长链非编码RNA调控急性髓系白血病细胞糖代谢的研究进展
Research Progress of Long Non-Coding RNA Regulating Glucose Metabolism in Acute My-eloid Leukemia Cells
DOI: 10.12677/ACM.2022.1281133, PDF, HTML, XML, 下载: 260  浏览: 330 
作者: 王 汉, 葛繁梅*:延安大学附属医院,陕西 延安
关键词: 长链非编码RNA急性髓系白血病糖酵解综述Long Non-Coding RNA Acute Myeloid Leukemia Glycolysis Review
摘要: 急性髓系白血病(AML)是一种髓系造血干/祖细胞的克隆性恶性疾病,具有高度侵袭性和异质性。细胞内能量代谢途径改变是肿瘤的十大特征之一,其中葡萄糖代谢异常最为突出。肿瘤细胞显示出对糖酵解的依赖性增加,以满足他们的能量需求,无论是否有充足的氧气存在。长链非编码RNA (long noncoding RNA, lncRNA)是一类长度超过200 nt且不编码蛋白质的RNA分子,其可以在转录水平、转录后水平和表观遗传学等方面发挥重要的调控作用,影响细胞的增殖、分化、凋亡和耐药等生物学过程。越来越多研究发现,长链非编码RNA (lncRNA)在多种类型肿瘤中通过调节葡萄糖转运蛋白及关键酶表达及活性,或者调节代谢相关信号通路影响葡萄糖代谢。本文对lncRNA调控AML有氧糖酵解的有关机制进行综述,旨在为AML的生物标志及治疗靶点提供潜在依据。
Abstract: Acute myeloid leukemia (AML) is a clonal malignant disease of myeloid stem/progenitor cells, which is highly invasive and heterogeneous. The alteration of intracellular energy metabolism pathway is one of the ten characteristics of tumor, among which the abnormal glucose metabolism is the most prominent. Tumor cells show an increased dependence on glycolysis to meet their en-ergy needs, whether or not adequate oxygen is present. Long noncoding RNA (lncRNA) is a class of RNA molecules that are longer than 200 nt and do not encode proteins. LncRNA can play an im-portant regulatory role in transcriptional level, post-transcriptional level and epigenetics, affecting biological processes such as cell proliferation, differentiation, apoptosis and drug resistance. More and more studies have found that long non-coding RNA (lncRNA) affects glucose metabolism in var-ious types of tumors by regulating the expression and activity of glucose transporters and key en-zymes, or regulating signaling pathways related to metabolism. This article reviews the relevant mechanisms of lncRNA regulation of aerobic glycolysis in AML, aiming to provide potential basis for biomarkers and therapeutic targets of AML.
文章引用:王汉, 葛繁梅. 长链非编码RNA调控急性髓系白血病细胞糖代谢的研究进展[J]. 临床医学进展, 2022, 12(8): 7865-7870. https://doi.org/10.12677/ACM.2022.1281133

1. 引言

急性髓系白血病(acute myeloid leukemia, AML)是最常见的白血病类型,约占急性白血病病例的70%。AML发病机制复杂,主要的特征是骨髓中白血病细胞不受控制的增殖和成熟障碍,从而影响了骨髓的正常造血功能。在如今的临床治疗方案中,采取常规化疗和同种异体干细胞移植后靶向治疗仍是治疗AML的有效途径 [1] [2]。但AML的临床结局仍不尽人意,长期生存率仍较差;只有不到40%的AML患者获得长期生存 [3]。因此,仍需进一步阐明AML分子调控机制,寻找新的有效治疗靶点。

