性别与增龄所致心肌纤维化
Gender and Aging Lead to Myocardial Fibrosis
DOI: 10.12677/ACM.2022.12111446, PDF, HTML, XML, 下载: 191  浏览: 328 
作者: 王云会:重庆医科大学附属第二医院老年病科,重庆 ;邓 玮:重庆医科大学附属第二医院全科医学,重庆
关键词: 心肌纤维化增龄性别雌激素雄激素Myocardical Fibrosis Aging Gender Estrogen Androgen
摘要: 心肌纤维化是老化心脏的重要特征,其严重程度随着年龄增长逐渐加重,可损害心脏结构。在增龄过程中,不同性别的心肌纤维化严重程度及纤维化类型不同。老年男性总心肌纤维化程度(替代性纤维化 + 反应性纤维化)更高,但以哪一类型为主尚不清楚,而老年女性以反应性纤维化为主,这可能与雌激素、雄激素对心肌纤维化发生发展的影响有关。因此,探索性别影响增龄所致心肌纤维化的因素,为将来针对老年人提供更多的抗纤维化治疗靶点,进而改善老年人生活质量。
Abstract: Myocardial fibrosis is an important feature of the aging heart, and its increasing severity with age can damage the heart structure. During aging, the severity of myocardial fibrosis and the type of fi-brosis are different. The degree of total myocardial fibrosis (alternative fibrosis + reactive fibrosis) is higher in older men, but it is unclear which type is predominant, while older women are mainly reactive fibrosis, which may be related to the influence of estrogen and androgen on the occurrence and development of myocardial fibrosis. Therefore, the factors affecting myocardial fibrosis caused by gender should be explored to provide more antifibrotic therapeutic targets for the elderly, and then improve the quality of life in the elderly.
文章引用:王云会, 邓玮. 性别与增龄所致心肌纤维化[J]. 临床医学进展, 2022, 12(11): 10026-10033. https://doi.org/10.12677/ACM.2022.12111446

1. 引言

老年人是心血管疾病(cardiovascular disease, CVD)的高危人群。随着年龄增长,心脏功能逐渐减弱,心血管疾病逐年进展。人类衰老心脏的生理变化包括心肌纤维化增加、心室重构、舒张功能障碍、心房颤动患病率增加等 [1]。心肌纤维化是指各种病理因素刺激心脏成纤维细胞增殖或转化为肌成纤维细胞,胶原蛋白合成与降解不平衡,胶原蛋白排列紊乱,胶原蛋白比例失衡,细胞外基质过度沉积,是多种心血管疾病发展到一定阶段的共同病理表现(如:高血压、主动脉瓣狭窄、心房纤颤等)。目前,国内外研究多关注心血管疾病与心肌纤维化的机制,但探索性别与增龄所致心肌纤维化的机制尚不完全清楚。现就对性别与增龄所致心肌纤维化的研究进展进行综述,为将来针对老年人提供更多的抗纤维化治疗靶点,进而改善老年人生活质量。

2. 心肌纤维化的病理和类型

心肌纤维化(myocardical fibrosis, MF)是心脏重塑的重要过程,与细胞外基质的过度沉积、胶原蛋白合成和降解不平衡、胶原排列紊乱相关,是慢性无菌性炎症反应。而这一过程主要取决于抗纤维化利钠肽系统、促纤维化肾素–血管紧张素–醛固酮系统、促纤维转化生长因子-β1 (transforming growth factor-beta1, TGF-β1)、基质金属蛋白酶和基质金属蛋白酶组织抑制剂等的调节 [2]。当心脏受到各种因素的过度或持续刺激时,上述调节失衡加重心肌纤维化、心脏重塑。

