生长因子和细胞因子对DILI的肝再生阶段的作用
Effects of Growth Factors and Cytokines on the Liver Regeneration Phase of DILI
DOI: 10.12677/ACM.2022.1281130, PDF, HTML, XML, 下载: 235  浏览: 312  科研立项经费支持
作者: 魏亚利, 李娟娟, 古巧燕*:延安大学附属医院消化内科,陕西 延安
关键词: 生长因子细胞因子药物性肝损伤肝再生Growth Factors Cytokines Drug-Induced Liver Injury Liver Regeneration
摘要: 药物性肝损伤发病率逐年升高,临床上缺乏标记物监测肝组织损伤后的修复和再生,无法预测急性肝衰竭。本综述总结了生长因子和细胞因子对DILI肝再生阶段的作用并提出展望,以期寻找DILI肝再生生物标记物。
Abstract: The incidence of drug-induced liver injury is increasing year by year. There is a lack of clinical markers to monitor the repair and regeneration of liver tissue after injury, and it is impossible to predict acute liver failure. This review summarizes the effects of growth factors and cytokines on the regeneration stage of DILI liver and proposes an outlook to find biomarkers of liver regenera-tion in DILI.
文章引用:魏亚利, 李娟娟, 古巧燕. 生长因子和细胞因子对DILI的肝再生阶段的作用[J]. 临床医学进展, 2022, 12(8): 7845-7852. https://doi.org/10.12677/ACM.2022.1281130

1. 引言

药物性肝损伤(Drug-induced Liver Injury, DILI)指一种以肝损伤为主的最常见和最严重的药物不良反应之一,临床上以急性药物性肝损伤占大多数,严重者可以发展为急性肝衰竭,甚至危及生命 [1]。随着临床药物种类的增加、不规范用药、中草药以及预防保健药物广泛应用,全球范围内DILI发病率有逐年升高的趋势,中国大陆DILI的发病率已经高于西方国家 [2]。有报道称药物在诱导肝组织损伤的同时也激发了肝组织自身恢复性修复过程,肝细胞增殖,死亡的细胞被新生的细胞取代,导致肝脏再生和恢复 [3]。肝脏中毒的结果在很大程度上取决于肝脏激活修复和再生过程的能力,而在中毒的再生阶段,生长因子和细胞因子被认为是器官有效恢复的关键 [4]。

生长因子是生物体内产生的一种多肽类物质,可调节和控制细胞生长 [5]。细胞因子是细胞分泌的小分子蛋白质,可调节细胞通讯、协调细胞增殖和分化、免疫反应等细胞活动 [6]。本文将总结生长因子和细胞因子对DILI肝再生阶段的作用的现有证据,以期寻找DILI肝再生生物标记物,监测再生,从而避免DILI慢性化病程和急性肝衰竭。

2. 生长因子和细胞因子对DILI的作用

2.1. 转化生长因子

转化生长因子β是一个调节细胞生长和分化的家族 [7],巨噬细胞产生的转化生长因子β1 (transforming growth factor β1, TGF-β1)也来自这个家族。它被公认为导致各种器官的纤维化,抑制肝细胞生长,而肝修复和再生与纤维化反应同时发生,因此很多专家研究TGF-β与肝再生的关系。有研究表明,在APAP过量后的坏死区TGF-β1的表达和转化生长因子-β信号的激活,与肝再生受损和肝细胞衰老有关,抑制TGF-β受体1可提高小鼠服用致死剂量APAP后的存活率 [8]。Xin Jin等人 [9] 在CCl4诱导小鼠模型中也从侧面证明TGF-β1抑制肝再生过程,当N-乙酰半胱氨酸治疗无效时,即使在亚致死剂量的APAP肝损伤后12小时内,延迟使用转化生子因子β受体1 (TGF-βR1)抑制剂也能促进肝再生。Matthew McMillin也发现在APAP给药前预先给予TGF-βR1抑制剂可减少小鼠肝细胞死亡并刺激再生 [10]。综上所述,TGF-β1抑制肝再生,靶向抑制TGF-β1可能是DILI的治疗靶点。或许受损肝脏的有效再生避开肝细胞转化生长因子-β1的生长抑制作用,是一个避免肝纤维化发生且促进肝有效再生的新策略,这或许是一个值得研究的新思路。