2. 肿瘤细胞葡萄糖代谢途径

肿瘤细胞通过改变能量代谢途径促进细胞快速生长和增殖,被认为是肿瘤细胞的独特标志。20世纪20年代,Warburg发现肿瘤细胞更倾向于通过糖酵解途径来获得所需能量,即使在氧气存在的情况下也是如此,因此称为有氧糖酵解(Warburg效应) [4] [5]。虽然葡萄糖在糖酵解过程中产生ATP的效率较低,但其产生速度比氧化磷酸化快得多,ATP的快速生产以支持肿瘤细胞生长和增殖 。此外,细胞增殖需要增加营养物质的摄取(如葡萄糖和谷氨酰胺),增加生物合成途径(如核苷酸、脂质和蛋白质生物合成)所需的中间产物,有氧糖酵解能够使细胞满足增殖的这些要求,这可能就是为什么整个自然界的增殖细胞选择糖酵解提供能量,包括癌细胞 [6]。糖酵解代谢物乳酸在细胞外积累导致肿瘤细胞外基质pH值降低,酸性微环境促进了肿瘤的侵袭和转移 [7]。改变葡萄糖代谢的最直接方式是调控影响代谢的酶表达及活性 [8],例如:己糖激酶2 (hexokinase 2, HK2)、磷酸果糖激酶(phosphofructokinase, PFK)、丙酮酸激酶(pyruvate kinase, PK)、乳酸脱氢酶(lactate dehydrogenase, LDHs)、葡萄糖转运体(glucose transporters, GLUT)等多种酶;而且一些信号转导途径(PI3K/Akt/mTOR、Wnt/Snail、AMPK/SIRT1等)也在葡萄糖代谢中发挥重要作用 [9]。

3. AML中葡萄糖代谢调控作用机制

3.1. 己糖激酶2 (HK2)

HK2是糖酵解过程中产生的第一个酶,也是糖酵解途径中的关键限速酶,催化葡萄糖磷酸化。在哺乳动物细胞中,HK家族有4种亚型,分别为HK1、HK2、HK3和HK4。HK-I主要分布于大脑,HK-II主要分布于胰岛素敏感组织如脂肪、骨骼和心肌,HK-III广泛分布,但在各个组织中表达均低下,而HK-IV (葡萄糖激酶)几乎只在肝脏组织表达。既往研究表明HK2与线粒体外膜表面的电压依赖性阴离子通道(voltage-dependent anion channel, VDAC)蛋白结合形成HK2-VDAC复合体,从而促进糖酵解快速进行,同时HKII特殊线粒体位置也抑制了癌细胞的死亡 [9]。Ju HQ等 [10] 研究证实,过表达FLT3/ITD的小鼠造血BaF3/ITDBaF3/ITD细胞线粒体呼吸明显降低,糖酵解活性明显增强,线粒体己糖激酶2 (HK2)磷酸化形式明显增强,HK2与VDAC结合增加,同时抗凋亡蛋白Bcl-XL增加,促凋亡蛋白Bax减少,抑制线粒体HK2的磷酸化,导致Bcl-2家族蛋白的动员和BaF3/ITD细胞的选择性死亡。Ma Ping等 [11] 研究表明高表达LDHA和HK急性髓系白血病细胞株通过增强糖酵解促进AML细胞增殖。

3.2. 磷酸果糖激酶(PFK)

PFK是糖酵解过程中第二个限速酶,有PFK1和PFK2两个亚型。PFK1能够催化6-磷酸果糖转化为果糖-1,6-二磷酸(fructose1, 6-diphosphate, F-1, 6-BP)。人体内存在三种PFK-1亚型:肝型PFK、肌肉型PFK、血小板型PFK (platelet isoform of PFK, PFKP)。PFKP是其主要活性亚型,介导糖酵解途径的催化反应,在细胞能量代谢中发挥重要作用,PFKP表达升高是恶性组织的一个特征 [12]。最近一项关于AML患者PFKP的研究表明,与健康对照组相比,AML患者的PFKP表达增加,特别是在细胞遗传风险较低的患者中,表明PFKP可能是AML临床预后不良的一个指标 [13]。Qing Ying等 [14] 人研究表明PFKP促进糖酵解并在白血病中发挥致癌作用。

3.3. 丙酮酸激酶(PK)

PK是糖酵解通路中另一个限速酶,能够催化磷酸烯醇式丙酮酸(PEP)去磷酸化为丙酮酸并产生ATP。PKs包括4种同工酶:PKL型(肝脏型)、PKR型(红细胞型)、PKM型(肌肉型),M型又分为M1型(PKM1)和M2型(PKM2)。PKM1和PKM2由相同的PKM基因编码,通过选择性剪接产生。其中PKM2与肿瘤发生发展的多个方面有关,包括肿瘤细胞增殖、分化、抗肿瘤药物耐药性等 [15]。Huang Yunxiu等 [16] 发现,高水平的PKM2与急性白血病的预后呈负相关,表明PKM2可作为评估急性白血病发生率和预后的潜在指标。Wu Huijuan等 [17] 研究表明,用去氧紫草素抑制AML细胞株(THP-1和HL60)中PKM2的表达,可以抑制AML细胞活力,增加细胞凋亡率。

