XML, 下载: 270  浏览: 321 
作者: 王乾力, 苏 立*:重庆医科大学附属第二医院心血管内科,重庆
关键词: 血压节律糖尿病慢性并发症Blood Pressure Rhythm Diabetes Chronic Complications
摘要: 人体受昼夜节律调解,存在血压昼夜变化,夜间血压下降10%~20%称为正常勺型血压,血压节律异常将导致全身多器官功能损害。糖尿病作为常见的慢性代谢性疾病,近年来发病率逐渐升高,糖尿病慢性并发症的诊治被广泛关注。血压节律异常与糖尿病间存在相互作用,相较勺型血压而言,糖尿病在异常血压节律被检者中更常见,而糖尿病患者中也存在更多血压节律异常,这种相互促进的关联可能增加糖尿病患者慢性并发症风险。本文将对异常血压节律对糖尿病慢性并发症的影响进行综述,并对其可能机制及现有治疗方法进行小结。
Abstract: The human body is regulated by the circadian rhythm, and there is a circadian change in blood pressure (BP). A 10%~20% drop in nighttime BP is called a normal dipper BP pattern. Abnor-mal BP rhythm will lead to damage to multiple organ functions in the body. Diabetes is a com-mon chronic metabolic disease, and its incidence has gradually increased in recent years. The diagnosis and treatment of chronic complications of diabetes have received extensive attention. There is an interaction between abnormal BP rhythm and diabetes. Compared with dipper BP rhythm, diabetes is more common in abnormal BP rhythm subjects, and diabetic patients also have more abnormal BP rhythms. This mutually reinforcing association may increase the risk of chronic complications in diabetic people. This article aims to review the effect of abnormal BP rhythms on chronic complications of diabetes and summarize its possible mechanisms and existing treatments.
文章引用:王乾力, 苏立. 异常血压节律与糖尿病慢性并发症研究进展[J]. 临床医学进展, 2022, 12(8): 7802-7807. https://doi.org/10.12677/ACM.2022.1281124

1. 引言

随着人口老龄化日趋严重,近年来,糖尿病患病率逐渐增加,2018年中国糖尿病患病率由2013年的10.9%上升至12.4% [1],而在美国,全国人口的10.5%患有糖尿病。2019年,全球有两百万人死于糖尿病,糖尿病已成为世界公共卫生问题。在糖尿病患者中行动态血压监测已被广泛推荐 [2] [3],动态血压监测通过血压的平均值来评估患者血压情况,避免了诊室血压测定带来的“白大褂高血压”效应,且通过血压连续测定,反映血压在各个时间段的变化情况,提供血压节律信息。正常人体血压存在周期性变化,夜间血压下降10%~20%,称为勺型血压。异常血压节律分为超勺型(夜间血压下降大于20%)、非勺型(夜间血压下降小于10%)、反勺型(夜间血压上升)。现众多研究表明异常血压节律独立于高血压状态,造成全身多器官系统损害 [4]。而在为期21年的前瞻性研究中发现非勺型血压节律与糖尿病发病率相关,在基线与随访终点均为非勺型血压节律的研究者中糖尿病发病率为41%,显著高于基线为勺型血压或随访终点为勺型血压的其他组 [5]。糖尿病患者也易合并血压节律异常,Nandhini研究发现糖尿病与非糖尿病被检者中血压节律分布存在显著差异,糖尿病患者中勺型血压占44%,非勺型占34%,反勺型占22%,而非糖尿病被检者中勺型血压占76%,非勺型占24% [6]。近年来异常血压节律对糖尿病患者慢性并发症的影响被广泛研究,本文现对其进行简要综述,并对其可能机制及现有治疗方案进行总结。