2.2. 表皮生长因子

表皮生长因子受体(epidermal growth factor receptor, EGFR)是肝细胞增殖和肝再生的关键调节因子。关于EGFR在肝再生中的作用仍然不明确,多个报道相互矛盾。Lawrence等人 [11] 发现CCl4诱导的小叶中心损伤和再生反应在EGFR基因敲除小鼠和野生型小鼠中是相同的,说明EGFR对于CCl4肝毒性的再生并不是非常重要。然而Bharat Bhushan等人 [12] 发现EGFR在小鼠APAP过量后肝损伤和再生中有双重作用,在APAP肝损伤后1小时,用EGFR抑制剂(EGFRi)治疗小鼠可有效抑制EGFR活化,并显着减少APAP诱导的肝损伤,其机制是EGFRi治疗消除了线粒体EGFR活性,防止了APAP介导的线粒体功能障碍/氧化应激和从线粒体中释放核酸内切酶,这些是导致DNA损伤/坏死的原因。在APAP后12小时用EGFRi延迟治疗不会改变损伤峰值,但会导致肝再生受损,从而导致小鼠APAP过量后的持续损伤和存活率降低,再生障碍是由于cyclinD1诱导和细胞周期停滞的抑制。Rizvi等人 [13] 则得出明确结论,EGF可促进DILI后肝再生,他们发现给小鼠注射肝细胞生长因子(HGF)和表皮生长因子(EGF)脂质纳米颗粒包裹的mRNA在APAP诱导的急性肝损伤后加速肝再生,并且肝功迅速恢复,肝酶快速降到基线水平。有报道称小鼠和原代培养的人肝细胞在APAP中毒后,EGFR在15分钟内被显著激活,这种激活呈剂量依赖性,然而在严重的APAP诱导的肝损伤后,仅激活EGFR可能不足以启动强劲的肝再生 [12] [14]。或许这就是EGFR在肝再生中作用相互矛盾的原因。从现有证据来看,EGFR在DILI后肝再生中发挥一定作用,而且这种促进再生的作用似乎与药物剂量和中毒时间存在某种关系,还需要更多的研究验证。

2.3. 肝细胞生长因子

肝细胞生长因子(hepatocyte growth factor, HGF)是一种内源性诱导的生物活性分子,具有很强的抗凋亡和组织修复活性,它维持肝细胞的功能,并在肝损伤后诱导其增殖,以促进组织修复 [15]。HGF最早发现于1984年,它与实质和非实质肝细胞表达的HGFR/c-met结合 [16]。有报道称HGF/c-met信号通路是肝脏再生和修复所必需的 [17],他们发现单次致死剂量的CCl4诱导小鼠模型条件性敲除c-met肝小叶中心损伤恢复受损,而肝细胞再生未受抑制,但恢复过程中坏死区的减少确实延迟了。用抗HGF单克隆抗体显著抑制急性CCl4诱导的肝损伤后大鼠血清中的HGF水平,与对照组相比肝细胞增值受到显著抑制,表明这种生长因子在坏死后的肝再生中起重要作用 [18]。Shanmukhappa K等人的报道 [19],也间接说明HGF在CCl4肝毒性中促进再生的作用。然而有研究报道APAP诱导后的多个时间点,从细胞外基质中释放出来的HGF意外地增加了损伤并减少了肝再生 [20] [21]。综上所述,HGF对DILI后的肝再生很重要,只是目前证据少,还需要进一步的研究验证。

2.4. 血管内皮生长因子

血管内皮生长因子(vascular endothelial growth factor, VEGF),启动血管生成、促进血管内皮细胞的增殖和迁移,从而促进肝再生 [22]。内皮细胞的血管生成和微血管的修复也是肝损伤后组织修复的一个重要方面,VEGF是血管内皮细胞的有丝分裂原,在肝再生过程中发挥巨大作用 [23],即使在APAP毒性晚期,VEGF 的上调对小鼠肝细胞再生也很重要 [24]。多篇报道表明VEGF及其受体VEGFR在APAP诱导的肝损伤后肝再生和肝细胞增殖中发挥重要作用,在APAP过量给药后,小鼠和大鼠的肝脏VEGF水平及其受体VEGFR1、VEGFR2和VEGFR3的表达都增加 [25]。APAP中毒小鼠应用VEGFR抑制剂后,肝细胞增殖受到损害,应用人重组VEGF后促进肝细胞再生,只是不改变最初的肝毒性 [26]。VEGFR1敲除小鼠微血管重建受损,肝细胞增殖减少,肝细胞生长因子和成纤维细胞生长因子等表达减少,使得APAP中毒小鼠的存活时间下降 [24]。Brian C Donahower等人在2006年 [27] 报道APAP诱导的小鼠肝毒性模型中,抑制内源性VEGF会钝化再生,在2010年 [26] 报道人重组血管内皮生长因子在APAP毒性小鼠模型中减少坏死并增强肝细胞再生,这与Vasilios等人的研究报道一致 [25]。多方面证实了VEGF及其受体促进DILI肝再生过程。VEGF上调血窦内皮细胞的孔隙率,由于融合坏死的发展,血管内皮生长因子免疫组织化学表达在24小时时在门静脉周围和中枢周围增加,此后减少。VEGF酪氨酸激酶受体VEGFR-1和VEGFR-2具有不同的作用。VEGFR-2已被表征为关键的信号受体,而VEGFR-1被表征为以负向方式调节VEGF活性的诱饵受体,从而使该配体对VEGFR-2的可用性降低。VEGF与VEGFR-1的结合确实对血窦内皮细胞增殖有负面影响,但会调节血窦内皮细胞的通透性。除此之外,VEGFR-1激活与VEGF结合后HGF和其他有丝分裂/存活因子的诱导有关。VEGFR-2已被证明在再生过程中偏爱大血管内皮细胞和靠近大血管的窦状内皮细胞部分。在APAP给药后72~96小时,坏死区域的范围显着消退,有丝分裂核出现在中央静脉周围,且VEGF亚型m-RNA表达达到峰值,VEGF及其受体在中央静脉和门静脉三联体周围高度表达,通过有丝分裂促进肝再生 [25]。综上所述,VEGF在APAP诱导的肝损伤后被证明是至关重要的。