3.4. 乳酸脱氢酶(LDHs) LDHs

是乳酸生成的关键酶也是细胞有氧糖酵解的关键限速酶之一。哺乳动物有5种活性的LDH同工酶,每一种都是由A、B两种亚基组成的四聚体代谢酶。A亚基在骨骼肌中占优势;而B亚基主要存在于心肌中。免疫组化(IHC)研究显示,正常组织和癌组织中LDHB水平相似;而LDHA主要在癌细胞中表达,并与肿瘤的生长、维持和侵袭有关 [18] [19] [20]。Porporato等 [21] 研究表明,过表达LDHA可以抑制儿童白血病细胞凋亡并加速其增殖。

3.5. 葡萄糖转运体(GLUT)

GLUT与葡萄糖具有高度的亲和性可以促进葡萄糖的转运,是机体内糖代谢的限速步骤。GLUT家族有14个成员,其中GLUT1存在于身体的所有组织中并帮助葡萄糖的基础摄取,是该家族中研究最深入的,在缺氧条件下呈现明显的上调趋势,促进了癌细胞的糖酵解能力 [21]。在多种恶性肿瘤组织中GLUT1异常高表达,这表明其在肿瘤的发生及发展中具有潜在的作用 [22]。Pragallapati等 [23] 研究发现,抑制Glut1的表达会显著延缓白血病的发生,GLUT1缺失的小鼠AML细胞移植可减弱小鼠AML的发展,提示GLUT1在AML中发挥重要作用。

4. 长链非编码RNA (lncRNA)及其对AML糖代谢的影响

长链非编码(long non-coding RNA, lncRNA)是一类长度超过200 nt且不编码蛋白质的RNA分子。近年来大量研究表明,lncRNA在调节生物学功能和作为生物标志物在癌症的诊断、患者预后评估、用作靶向治疗等方面具有重要意义 [24]。lncRNA SBF2-AS1在肺癌、急性髓系白血病、食管鳞状细胞癌等多种肿瘤中被发现表达上调,并且与患者的总生存率较低有关,可作为一种极好的预后生物标志物 [25] [26] [27]。lncRNA HOXB-AS3‎‎的高表达是新发AML和原发性MDS患者的不良预后标志物,可作为AML和原发性MDS患者新疗法的潜在靶点 [28]。

目前,越来越多证据表明lncRNA不仅可以调节癌细胞的增殖、分化、侵袭和转移,还可以通过不同的方式调节癌细胞中的葡萄糖代谢,如直接调节糖酵解酶和葡萄糖转运蛋白(GLUTs),或间接调节信号通路 [29]。Chen Li等 [30] 研究发现,敲低HOX转录反义基因间RNA髓系1 (HOTAIRM1)可抑制白血病细胞株(HL60和THP-1)的葡萄糖消耗和乳酸生成,同时阿糖胞苷(Ara-C)诱导的细胞凋亡被加强。进一步研究发现,敲低HOTAIRM1使Wnt/β-catenin通路失活,AML细胞中PFKP的表达下降,β-catenin过表达可以抵消HOTAIRM1基因下调对PFKP表达的影响,并且减弱Ara-C诱导的细胞凋亡,表明HOTAIRM1可通过调控Wnt/β-catenin/PFKP信号通路改变AML细胞葡萄糖代谢,增强Ara-C的细胞毒性。这些发现提示HOTAIRM1可能是AML中克服Ara-C耐药的治疗靶点。Zhang Yuan等 [31] 发现了lncRNA-UCA1-miR-125a-HK2轴可调控糖酵解,进而抑制儿童AML的化疗耐药,其机制是miR-125a抑制HL60和HL60/ADR细胞中HK2表达,而UCA1作为miR-125a的海绵调控miR-125a靶标的降解,促进HK2表达,改变葡萄糖代谢。以上研究表明,白血病细胞耐药的相关机制愈加清晰,未来随着糖酵解通路相关靶向药物的出现,有望提高AML患者的长期生存率。Zhang Weide等 [32] 研究发现,TUG1作为miR-185竞争性内源性RNA (ceRNAs)调控AML细胞增殖和糖酵解,在AML患者和细胞中,下调TUG1可通过靶向miR-185抑制HL-60和KG-1细胞的增殖和糖酵解,同时降低细胞活力并增加细胞凋亡率。Sun Linyu等 [33] 研究发现,lncRNA-ANRIL在AML中可能作为癌基因发挥作用,并通过AdipoR1/AMPK/SIRT1/GLUT1和LDHA轴调控糖酵解,进而调控晚期细胞生存。Zhai Hong等 [34] 研究发现,干扰DUXAP8表达后,Wnt5a、β-catenin、c-Myc、cyclin-D1表达水平上调,细胞增殖能力、细胞活力、葡萄糖消耗和乳酸产生显著增加,细胞凋亡受到抑制;而过表达DUXAP8后结果相反,Wnt5a、β-catenin、c-Myc和cyclin-D1是Wnt/β-catenin信号通路中的关键因子,lncRNA-DUXAP8可能通过调控Wnt/β-catenin信号通路抑制AML糖酵解,诱导AML细胞凋亡。综上所述,lncRNA通过调控信号通路间接影响糖酵解,促进肿瘤细胞的存活,从而导致肿瘤的无限增殖。