2. 糖尿病慢性并发症

2.1. 心脑血管并发症

心血管及脑血管疾病作为糖尿病重要的大血管并发症被广泛关注,并发心脑血管疾病的糖尿病患者死亡率显著增加。Najafi等人纳入192名糖尿病患者,依据收缩压夜间下降率将血压节律进行分类,将需要收入心内科监护病房治疗及存在心肌梗死、进行冠脉旁路移植和冠脉介入治疗的患者归入存在心血管疾病(CVD)组,发现CVD患者和无CVD患者在血压节律分布上无显著差异,各血压节律中CVD患病率也无显著差异,但进一步分析发现非勺型节律患者患CVD的风险是勺型节律患者的3.53倍,反勺型节律患者患CVD风险是勺型节律患者的5.52倍 [4]。另一项前瞻性研究在3年的随访中发现发生心血管事件(心肌梗死、冠脉血运重建、新发心绞痛、心力衰竭)的糖尿病患者夜间收缩压下降率更低,平均为5.01%,而无心血管事件的糖尿病患者夜间收缩压下降14.7%,二者存在统计学差异 [7]。以上两项研究均强调异常血压节律对心血管系统的危害,同样的结论也被Chang等人支持,该团队2018年在北京朝阳医院进行的一项包含173名糖尿病患者的平均随访45个月的前瞻性研究,发现合并体位性低血压的糖尿病患者血压节律更多为反勺型,这部分患者主要心脑血管不良事件发生率显著高于血压节律多数为非勺型的无体位性低血压的糖尿病患者,且其全因死亡率也更高 [8]。Nikolaidou等人对糖尿病病程较短的患者进行研究,发现确诊时间小于6个月的2型糖尿病患者中正常勺型血压节律的比例较非糖尿病患者少,其10年内发生动脉粥样硬化性心血管病风险评分更高 [9]。对脑血管疾病而言,田俊萍等人发现非勺型血压节律是糖尿病伴有大动脉粥样硬化型缺血性卒中患者不良心脑血管事件的危险因素,非勺型血压节律患者生存率较勺型血压患者显著降低 [10]。

2.2. 糖尿病肾病

糖尿病肾病是糖尿病患者重要的微血管并发症。Najafi等人将过去6个月连续3次测量中至少有2次尿白蛋白排泄率大于30 mg/24小时,或估计肾小球滤过率 <60 mL/min/1.73 m2,作为糖尿病肾病纳入标准,发现有无肾病的糖尿病患者血压节律分布无显著差异,在反勺型、非勺型血压节律患者中肾病患者比例与勺型血压节律患者中肾病患者比例无显著差异,反勺型、非勺型血压节律不增加糖尿病患者患肾病风险 [4]。Gupta等人也发现在糖尿病患者中,肾病患者在各血压节律间的分布无显著差异 [11]。该观点在另一项纳入39名糖尿病患者的研究中也被进一步证实,它发现夜间血压下降小于10%的患者与大于10%的患者间肾病发生率无显著差异 [12]。

但在2型糖尿病伴有肾病的患者中,研究发现肾小管功能受损者夜间血压下降率低 [13],翟晓丽等也提出在这部分患者中,非勺型和反勺型血压节律高血压患者尿素氮及肌酐水平均高于勺型血压节律患者,表明异常血压节律使肾功能损害更为严重 [14]。Kim等人提出与无微血管病变的糖尿病患者相比,存在糖尿病微血管病变的患者夜间收缩压及舒张压下降率均更低,其中非勺型曲线患者的比例更高 [15]。另一项为期21年的纳入349名糖尿病患者的纵向研究中,研究者发现与勺型血压患者相比,非勺型和反勺型患者慢性肾脏病患病率逐渐升高 [3]。糖尿病肾病患者中,黑人人种较白人人种而言更可能存在反勺型血压节律 [16],血压节律的人种差异可能与体重指数、睡眠质量、睡眠期间交感神经活性等均相关 [17]。