2.5. 成纤维细胞生长因子

成纤维细胞生长因子(fibroblast growth factor, FGF)由哺乳动物中的22种蛋白组成,其中大多数通过激活四种跨膜酪氨酸激酶受体传递信号,在肝再生过程中有重要作用 [28],发现肝细胞中成纤维细胞生长因子受体3的缺失加重了APAP诱导的小鼠肝损伤。

有报道在CCL4诱导的小鼠损伤模型中证实了重组FGF19对DILI的保护作用 [29]。FGF19在肝细胞中有很强的促有丝分裂作用 [30],服用FGF19与载脂蛋白A-I融合的嵌合分子可以保护小鼠免受APAP诱导的肝损伤,即使服用致死剂量药物也能提高小鼠的存活率 [31],而且在酒精性和非酒精性脂肪性肝炎和胆汁淤积所致的慢性肝损伤中也有保护作用 [32]。鉴于这些发现,研究FGF19或相关分子对其他肝损伤模型的保护作用可能也有益。

FGF21基因缺失的小鼠在APAP中毒时表现出显著的肝脏氧化应激,重组FGF21治疗恢复了肝脏抗氧化活性 [33]。没有FGF21表达的小鼠,APAP诱导的肝毒性和死亡率加剧,重组FGF21给药有明显的保护作用 [33]。此外,FGF21缺失的小鼠在喂食添加乙醇的饮食后,表现出比野生型小鼠更高的死亡率 [34],也间接说明FGF21还可以改善慢性饮酒所致的肝损伤。未来在各种肝损伤的实验模型中研究FGF21的作用也将大有助益。目前这些证据表明FGF19和FGF21在DILI等原因导致的急性肝损伤中有潜在保护作用,但在DILI的肝再生过程中的作用尚不清楚。

2.6. 白细胞介素

白细胞介素(Interleukins, IL)是由多种细胞产生并作用于多种细胞的一大类细胞因子 [35],参与多种生理及病理反应,目前共发现38个白细胞介素,根据发现的时间分别命名为IL1-IL38。目前证据显示DILI的肝再生方面的研究集中在IL-6、IL-22、IL-18。

IL-6被认为是肝再生诱导和肝脏急性期蛋白产生的敏感标记物 [36]。小鼠肝脏和血清中IL-6水平在APAP过量给药后升高 [37] [38],从而促进再生。在慢性CCl4小鼠中毒模型中,IL-6缺乏延迟了肝脏再生 [39],也有研究显示IL-6基因敲除小鼠在APAP过量后的早期时间点与野生型小鼠有相似的损伤,但后期恢复延迟 [40]。而用外源性IL-6预处理IL-6基因敲除小鼠,在较晚的时间点肝细胞增殖也得到恢复 [41]。以上证据表明IL-6在DILI后有促进肝脏再生的作用,这也得到Cressmann等人的证实 [42]。IL-6敲除小鼠在APAP中毒后表现出肝再生受损,并且这种肝再生受损与AST水平的持续升高有关,IL-6预处理IL-6敲除小鼠肝再生参数则恢复,同时肝酶水平下降,表明IL-6在APAP诱导的肝毒性的肝再生和恢复中发挥作用 [41]。然而Bharat Bhushan等人报道尽管IL-6/STAT-3信号在小鼠服用严重中毒剂量的APAP后高度激活并且持续,但是肝再生却受到损害 [14]。这一发现表明,在严重的APAP诱导的肝损伤后,仅有IL-6信号可能不足以启动强大的肝再生。