然而有关lncRNA调控AML细胞糖酵解的具体作用机制研究相对较少,因此,需要进一步深入研究lncRNA调节AML葡萄糖代谢的途径和机制,推动肿瘤代谢异常领域的研究,并为lncRNA在AML发生、发展、诊断及治疗提供进一步研究思路和方向,以提高AML患者的生活质量和生存率。

5. 小结与展望

葡萄糖代谢改变是肿瘤中最具代表的代谢特征,其与AML的发生、发展及预后不良等密切相关,充分认识AML细胞代谢异常机制有助于探索新的治疗措施。目前关于lncRNA对AML中糖酵解途径影响的研究不多,但已有研究证实了lncRNA对于AML的生长、分化、耐药有着重要的调节作用。研究lncRNA调节AML糖酵解的具体机制,可能为其诊断与治疗提供新的研究思路。

NOTES

*通讯作者。

参考文献

[1] Döhner, H., Weisdorf, D.J. and Bloomfield, C.D. (2015) Acute Myeloid Leukemia. The New England Journal of Medi-cine, 373, 1136-1152.
https://doi.org/10.1056/NEJMra1406184
[2] Short, N.J. and Ravandi, F. (2016) Acute Myeloid Leukemia: Past, Present, and Prospects for the Future. Clinical Lymphoma, Myeloma and Leukemia, 16, S25-S29.
https://doi.org/10.1016/j.clml.2016.02.007
[3] Döhner, H., Estey, E.H., Amadori, S., et al. (2010) Di-agnosis and Management of Acute Myeloid Leukemia in Adults: Recommendations from an International Expert Panel, on Behalf of the European LeukemiaNet. Blood, 115, 453-474.
https://doi.org/10.1182/blood-2009-07-235358
[4] Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314.
https://doi.org/10.1126/science.123.3191.309
[5] Warburg, O. (1928) The Chemical Constitution of Respiration Ferment. Science, 68, 437-443.
https://doi.org/10.1126/science.68.1767.437
[6] Lunt, S.Y. and Vander Heiden, M.G. (2011) Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annual Review of Cell and Developmental Biology, 27, 441-464.
https://doi.org/10.1146/annurev-cellbio-092910-154237
[7] Peppicelli, S., Bianchini, F. and Calorini, L. (2014) Extracellular Acidity, a “Reappreciated” Trait of Tumor Environment Driving Malignancy: Perspectives in Diagnosis and Therapy. Cancer and Metastasis Reviews, 33, 823-832.
https://doi.org/10.1007/s10555-014-9506-4
[8] Fan, C., Tang, Y., Wang, J., et al. (2017) Role of Long Non-Coding RNAs in Glucose Metabolism in Cancer. Molecular Cancer, 16, Article No. 130.
https://doi.org/10.1186/s12943-017-0699-3
[9] 杨一言, 高继萍, 续国强, 等. 非编码RNA调控口腔鳞状细胞癌葡萄糖代谢重编程的研究进展[J]. 中国比较医学杂志, 2022, 32(3): 91-97.
[10] Mathupala, S.P., Ko, Y.H. and Pedersen, P.L. (2006) Hexokinase II: Cancer’s Double-Edged Sword Acting as Both Facilitator and Gatekeeper of Ma-lignancy When Bound to Mitochondria. Oncogene, 25, 4777-4786.
https://doi.org/10.1038/sj.onc.1209603
[11] Ju, H.Q., Zhan, G., Huang, A., et al. (2017) ITD Mutation in FLT3 Tyrosine Kinase Promotes Warburg Effect and Renders Therapeutic Sensitivity to Glycolytic Inhibition. Leukemia, 31, 2143-2150.
https://doi.org/10.1038/leu.2017.45
[12] Ma, P., Xing, M., Han, L., et al. (2020) High PD-L1 Expression Drives Glycolysis via an Akt/mTOR/HIF-1α Axis in Acute Myeloid Leukemia. Oncology Reports, 43, 999-1009.
https://doi.org/10.3892/or.2020.7477