2.3. 糖尿病眼病

Kimura等人的研究纳入39名糖尿病患者,发现夜间血压下降率小于10%的患者与大于10%的患者间糖尿病视网膜病变无显著差异 [12]。Gupta等人也发现糖尿病眼病在各血压节律间的分布无显著差异 [11]。但一项在伊朗进行的横断面研究通过专科医生对糖尿病患者行眼底检查以确定其是否并发糖尿病眼病,发现糖尿病眼病患者血压非勺型比例较无眼病患者血压非勺型比例高,非勺型血压糖尿病患者出现眼病的风险是勺型血压患者的3.27倍,62.5%非勺型及54.6%反勺型糖尿病患者并发糖尿病眼病,均高于勺型患者中的眼病发生率 [4]。Nolde等人进一步在糖尿病合并高血压的患者中行光学相干断层扫描血管造影,发现视网膜中央凹区域血管密度与夜间收缩压及舒张压下降状态相关,但侧凹和全图像血管密度与其没有显著相关性 [18]。

2.4. 糖尿病神经病变

Kimura等人在研究中以心电图上R-R间期变异性评估糖尿病患者自主神经功能,发现夜间血压下降小于10%的糖尿病患者与大于10%的患者之间自主神经病变无显著差异 [12]。Kim等人通过测量有无呼吸性窦性心律不齐反映迷走神经功能,通过立卧位血压及做Valsava动作后血压的变化情况反映交感神经功能,发现虽然糖尿病被检者中非勺型血压比例高于无糖尿病被检者,但有无糖尿病被检者心脏自主神经功能均正常 [15]。

Najafi等人的研究由专科医生对糖尿病患者进行评估。依据糖尿病神经病变症状评分系统(DNS),若存在:行走不稳,脚或腿的疼痛、烧灼感、酸痛,脚或腿的刺痛感,脚或腿的麻木症状各计1分,总分0~4分,DNS评分 ≥ 1的患者再次进行糖尿病神经病变评分(DNE),其中包括8个项目(2项肌肉力量测试、1项腱反射测试、5项感觉测试),每项异常各计1分,DNE评分 > 3分认定为存在糖尿病神经病变 [19]。Najafi等人发现并发神经病变的糖尿病患者较普通糖尿病患者而言更少拥有正常勺型血压,非勺型血压糖尿病患者并发糖尿病神经病的风险是勺型血压患者的2.77倍,非勺型和反勺型并发神经病变的糖尿病患者比例均显著高于勺型血压并发神经病变的糖尿病患者比例 [4]。Chiriacò也认为血压节律异常与糖尿病患者自主神经病变相关,其研究发现与勺型血压节律相比,非勺型和反勺型血压节律的糖尿病患者心脏自主神经病变患病率增加 [3]。

2.5. 糖尿病足

Delsart在对无外周动脉疾病的糖尿病患者进行9.4年的随访中发现反勺型血压节律患者行下肢血运重建或截肢的风险是勺型血压节律患者的3.61倍 [20]。

3. 可能机制

现有研究发现血管平滑肌的收缩受时钟基因调节,从而出现血压节律。在db/db基因型的糖尿病小鼠模型中研究发现,其血管收缩功能在去甲肾上腺素、血管紧张素II影响下随时间变化这一规律消失,考虑与其时钟基因表达水平改变相关 [21]。易吉秀发现非勺型血压节律的糖尿病患者有高同型半胱氨酸水平 [22],高同型半胱氨酸已被广泛证实与心脑肾等器官损害相关 [23] [24]。在糖尿病前期的患者中,C反应蛋白及糖化血红蛋白水平和夜间收缩压下降率相关 [25]。而C反映蛋白作为常见的炎症因子,其对冠心病的危害作用已被广泛验证 [26] [27]。

4. 现有改善方法

研究表明睡眠障碍患者夜间收缩压及舒张压下降率减少,改善睡眠状态有利于恢复正常血压节律 [28]。对高血压患者,睡前摄入降压药将降低夜间血压,改善血压节律,起到心脑血管保护作用 [29]。在糖尿病小鼠中发现限时喂养可保护血压节律,使之维持正常勺型状态,故在糖尿病患者中限时进食值得推荐 [30]。降糖药物如钠–葡萄糖协同转运蛋白2抑制剂(SGLT2i)有降压作用且对24小时血压曲线有有益影响 [31],另一方面,降糖药从二肽基肽酶4抑制剂(DDP4i)改为SGLT2i可改善血压节律异常,降低非勺型和反勺型血压比例 [32]。有个案报道发现达格列净使糖尿病患者非勺型血压曲线变为勺型 [33],也有研究发现卡格列净可降低夜间血压 [34]。中医药方面,石秀杰的研究发现通络地龟汤有效逆转糖尿病肾病患者的非勺型血压状态,使之恢复正常勺型血压 [35]。