IL-22通过保护上皮细胞和肝细胞免受损伤并促进再生 [43]。IL-22的保护作用与减少肿瘤坏死因子-α的形成,增加STAT3的激活有关 [44]。赖荣涛等人发现DILI组与健康对照组相比外周和肝内分泌IL-22的细胞增加并且肝内IL-22水平与肝再生呈正相关 [45]。用重组IL-22治疗APAP中毒小鼠,在中毒24小时后肝损伤减轻,但在6小时后未见减轻 [46]。然而冯德春等人报道给予小鼠单剂IL-22,对于APAP中毒小鼠在6小时和24小时都有效地预防了肝损伤 [44],这与魏晨等人报道一致 [47]。还有研究显示IL-22是一种依赖于环境的双重性质的细胞因子,在组织损伤过程中具有保护和致病特性,IL-22在APAP急性肝损伤时促进肝再生,而IL-22的慢性过度表达在APAP给药后会恶化疾病 [48]。综上所述,IL-22具有促进DILI后肝再生作用。此外,强调需要内源性机制来严格控制IL-22的活性,因为对免疫反应和细胞因子产生的严格调节对于协调肝脏再生和恢复肝功能至关重要,但在慢性肝损伤期间的致病作用机制还需要大量的研究来明确。

IL-18在多种细胞中都有组成性表达,主要来源于巨噬细胞和枯否细胞,因此在健康小鼠肝脏可以检测到IL-18的表达 [49]。由APAP过量引起人类急性肝衰竭的患者血清中也检测到IL-18水平升高 [50]。IL-18最初被命名为干扰素γ诱导因子 [51],对T细胞和自然杀伤细胞起关键作用,还是Fas配体的强诱导剂(FasL) [52]。而干扰素γ和Fas/FasL信号转导 [53] 在APAP诱导的急性肝损伤中起关键作用,因此IL-18的这两个特征对APAP所致的急性肝损伤具有重要意义。Fas配体通常会促进细胞凋亡,从而促进炎症的持续,阻断Fas配体可改善APAP诱导的肝损伤 [54]。IL-18缺陷小鼠对APAP诱导的急性肝损伤有较强的保护作用 [55],将IL-18的拮抗剂应用于野生型小鼠,观察到小鼠肝脏损伤得到改善 [54]。因此,靶向IL-18可能成为那些标准的N-乙酰半胱氨酸治疗不成功的DILI患者的新治疗选择。

2.7. 胰岛素样生长因子

胰岛素样生长因子是一种具有促生长作用的多肽类物质,有胰岛素样生长因子I和II两大家族 [56]。胰岛素样生长因子2 (insulin-like growth factor 2, IGF-2)由肝细胞产生 [57],肝星状细胞释放,与其他生长因子一起负责再生肝脏的血管生成和正弦网络的重建过程。有报道称IGF-2在人类肝脏慢性损伤后的再生中起作用 [58],但在创伤后的急性恢复中没有作用。目前IGF-2在DILI的急性损伤期间的作用证据不足,有待继续研究,但是IGF-2在正常肝脏中的表达水平较低,继续研究IGF-2在不同损伤中的表达水平和作用或许会监测肝组织损伤修复,预测再生。

3. 结论

综上所述,HGF、VEGF、IL-6在DILI中促进肝再生,有成为DILI肝再生生物标记物的潜力,可监测再生,预测急性肝衰竭。FGF19和FGF21对DILI有潜在保护作用,靶向IL-18或许可以治疗DILI患者。

4. 展望

组织损伤修复是一个基本过程,对生存至关重要,可以有序地替换死亡或受损的细胞。HGF、VEGF、IL-6在DILI的肝再生阶段初见潜力,但是用于预测DILI后肝再生仍缺乏实质性证据,为了进一步确认他们的作用,需要进行大规模、多中心的前瞻性临床试验。此外正常肝脏虽然有很强的再生能力,但在严重急性肝损伤的情况下,这种再生能力会变得不堪重负。Bhushan等人 [14] 在APAP小鼠模型中清楚地证明急性肝衰竭中损伤达到阈值后剩余的肝脏就不能充分再生从而导致严重的死亡率 [59]。因此需要标记物监测肝脏损伤修复,监测再生,继续研究促进DILI后肝脏再生的细胞因子和生长因子很有必要,并且尚无药物可用于刺激肝脏再生,也许正是那些促进肝脏再生的细胞因子和生长因子靶点。