心肌纤维化的形成与诸多疾病进展密切相关,如:糖尿病、甲状腺功能亢进、心肌梗死、高血压、心房颤动、主动脉狭窄等。除此之外,衰老、肥胖、运动等非疾病因素也可引起心肌纤维化。心肌纤维化根据胶原蛋白沉积模式不同分为替代性心肌纤维化(也称修复性纤维化)和反应性心肌纤维化(包含间质纤维化和血管周围纤维化):替代性纤维化是对心肌细胞损伤、凋亡进行修复的最终结果,伴随心肌细胞的丢失和胶原蛋白的重排,多导致局灶性纤维化,如:急性心肌梗死后疤痕组织的形成;然而,反应性纤维化没有心肌细胞的丢失,多见于衰老、心脏压力或容量超负荷时,如:主动脉狭窄、高血压等 [3] [4] [5]。反应性纤维化包含间质纤维化和血管周围纤维化,通常导致弥漫性纤维化。因间质纤维化是心肌束(肌束周围)和单个心肌细胞(肌内膜)周围的胶原蛋白沉积所致,而血管周围纤维化是冠状动脉周围胶原蛋白的聚集 [4],这两种纤维化均分布于整个心脏。无论是反应性心肌纤维化还是替代性心肌纤维化,都是心脏对各种刺激做出的病理生理反应 [6]。

在真实世界中,心肌纤维化类型在心脏中的表现是混杂的。可能在同一心脏中同时观察到多种不同类型的纤维化(会以某一种心肌纤维化类型为主),这可能是由于多种因素所致。此外,在同一疾病中心肌纤维化也可呈现出不同的类型,如:遗传性心肌病纤维化可以表现为间质纤维化或替代性纤维化,这是由于基因缺陷导致的 [5]。

3. 增龄和心肌纤维化

随着年龄增长,心血管疾病发病率及死亡率逐渐增加。心脏老化与心肌纤维化、细胞代谢不良、血管生成减少、心肌细胞功能障碍等损害相关,最终导致心脏重塑及功能不全 [7]。可见,老年人心功能不全与心肌纤维化相关。因为随着年龄增长,心脏细胞外基质沉积增多导致心肌纤维化、心肌组织僵硬,进而心室弹性、顺应性下降,随后出现心功能不全或射血分数保留的心力衰竭(heart failure with preserved ejection fraction, HFpEF),一种老年人最常见的心力衰竭类型 [8]。

增龄导致心肌纤维化是心脏老化的生理性改变。一项基于人类多种族的研究指出:随着年龄增长,心肌纤维化严重程度越高,即使在调整心血管疾病因素及心血管危险因素后也是如此 [9]。小鼠动物实验也证明上述观点 [8]。关于增龄导致心肌纤维化的机制,已经提出许多观点,如:活性氧增加、线粒体损伤、基因失调、端粒缩短、自噬减弱、免疫炎症和细胞因子增加等 [10] [11]。目前国内外关于增龄导致心肌纤维化的机制仍在探索当中。

4. 性别和增龄所致心肌纤维化

心肌纤维化因不同的疾病所致纤维化类型不同,如:心肌梗死后发生替代性纤维化,而在主动脉狭窄和高血压病中多发生反应性纤维化 [3]。那么,性别会影响心肌纤维化吗?研究发现,在同一疾病中,不同性别也会导致纤维化有所差异,如:在影像学中,Tastet等 [12] 认为在主动脉瓣狭窄疾病中,与男性相比,女性弥漫性及局灶性心肌纤维化程度更高。同样,在自然衰老过程中,心肌纤维化因性别差异而不尽相同,男性纤维化程度更高,这可能与男性表达更多的纤维化标志物和纤维化基因相关 [13]。

增龄导致的心肌纤维化因性别而不相同。在动物实验中,老年雄性小鼠的心脏更大、更薄、纤维化程度更高 [14]。心脏影像学也证明了此观点,如:3D超声斑点追踪显示:在老年人群中,男性心肌纤维化程度更高 [15],但女性同心性肥大更明显、收缩功能更好、左心室直径更小。在早期人类心脏解剖中,随着年龄的增长,男性心脏出现心肌细胞丢失和替代性纤维化,这会导致剩余心肌细胞出现反应性肥大,而女性这种现象则少见 [16]。此外,Achkar等 [8] 首次证明了老年雄性小鼠心脏中存在血管周围纤维化和替代性纤维化,而在老年雌性小鼠心脏中存在反应性纤维化(心肌层和心外膜)。上述研究发现:与同龄女性比,老年男性总的心肌纤维化(替代性纤维化+反应性纤维化)程度更高,替代性心肌纤维化更重。而另有研究发现,老年女性以反应性纤维化为主,替代性纤维化少见。如:心脏核磁共振(cardiovascular magnetic resonance, CMR)评估心肌纤维化示:老年女性反应性心肌纤维化程度更高 [9],远高于同龄男性。总之,老年男性心肌纤维化程度更高。老年男性以哪种类型纤维化为主尚不确定,而老年女性以反应性纤维化为主。