5. 小结与展望

糖尿病患者中易出现血压节律异常,现有研究多支持异常血压节律在糖尿病患者大血管并发症中的危害作用,且增加糖尿病患者死亡率,但其在糖尿病肾病、糖尿病眼病及糖尿病神经病变中的危害存在争议,考虑与样本量较小、各个研究纳入评估的参数不同等相关。改善生活方式如改善睡眠状态、合理进食等可改善血压节律,且降糖药物SGLT2i及部分中药对异常血压节律有逆转作用,SGLT2i是否通过改善异常血压节律以降低心血管疾病发生率值得进一步探究。

NOTES

*通讯作者。

参考文献

[1] Wang, L., Peng, W., Zhao, Z., et al. (2021) Prevalence and Treatment of Diabetes in China, 2013-2018. JAMA, 326, 2498-2506.
https://doi.org/10.1001/jama.2021.22208
[2] Arora, V. (2022) Blood Pressure Monitoring in Normotensive Type-2 Diabetics Using 24 hr Blood Pressure Monitoring Device and its Relationship with Anthro-pometric Measurements: A One Year Hospital Based Cross Sectional Study. International Journal of Scientific Research, 11, 8-10.
https://doi.org/10.36106/ijsr/8206464
[3] Chiriacò, M., Sacchetta, L., Forotti, G., et al. (2022) Prognostic Value of 24-Hour Ambulatory Blood Pressure Patterns in Diabetes: A 21-Year Longitudinal Study. Diabetes, Obesity & Metabolism (In Press).
https://doi.org/10.1111/dom.14798
[4] Najafi, M.T., Khaloo, P., Alemi, H., et al. (2018) Ambulatory Blood Pressure Monitoring and Diabetes Complications: Targeting Morning Blood Pressure Surge and Nocturnal Dipping. Medicine, 97, Article ID: e12185.
https://doi.org/10.1097/MD.0000000000012185
[5] Lempiäinen, P.A., Vasunta, R., Bloigu, R., et al. (2019) Non-Dipping Blood Pressure Pattern and New-Onset Diabetes in a 21-Year Follow-Up. Blood Pressure, 28, 300-308.
https://doi.org/10.1080/08037051.2019.1615369
[6] Nandhini, H. (2022) Abnormal Dipping Pattern of Blood Pressure in Diabetics—A Study. The Journal of the Association of Physicians of India, 70, 11-12.
[7] Stevanovic, A. and Dekleva, M. (2018) The Importance of Subclinical Left Ventricular Dysfunction and Blood Pressure Pattern in Asymptomatic Type-2 Diabetic Patients: The Diagnostic and Prognostic Significance of Tissue Doppler Parameters, Left Ventricular Global Longitudinal Strain, and Nighttime Blood Pressure during Sleep. Journal of Diabetes and Its Complications, 32, 41-47.
https://doi.org/10.1016/j.jdiacomp.2017.07.022
[8] Chang, J., Hou, Y., Wu, J., et al. (2018) Blood Pressure Circadian Rhythms and Adverse Outcomes in Type 2 Diabetes Patients Diagnosed with Orthostatic Hypotension. Journal of Diabetes Investigation, 9, 383-388.
https://doi.org/10.1111/jdi.12691
[9] Nikolaidou, B., Anyfanti, P., Gavriilaki, E., et al. (2021) Non-Dipping Pattern in Early-Stage Diabetes: Association with Glycemic Profile and Hemodynamic Parameters. Journal of Human Hypertension, Epub Ahead of Print.
https://doi.org/10.1038/s41371-021-00587-4
[10] 田俊萍, 王鸿, 王红霞, 赵性泉, 陈步星. 糖尿病和非糖尿病的缺血性卒中患者血压昼夜节律与预后的关系[J]. 首都医科大学学报, 2016, 37(1): 62-69.
[11] Gupta, H., Vidhale, T., Pustake, M., et al. (2022) Utility of Ambulatory Blood Pressure Monitoring in Detection of Masked Hypertension and Risk of Hypertension Mediated Organ Damage in Normotensive Patients with Type 2 Diabetes Mellitus. Blood Pressure, 31, 50-57.