基金项目

2020年度陕西省留学人员科技活动择优资助项目(2020014)。

NOTES

*通讯作者。

参考文献

[1] Kumar, N., Surani, S., Udeani, G., et al. (2021) Drug-Induced Liver Injury and Prospect of Cytokine Based Therapy: A Focus on IL-2 Based Therapies. Life Sciences, 278, Article ID: 119544.
https://doi.org/10.1016/j.lfs.2021.119544
[2] Shen, T., Liu, Y., Shang, J., et al. (2019) Incidence and Etiology of Drug-Induced Liver Injury in Mainland China. Gastroenterology, 156, 2230-2241.E11.
https://doi.org/10.1053/j.gastro.2019.02.002
[3] Michalopoulos, G.K. and Bhushan, B. (2021) Liver Regeneration: Biological and Pathological Mechanisms and Implications. Nature Reviews Gastroenterology & Hepatology, 18, 40-55.
https://doi.org/10.1038/s41575-020-0342-4
[4] Mühl, H. (2016) STAT3, A Key Parameter of Cytokine-Driven Tissue Protection during Sterile Inflammation—The Case of Experimental Acetaminophen (Paracetamol)-Induced Liver Damage. Frontiers in Immunology, 7, Article No. 163.
https://doi.org/10.3389/fimmu.2016.00163
[5] 于兴尧. 生长因子在组织工程中的重要作用[J]. 健康之路, 2017, 16(11): 17-18.
[6] Chauhan, P., Nair, A., Patidar, A., et al. (2021) A Primer on Cytokines. Cytokine, 145, Article ID: 155458.
https://doi.org/10.1016/j.cyto.2021.155458
[7] Michalopoulos, G.K. (2017) Hepatostat: Liver Regeneration and Normal Liver Tissue Maintenance. Hepatology, 65, 1384-1392.
https://doi.org/10.1002/hep.28988
[8] Bird, T.G., Müller, M., Boulter, L., et al. (2018) TGFβ Inhibition Restores a Regenerative Response in Acute Liver Injury by Sup-pressing Paracrine Senescence. Science Translational Medicine, 10, eaan1230.
https://doi.org/10.1126/scitranslmed.aan1230
[9] Jin, X., Aimaiti, Y., Chen, Z., Wang, W. and Li, D. (2018) He-patic Stellate Cells Promote Angiogenesis via the TGF-β1-Jagged1/VEGFA Axis. Experimental Cell Research, 373, 34-43.
https://doi.org/10.1016/j.yexcr.2018.07.045
[10] McMillin, M., Grant, S., Frampton, G., et al. (2019) The TGFβ1 Receptor Antagonist GW788388 Reduces JNK Activation and Protects against Acetaminophen Hepatotoxicity in Mice. Toxicological Sciences, 170, 549-561.
https://doi.org/10.1093/toxsci/kfz122
[11] Scheving, L.A., Zhang, X., Stevenson, M.C., et al. (2015) Loss of Hepatocyte EGFR Has No Effect alone but Exacerbates Carbon Tetrachloride-Induced Liver Injury and Impairs Regener-ation in Hepatocyte Met-Deficient Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 308, G364-G377.
https://doi.org/10.1152/ajpgi.00364.2014
[12] Bhushan, B., Chavan, H., Borude, P., et al. (2017) Dual Role of Epidermal Growth Factor Receptor in Liver Injury and Regeneration after Acetaminophen Overdose in Mice. Toxicolog-ical Sciences, 155, 363-378.
https://doi.org/10.1093/toxsci/kfw213
[13] Rizvi, F., Everton, E., Smith, A.R., et al. (2021) Murine Liver Repair via Transient Activation of Regenerative Pathways in Hepatocytes Using Lipid Nanoparticle-Complexed Nucleo-side-Modified mRNA. Nature Communications, 12, Article No. 613.
https://doi.org/10.1038/s41467-021-20903-3
[14] Bhushan, B., Walesky, C., Manley, M., et al. (2014) Pro-Regenerative Signaling after Acetaminophen-Induced Acute Liver Injury in Mice Identified Using a Novel Incre-mental Dose Model. The American Journal of Pathology, 184, 3013-3025.
https://doi.org/10.1016/j.ajpath.2014.07.019
[15] Sumii, T., Nakano, Y., Abe, T., et al. (2016) The Effect of Nitric Oxide on Ammonia Decomposition in Co-Cultures of Hepatocytes and Hepatic Stellate Cells. In Vitro Cellular & Devel-opmental Biology - Animal, 52, 625-631.
https://doi.org/10.1007/s11626-016-9999-y