[13] Sánchez-Martínez, C. and Aragón, J.J. (1997) Analysis of Phos-phofructokinase Subunits and Isozymes in Ascites Tumor Cells and Its Original Tissue, Murine Mammary Gland. FEBS Letters, 409, 86-90.
https://doi.org/10.1016/S0014-5793(97)00496-1
[14] Luo, X., Zheng, D., Zheng, R., et al. (2018) The Platelet Isoform of Phosphofructokinase in Acute Myeloid Leukemia: Clinical Relevance and Prognostic Implication. Blood, 132, 5251.
https://doi.org/10.1182/blood-2018-99-113786
[15] Qing, Y., Dong, L., Gao, L., et al. (2021) R-2-Hydroxyglutarate Attenuates Aerobic Glycolysis in Leukemia by Targeting the FTO/m6A/PFKP/LDHB Axis. Mo-lecular Cell, 81, 922-939.e9.
https://doi.org/10.1016/j.molcel.2020.12.026
[16] Yang, G.J., Wu, J., Leung, C.H., et al. (2021) A Review on the Emerging Roles of Pyruvate Kinase m2 in Anti-Leukemia Therapy. International Journal of Biological Macromolecules, 193, 1499-1506.
https://doi.org/10.1016/j.ijbiomac.2021.10.213
[17] Huang, Y., Chen, L.M., Xie, J.Y., et al. (2021) High Expres-sion of PKM2 Was Associated with the Poor Prognosis of Acute Leukemia. Cancer Management and Research, 13, 7851-7858.
https://doi.org/10.2147/CMAR.S331076
[18] Wu, H., Zhao, H. and Chen, L. (2020) Deoxyshikonin Inhibits Viability and Glycolysis by Suppressing the Akt/mTOR Pathway in Acute Myeloid Leukemia Cells. Frontiers in Oncology, 10, Article No. 1253.
https://doi.org/10.3389/fonc.2020.01253
[19] Augoff, K. and Grabowski, K. (2004) Przydatność oznaczania dehy-drogenazy mleczanowej w rozpoznawaniu chorób nowotworowych [Significance of Lactate Dehydrogenase Measure-ments in Diagnosis of Malignancies]. Polski Merkuriusz Lekarski, 17, 644-647.
[20] Kolev, Y., Uetake, H., Takagi, Y., et al. (2008) Lactate Dehydrogenase-5 (LDH-5) Expression in Human Gastric Cancer: Association with Hypox-ia-Inducible Factor (HIF-1alpha) Pathway, Angiogenic Factors Production and Poor Prognosis. Annals of Surgical On-cology, 15, 2336-2344.
https://doi.org/10.1245/s10434-008-9955-5
[21] Porporato, P.E., Dhup, S., Dadhich, R.K., et al. (2011) Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review. Frontiers in Phar-macology, 2, Article No. 49.
https://doi.org/10.3389/fphar.2011.00049
[22] Qi, H.X., Cao, Q., Zhou, G.P., et al. (2019) MicroRNA 34b Inhibits Cell Proliferation in Pediatric Acute Myeloid Leukemia via Regulating LDHA. European Review for Medical and Pharmacological Sciences, 23, 5351-5359.
[23] 程薇, 杨丽萍, 周建奖, 等. 过表达CagA对胃癌细胞中GLUT1表达的影响[J]. 贵州医科大学学报, 2021, 46(4): 381-386.
https://doi.org/10.19367/j.cnki.2096-8388.2021.04.002
[24] Pragallapati, S. and Manyam, R. (2019) Glucose Transporter 1 in Health and Disease. Journal of Oral and Maxillofacial Pathology, 23, 443-449.
https://doi.org/10.4103/jomfp.JOMFP_22_18