https://doi.org/10.1080/08037051.2022.2061415
[12] Kimura, M., Toyoda, M., Ono, M., et al. (2018) Detection of Autonomic Nervous System Abnormalities in Diabetic Patients by 24-Hour Ambulatory Blood Pressure Monitoring. The Tokai Journal of Experimental and Clinical Medicine, 43, 97-102.
[13] 郭小平, 程邵洪. 血压昼夜节律与糖尿病肾病肾小管功能受损的关系[J]. 检验医学与临床, 2018, 15(6): 878-880.
[14] 翟晓丽, 李桂霞, 谢华, 程保智, 黄磊, 戴泽亮, 等. 昼夜血压节律改变对糖尿病肾病伴高血压患者HbA1c及血管内皮功能变化的影响[J]. 中国处方药, 2021, 19(10): 162-164.
[15] Kim, Y., Davis S C A T, Stok, W.J., et al. (2019) Impaired Nocturnal Blood Pressure Dipping in Patients with Type 2 Diabetes Mellitus. Hypertension Research, 42, 59-66.
https://doi.org/10.1038/s41440-018-0130-5
[16] Zullig, L.L., Diamantidis, C.J., Bosworth, H.B., et al. (2017) Racial Differences in Nocturnal Dipping Status in Diabetic Kidney Disease: Results from the STOP-DKD (Simultaneous Risk Factor Control Using Telehealth to Slow Progression of Diabetic Kidney Disease) Study. Journal of Clinical Hypertension, 19, 1327-1335.
https://doi.org/10.1111/jch.13088
[17] Sherwood, A., Routledge, F.S., Wohlgemuth, W.K., et al. (2011) Blood Pressure Dipping: Ethnicity, Sleep Quality, and Sympathetic Nervous System Activity. American Journal of Hypertension, 24, 982-988.
https://doi.org/10.1038/ajh.2011.87
[18] Nolde, J.M., Frost, S., Kannenkeril, D., et al. (2021) Capillary Vascular Density in the Retina of Hypertensive Patients Is Associated with a Non-Dipping Pattern Independent of Mean Ambulatory Blood Pressure. Journal of Hypertension, 39, 1826-1834.
https://doi.org/10.1097/HJH.0000000000002863
[19] Mythili, A., Kumar, K.D., Subrahmanyam, K.A.V., et al. (2010) A Comparative Study of Examination Scores and Quantitative Sensory Testing in Diagnosis of Diabetic Polyneuropathy. International Journal of Diabetes in Developing Countries, 30, 43-48.
[20] Delsart, P., Lemaitre, M., Vambergue, A., et al. (2022) Prognostic Significance of Reverse Dipping Status on Lower limb Event in Type 2 Diabetic Patients without Peripheral Arterial Disease. Acta Diabetologica, 59, 843-850.
https://doi.org/10.1007/s00592-022-01879-y
[21] Hou, T., Guo, Z. and Gong, M.C. (2021) Circadian Varia-tions of Vasoconstriction and Blood Pressure in Physiology and Diabetes. Current Opinion in Pharmacology, 57, 125-131.
https://doi.org/10.1016/j.coph.2021.02.001
[22] 易吉秀, 张艳芳, 凌冰. 2型糖尿病同型半胱氨酸水平与血压昼夜节律的相关性研究[J]. 重庆医学, 2018, 47(4): 526-528.
[23] Li, S., Sun, L., Qi, L., et al. (2020) Effect of High Homocysteine Level on the Severity of Coronary Heart Disease and Prognosis after Stent Implan-tation. Journal of Cardiovascular Pharmacology, 76, 101-105.
https://doi.org/10.1097/FJC.0000000000000829