[16] Nakamura, T. and Mizuno, S. (2010) The Discovery of Hepato-cyte Growth Factor (HGF) and Its Significance for Cell Biology, Life Sciences and Clinical Medicine. Proceedings of the Japan Academy, Series B, 86, 588-610.
https://doi.org/10.2183/pjab.86.588
[17] Huh, C.G., Factor, V.M., Sanchez, A., et al. (2004) Hepatocyte Growth Factor/C-Met Signaling Pathway Is Required for Efficient Liver Regeneration and Repair. Proceedings of the National Academy of Sciences of the United States of America, 101, 4477-4482.
https://doi.org/10.1073/pnas.0306068101
[18] Burr, A.W., Toole, K., Chapman, C., et al. (1998) Anti-Hepatocyte Growth Factor Antibody Inhibits Hepatocyte Proliferation during Liver Regeneration. The Journal of Pathology, 185, 298-302.
https://doi.org/10.1002/(SICI)1096-9896(199807)185:3<298::AID-PATH88>3.0.CO;2-B
[19] Shanmukhappa, K., Matte, U., Degen, J.L., et al. (2009) Plasmin-Mediated Proteolysis Is Required for Hepatocyte Growth Factor Activation during Liver Repair. Journal of Biological Chemistry, 284, 12917-12923.
https://doi.org/10.1074/jbc.M807313200
[20] Bajt, M.L., Yan, H., Farhood, A., et al. (2008) Plasminogen Activa-tor Inhibitor-1 Limits Liver Injury and Facilitates Regeneration after Acetaminophen Overdose. Toxicological Sciences, 104, 419-427.
https://doi.org/10.1093/toxsci/kfn091
[21] Sullivan, B.P., Kassel, K.M., Jone, A., et al. (2012) Fi-brin(ogen)-Independent Role of Plasminogen Activators in Acetaminophen-Induced Liver Injury. The American Journal of Pathology, 180, 2321-2329.
https://doi.org/10.1016/j.ajpath.2012.02.011
[22] Silva, A.C. and Lobo, J. (2020) Cytokines and Growth Factors. In: Silva, A.C., Moreira, J.N., Lobo, J.M.S. and Almeida, H., Eds., Current Applications of Pharmaceutical Biotechnol-ogy, Vol. 171, Springer, Cham, 87-113.
https://doi.org/10.1007/10_2019_105
[23] Mao, S.A., Glorioso, J.M. and Nyberg, S.L. (2014) Liver Regeneration. Translational Research, 163, 352-362.
https://doi.org/10.1016/j.trsl.2014.01.005
[24] Milesi-Hallé, A., McCullough, S., Hinson, J.A., et al. (2012) Echi-nomycin Decreases Induction of Vascular Endothelial Growth Factor and Hepatocyte Regeneration in Acetaminophen Toxicity in Mice. Basic & Clinical Pharmacology & Toxicology, 110, 327-334.
https://doi.org/10.1111/j.1742-7843.2011.00812.x
[25] Papastefanou, V.P., Bozas, E., Mykoniatis, M.G., et al. (2007) VEGF Isoforms and Receptors Expression throughout Acute Acetaminophen-Induced Liver Injury and Regener-ation. Archives of Toxicology, 81, 729-741.
https://doi.org/10.1007/s00204-007-0201-x
[26] Donahower, B.C., McCullough, S.S., Hennings, L., et al. (2010) Human Recombinant Vascular Endothelial Growth Factor Reduces Necrosis and Enhances Hepatocyte Regeneration in a Mouse Model of Acetaminophen Toxicity. Journal of Pharmacology and Experimental Therapeutics, 334, 33-43.
https://doi.org/10.1124/jpet.109.163840
[27] Donahower, B., McCullough, S.S., Kurten, R., et al. (2006) Vascular Endothelial Growth Factor and Hepatocyte Regeneration in Acetaminophen Toxicity. American Journal of Physiolo-gy-Gastrointestinal and Liver Physiology, 291, G102-G109.
https://doi.org/10.1152/ajpgi.00575.2005
[28] Seitz, T. and Hellerbrand, C. (2021) Role of Fibroblast Growth Factor Signalling in Hepatic Fibrosis. Liver International, 41, 1201-1215.
https://doi.org/10.1111/liv.14863
[29] Luo, J., Ko, B., Elliott, M., et al. (2014) A Nontumorigenic Variant of FGF19 Treats Cholestatic Liver Diseases. Science Translational Medicine, 6, 247ra100.
https://doi.org/10.1126/scitranslmed.3009098
[30] Lin, B.C. and Desnoyers, L.R. (2012) FGF19 and Cancer. In: Endocrine FGFs and Klothos, Vol. 728, Springer, New York, 183-194.