[25] Adams, B.D., Parsons, C., Walker, L., Zhang, W.C. and Slack, F.J. (2017) Targeting Noncoding RNAs in Disease. Journal of Clinical Investigation, 127, 761-771.
https://doi.org/10.1172/JCI84424
[26] Wang, Y., Zou, Y., Zhang, Q., et al. (2022) LncRNA SBF2-AS1 Facilitates Nonsmall Cell Lung Cancer Progression by Targeting miR-520a-3p. Journal of Healthcare Engineering, 2022, Article ID: 2223149.
https://doi.org/10.1155/2022/2223149
[27] Zhang, Q., Liu, X.J., Li, Y., et al. (2021) Prognostic Value of Im-mune-Related lncRNA SBF2-AS1 in Diffuse Lower-Grade Glioma. Technology in Cancer Research & Treatment, 20.
https://doi.org/10.1177/15330338211011966
[28] Tian, Y.J., Wang, Y.H., Xiao, A.J., et al. (2019) Long Noncod-ing RNA SBF2-AS1 Act as a ceRNA to Modulate Cell Proliferation via Binding with miR-188-5p in Acute Myeloid Leukemia. Artificial Cells, Nanomedicine, and Biotechnology, 47, 1730-1737.
https://doi.org/10.1080/21691401.2019.1608221
[29] Huang, H.H., Chen, F.Y., Chou, W.C., et al. (2019) Long Non-Coding RNA HOXB-AS3 Promotes Myeloid Cell Proliferation and Its Higher Expression Is an Adverse Prognos-tic Marker in Patients with Acute Myeloid Leukemia and Myelodysplastic Syndrome. BMC Cancer, 19, Article No. 617.
https://doi.org/10.1186/s12885-019-5822-y
[30] Chen, L., Hu, N., Wang, C., et al. (2020) HOTAIRM1 Knock-down Enhances Cytarabine-Induced Cytotoxicity by Suppression of Glycolysis through the Wnt/β-catenin/PFKP Path-way in Acute Myeloid Leukemia Cells. Archives of Biochemistry and Biophysics, 680, Article ID: 108244.
https://doi.org/10.1016/j.abb.2019.108244
[31] Wang, X., Zhang, L., Zhao, F., et al. (2018) Long Non-Coding RNA Taurine-Upregulated Gene 1 Correlates with Poor Prognosis, Induces Cell Proliferation, and Represses Cell Apoptosis via Targeting Aurora Kinase A in Adult Acute Myeloid Leukemia. Annals of Hematology, 97, 1375-1389.
https://doi.org/10.1007/s00277-018-3315-8
[32] Zhang, W., Liu, Y., Zhang, J., et al. (2020) Long Non-Coding RNA Taurine Upregulated Gene 1 Targets miR-185 to Regulate Cell Proliferation and Glycolysis in Acute Myeloid Leu-kemia Cells in Vitro. OncoTargets and Therapy, 13, 7887-7896.
https://doi.org/10.2147/OTT.S238189
[33] Sun, L.Y., Li, X.J., Sun, Y.M., et al. (2018) LncRNA ANRIL Regulates AML Development through Modulating the Glucose Metabolism Pathway of AdipoR1/AMPK/SIRT1. Molecular Cancer, 17, 127.
https://doi.org/10.1186/s12943-018-0879-9
[34] Zhai, H., Zhao, J., Pu, J., et al. (2021) LncRNA-DUXAP8 Regu-lation of the Wnt/β-Catenin Signaling Pathway to Inhibit Glycolysis and Induced Apoptosis in Acute Myeloid Leukemia. Turkish Journal of Hematology, 38, 264-272.
https://doi.org/10.4274/tjh.galenos.2021.2020.0769