心肌细胞数量在增龄过程中表现出性别的差异。随着年龄增长,老年男性心肌细胞数量丢失更多,而女性则少见。早年从人类生理衰老心脏组织学中发现,老年男性心脏心肌细胞丢失,伴随着剩余心肌细胞反应性肥大,最终导致左心室肥厚,而女性衰老心脏的心肌细胞数量及结构受影响较小 [16]。此外,动物实验表明,与同龄雌性大鼠相比,老年雄性大鼠的心肌细胞、心肌细胞表面的胰岛素样生长因子-1及其受体数量明显减少,继而出现与这些分子修饰相关的替代性纤维化病灶 [17]。

心脏成纤维细胞(cardiac fibroblasts, CFs)随着衰老而产生变化,但CFs的分布及表型却因性别而异。血小板衍生生长因子受体-α (platelet-derived growth factor receptor-α, PDGFR-α)是成纤维细胞发育所必需的。过表达的PDGFRα可诱发CFs增殖以及向肌成纤维细胞转化,促进胶原蛋白过度生成、沉积引起心肌纤维化 [18]。CFs的分布及PDGFRα表达因性别而不同。动物实验表明,与同龄雌性小鼠相比,老年雄性小鼠CFs表达更多的PDGFRα,且CFs多存在于心外模及心肌区域,第一次报道了老年小鼠心脏中CFs分布和表型与性别相关 [8]。可见,随着年龄增长,常驻CFs可能在性别相关心肌纤维化中发挥作用。

随着年龄增长,胶原蛋白的数量和类型因性别而异。与同龄女性相比,老年男性表达胶原蛋白更多。在人类主动脉狭窄疾病中,与老年女性相比,老年男性心脏胶原蛋白I和III含量更高 [19]。同样,在自然衰老过程中,老年雄性小鼠心脏的胶原蛋白表达更多 [20]。这可能与雌激素下调I型和III型胶原蛋白有关 [21]。另有研究表明,老年男性及女性的主要胶原蛋白类型不同,如:Achkar等人证明了老年雄性小鼠心脏心外膜和心肌以胶原蛋白I型为主,与之相反,老年雌性小鼠以III型胶原蛋白为主 [8]。

5. 性别影响增龄所致心肌纤维化的因素

5.1. 雌激素

雌激素在心脏中起保护作用。与同龄男性相比,绝经前女性的心血管疾病发病率较低 [22]。绝经后,虽然雌激素水平下降导致女性心血管疾病发生风险增加,但仍然比同龄男性心血管疾病发病率低。同样,雌激素在心肌纤维化的病理生理过程中也起保护作用。

雌激素通过抑制G蛋白偶联受体激酶2 (G protein-coupled receptor kinase 2, GRK2)保护女性心脏。GRK2是心血管病理生理调节因子 [23],参与心肌纤维化发生发展,且受雌激素的调节。当GRK2持续刺激心脏时,导致心肌纤维化、心肌肥大和心功能不全 [24] [25]。而低水平的GRK2可以减轻心肌纤维化,如:在缺血再灌注小鼠模型中,成纤维细胞GRK2敲除小鼠的纤维化基因减少和纤维化程度减轻 [26]。雌激素便是通过抑制GRK2活性或表达来保护女性心脏。Arcone等 [23] 研究表明,在心脏中,与同龄雄性小鼠相比,年轻雌性小鼠的GRK2蛋白含量较低,且GRK2在雌性小鼠中随着年龄增长而上调,这可通过补充雌激素部分下降。可见,与年轻女性相比,老年女性心肌纤维化程度更高,部分是因为绝经后雌激素减少,GRK2蛋白水平升高导致。