https://doi.org/10.1007/978-1-4614-0887-1_12
[31] Alvarez-Sola, G., Uriarte, I., Latasa, M.U., et al. (2017) Engi-neered Fibroblast Growth Factor 19 Protects From Acetaminophen-Induced Liver Injury and Stimulates Aged Liver Re-generation in Mice. Cell Death & Disease, 8, Article No. E3083.
https://doi.org/10.1038/cddis.2017.480
[32] Hartmann, P., Hochrath, K., Horvath, A., et al. (2018) Modulation of the Intestinal Bile Acid/Farnesoid X Receptor/fibroblast Growth Factor 15 Axis Improves Alcoholic Liver Disease in Mice. Hepatology, 67, 2150-2166.
https://doi.org/10.1002/hep.29676
[33] Ye, D., Wang, Y., Li, H., et al. (2014) Fibroblast Growth Factor 21 Pro-tects against Acetaminophen-Induced Hepatotoxicity by Potentiating Peroxisome Proliferator-Activated Receptor Coacti-vator Protein-1α-Mediated Antioxidant Capacity in Mice. Hepatology, 60, 977-989.
https://doi.org/10.1002/hep.27060
[34] Desai, B.N., Singhal, G., Watanabe, M., et al. (2017) Fibroblast Growth Factor 21 (FGF21) Is Robustly Induced by Ethanol and Has a Protective Role in Ethanol Associated Liver Injury. Mo-lecular Metabolism, 6, 1395-1406.
https://doi.org/10.1016/j.molmet.2017.08.004
[35] An, S.Y., Petrescu, A.D. and DeMorrow, S. (2021) Targeting Certain Interleukins as Novel Treatment Options for Liver Fibrosis. Frontiers in Pharmacology, 12, Article ID: 645703.
https://doi.org/10.3389/fphar.2021.645703
[36] Shimada, M., Matsumata, T., Taketomi, A., et al. (1995) The Role of Interleukin-6, Interleukin-16, Tumor Necrosis Factor-Alpha and Endotoxin in Hepatic Resection. Hepatogastroenter-ology, 42, 691-697.
[37] Bajt, M.L., Knight, T.R., Farhood, A., et al. (2003) Scavenging Peroxynitrite with Glutathione Promotes Regeneration and Enhances Survival during Acetaminophen-Induced Liver Injury in Mice. Journal of Phar-macology and Experimental Therapeutics, 307, 67-73.
https://doi.org/10.1124/jpet.103.052506
[38] Masubuchi, Y., Bourdi, M., Reilly, T.P., et al. (2003) Role of Interleukin-6 in Hepatic Heat Shock Protein Expression and Protection against Acetaminophen-Induced Liver Disease. Biochemical and Biophysical Research Communications, 304, 207-212.
https://doi.org/10.1016/S0006-291X(03)00572-2
[39] Río, A., Gassull, M.A., Aldeguer, X., et al. (2008) Reduced Liver Injury in the Interleukin-6 Knockout Mice by Chronic Carbon Tetrachloride Administration. European Journal of Clinical Investigation, 38, 306-316.
https://doi.org/10.1111/j.1365-2362.2008.01939.x
[40] James, L.P., Kurten, R.C., Lamps, L.W., et al. (2005) Tu-mour Necrosis Factor Receptor 1 and Hepatocyte Regeneration in Acetaminophen Toxicity: A Kinetic Study of Prolifer-ating Cell Nuclear Antigen and Cytokine Expression. Basic & Clinical Pharmacology & Toxicology, 97, 8-14.
https://doi.org/10.1111/j.1742-7843.2005.pto_97102.x
[41] James, L.P., Lamps, L.W., McCullough, S., et al. (2003) Interleukin 6 and Hepatocyte Regeneration in Acetaminophen Toxicity in the Mouse. Biochemical and Biophysical Research Communications, 309, 857-863.
https://doi.org/10.1016/j.bbrc.2003.08.085
[42] Gao, B., Wang, H., Lafdil, F., et al. (2012) STAT Proteins—Key Regulators of Anti-Viral Responses, Inflammation, and Tumorigenesis in the Liver. Journal of Hepatology, 57, 430-441.
https://doi.org/10.1016/j.jhep.2012.01.029
[43] Wolk, K., Witte, E., Witte, K., et al. (2010) Biology of Interleu-kin-22. Seminars in Immunopathology, 32, 17-31.
https://doi.org/10.1007/s00281-009-0188-x
[44] Feng, D., Wang, Y., Wang, H., et al. (2014) Acute and Chronic Effects of IL-22 on Acetaminophen-Induced Liver Injury. The Journal of Immunology, 193, 2512-2518.