[24] Spence, J.D. and Hankey, G.J. (2022) Problem in the Recent American Heart Association Guideline on Secondary Stroke Prevention: B Vitamins to Lower Homocysteine Do Prevent Stroke. Stroke, 53, 2702-2708.
https://doi.org/10.1161/STROKEAHA.122.038640
[25] Lane-Cordova, A.D., Kalil, G.Z., Wagner, C.J., et al. (2018) Hemoglobin A1c and C-Reactive Protein Are Independently Associated with Blunted Nocturnal Blood Pressure Dipping in Obesity-Related Prediabetes. Hypertension Research, 41, 33-38.
https://doi.org/10.1038/hr.2017.82
[26] Han, K., Lu, Q., Zhu, W., et al. (2019) Correlations of Degree of Coronary Artery Stenosis with Blood Lipid, CRP, HCY, GGT, SCD36 and Fibrinogen Levels in Elderly Patients with Coronary Heart Disease. European Review for Medical and Pharmacological Sciences, 23, 9582-9589.
[27] Wang, Z., Zhao, H. and Zhou, Q. (2022) Analysis of Risk Factors of Coronary Heart Disease and Its Correlation with In-flammatory Factors in Patients with Type 2 Diabetes Mellitus. BioMed Research International, 2022, Article ID: 6818888.
https://doi.org/10.1155/2022/6818888
[28] 陈镇永, 刘权贤, 李琼, 黄波. 老年2型糖尿病患者睡眠障碍与动态血压节律和心率变异性的关系[J]. 中国老年学杂志, 2019, 39(20): 4914-4916.
[29] Hermida, R.C., Hermida-Ayala, R.G. and Smolensky, M. (2020) Chronotherapy for Reduction of Cardiovascular Risk. Me-dicina Clínica (English Edition), 154, 505-511.
https://doi.org/10.1016/j.medcle.2020.02.003
[30] Hou, T., Su, W., Duncan, M.J., et al. (2021) Time-Restricted Feeding Protects the Blood Pressure Circadian Rhythm in Diabetic Mice. Proceedings of the National Academy of Sciences of the United States of America, 118, Article ID: e2015873118.
https://doi.org/10.1073/pnas.2015873118
[31] Kario, K., Ferdinand, K.C. and O’Keefe, J.H. (2020) Control of 24-Hour Blood Pressure with SGLT2 Inhibitors to Prevent Cardiovascular Disease. Progress in Cardiovascular Diseases, 63, 249-262.
https://doi.org/10.1016/j.pcad.2020.04.003
[32] Hashimoto-Kameda, R., Cho, K.Y., Nomoto, H., et al. (2021) Lowering of Blood Pressure and Pulse Rate by Switching from DPP-4 Inhibitor to Luseogliflozin in Patients with Type 2 Diabetes Complicated with Hypertension: A Multicenter, Prospective, Randomized, Open-Label, Paral-lel-Group Comparison Trial (LUNA Study). Diabetes Research and Clinical Practice, 180, Article ID: 109069.
https://doi.org/10.1016/j.diabres.2021.109069
[33] Mori, H., Okada, Y., Kawaguchi, M., et al. (2016) A Case of Type 2 Diabetes with a Change from a Non-Dipper to a Dipper Blood Pressure Pattern by Dapagliflozin. Journal of UOEH, 38, 149-153.
https://doi.org/10.7888/juoeh.38.149
[34] Kario, K., Hoshide, S., Okawara, Y., et al. (2018) Effect of Canagliflozin on Nocturnal Home Blood Pressure in Japanese Patients with Type 2 Diabetes Mellitus: The SHIFT-J Study. The Journal of Clinical Hypertension, 20, 1527-1535.
https://doi.org/10.1111/jch.13367
[35] 石秀杰. 通络地龟汤治疗糖尿病肾脏疾病Ⅳ期患者非杓型血压的临床观察[D]: [硕士学位论文]. 郑州: 河南中医药大学, 2021.