https://doi.org/10.4049/jimmunol.1400588
[45] Lai, R., Xiang, X., Mo, R., et al. (2015) Protective Effect of Th22 Cells and Intrahepatic IL-22 in Drug Induced Hepatocellular Injury. Journal of Hepatology, 63, 148-155.
https://doi.org/10.1016/j.jhep.2015.02.004
[46] Scheiermann, P., Bachmann, M., Goren, I., et al. (2013) Applica-tion of Interleukin-22 Mediates Protection in Experimental Acetaminophen-Induced Acute Liver Injury. The American Journal of Pathology, 182, 1107-1113.
https://doi.org/10.1016/j.ajpath.2012.12.010
[47] Chen, W., Zhang, X., Fan, J., et al. (2017) Tethering Interleu-kin-22 to Apolipoprotein A-I Ameliorates Mice From Acetaminophen-Induced Liver Injury. Theranostics, 7, 4135-4148.
https://doi.org/10.7150/thno.20955
[48] Kleinschmidt, D., Giannou, A.D., McGee, H.M., et al. (2017) A Protective Function of IL-22BP in Ischemia Reperfusion and Acetaminophen-Induced Liver Injury. The Journal of Immunology, 199, 4078-4090.
https://doi.org/10.4049/jimmunol.1700587
[49] Tsutsui, H., Matsui, K., Kawada, N., et al. (1997) IL-18 Accounts for Both TNF-Alpha- and FAS Ligand-Mediated Hepatotoxic Pathways in Endotoxin-Induced Liver Injury in Mice. The Journal of Immunology, 159, 3961-3971.
[50] Craig, D.G., Lee, P., Pryde, E.A., et al. (2014) Markedly Increased High-Mobility Group Box 1 Protein in a Patient with Small-for-Size Syndrome. Case Reports in Transplantation, 2014, Article ID: 272498.
https://doi.org/10.1155/2014/272498
[51] Okamura, H., Tsutsui, H., Komatsu, T., et al. (1995) Cloning of a New Cytokine That Induces IFN-γ Production by T Cells. Nature, 378, 88-91.
https://doi.org/10.1038/378088a0
[52] Tsutsui, H., Nakanishi, K., Matsui, K., et al. (1996) IFN-Gamma-Inducing Factor Up-Regulates FAS Ligand-Mediated Cytotoxic Activity of Murine Natural Killer Cell Clones. The Journal of Immunology, 157, 3967-3973.
[53] Williams, C.D., McGill, M.R., Farhood, A., et al. (2013) Fas Receptor-Deficient lpr Mice Are Protected against Acetaminophen Hepatotoxicity Due to Higher Glutathione Synthesis and Enhanced Detoxifi-cation of Oxidant Stress. Food and Chemical Toxicology, 58, 228-235.
https://doi.org/10.1016/j.fct.2013.04.031
[54] Bachmann, M., Pfeilschifter, J. and Mühl, H. (2018) A Prominent Role of Interleukin-18 in Acetaminophen-Induced Liver Injury Advocates Its Blockage for Therapy of Hepatic Necroin-flammation. Frontiers in Immunology, 9, Article No. 161.
https://doi.org/10.3389/fimmu.2018.00161
[55] Imaeda, A.B., Watanabe, A., Sohail, M.A., et al. (2009) Acetaminophen-Induced Hepatotoxicity in Mice Is Dependent on Tlr9 and the Nalp3 Inflammasome. Journal of Clinical Investigation, 119, 305-314.
https://doi.org/10.1172/JCI35958
[56] Adamek, A. and Kasprzak, A. (2018) Insulin-Like Growth Factor (IGF) System in Liver Diseases. International Journal of Molecular Sciences, 19, Article No. 1308.
https://doi.org/10.3390/ijms19051308
[57] Böhm, F., Köhler, U.A., Speicher, T., et al. (2010) Regulation of Liver Regeneration by Growth Factors and Cytokines. EMBO Molecular Medicine, 2, 294-305.
https://doi.org/10.1002/emmm.201000085
[58] Liu, J., Hu, X., Chen, J., et al. (2017) Pericentral Hepatocytes Pro-duce Insulin-Like Growth Factor-2 to Promote Liver Regeneration during Selected Injuries in Mice. Hepatology, 66, 2002-2015.
https://doi.org/10.1002/hep.29340
[59] Bernal, W., Lee, W.M., Wendon, J., et al. (2015) Acute Liver Failure: A Curable Disease by 2024? Journal of Hepatology, 62, S112-S120.
https://doi.org/10.1016/j.jhep.2014.12.016