雌激素通过激活G蛋白偶联受体30 (G-protein-coupled receptor 30, GPR30)保护女性心脏。GPR30是一种与雌二醇结合的GPCR,受雌激素的调控。它通过受体活性修饰蛋白3 (Receptor activity-modifying protein 3, RAMP3)而介导心脏保护作用 [27]。当GPR30位于细胞质膜时对心脏具有保护作用,而位于细胞质时与血管周围纤维化形成有关。17β-雌二醇(17β-estradio, E2)诱导激活GPR30后,GPR30通过抑制ERK1/2-MMP-9或TGF-β1/Smad信号通路,进而抑制成纤维细胞的活化、减少血管周围纤维化的形成及改善心肌肥大 [28] [29]。然而,GPR30在男性和女性之间的表达却不尽相同,女性GPR30的表达更多 [30]。可以推断,尽管老年女性雌激素水平下降,对GPR30的激活减少导致周围血管纤维化加重,但与老年男性相比,纤维化程度仍然更低。

5.2. 雄激素

随着年龄增长,雄激素水平下降,男性心血管疾病患病风险增加,但雄激素与心血管疾病之间的关联仍不清楚。同样,雄激素对心肌纤维化的发生发展尚存较多争议。

雄激素可诱导心肌纤维化。在压力超负荷动物模型中,雄激素诱导TGF-β表达,使老年雄性小鼠心肌纤维化加重,而睾丸切除术后纤维化程度减轻 [31]。此外,Froese等 [32] 发现心肌梗死(myocardial infarction, MI)小鼠的雄激素基因表达和二氢睾酮水平增加,而非那雄胺通过抑制睾酮改善MI小鼠的间质纤维化和心肌细胞肥大。高剂量的雄激素更是加重心肌损害,如:研究发现,与生理盐水对照组相比,予以10 mg庚酸睾酮肌肉注射的雄性大鼠的心肌纤维化程度更高 [33]。Wadthaisong等 [34] 也证明高剂量和持续时间的睾酮给药加速心肌纤维化的发展。

但是另有研究认为,雄激素可改善心肌纤维化。雄激素通过下调TGF-β、阻断血管紧张素II (Angiotensin II, AngII)及Ca2+/钙调蛋白依赖性蛋白激酶II (Ca2+/calmodulin-dependent protein kinase II, CaMKII)的作用,对心脏产生抗纤维化作用。Chung等 [35] 认为生理睾酮激素(10 nmol/L)通过抑制TGF-β1/PI3K/Akt及AngII/P38/Smad信号通路,使CFs增殖、转化及胶原蛋白的产生减少。另一项研究表明,生理睾酮激素(10 nmol/L)还可通过刺激NO产生并抑制IP3/Ca2+/CaMKII信号通路,进而抑制胶原蛋白的产生减轻心肌纤维化 [36],因为CaMKII的激活与心肌纤维化密切相关。随着年龄增长,雄激素缺乏使老年男性心肌纤维化加重。当雄激素缺乏可诱导TGF-β过表达,刺激CFs向肌成纤维细胞分化,产生大量的胶原蛋白导致心肌纤维化加重 [37]。Ikeda等 [38] 认为,在AngII诱导的心肌纤维化动物实验中,与野生型小鼠相比,雄激素受体基因敲除小鼠的心肌纤维化更显著。Chen等人 [39] 也证明了衰老小鼠雄激素减少导致心肌纤维化增加,但补充外源性睾酮(通过Gas6/Axl信号通路)可以改善此种现象。综上所述,随着年龄增长,雄激素缺乏诱导过多TGF-β表达,阻断Ang II作用减弱导致老年男性心肌纤维化加重。

雄激素对心肌纤维化的发生发展存在较多争议,可能与实验设计、过程(如:动物的选择、睾酮的剂量、持续时间)缺乏统一的参考标准及心血管疾病中众多的混杂因素、复杂多变的病理过程等有关。将来可进行更多的实验研究进一步探索雄激素与心肌纤维化的关系。

5.3. 其他

平滑肌细胞盐皮质激素受体(smooth muscle cell mineralocorticoid receptor, SMC-MR)介导的性别与增龄所致心肌纤维化:SMC-MR参与血管收缩、血管重塑和血压调节,且与增龄导致血管僵硬及纤维化相关 [40] [41]。DuPont等 [40] 表明,SMC-MR随着年龄增长而增加,但老年雌性小鼠发生心脏血管周围纤维化不依赖于SMC-MR,而老年雄性小鼠却依赖于SMC-MR,这可能与两性的心肌纤维化调节因子有关,如:结缔组织生长因子(connective tissue growth factor, CTGF)和 TGF-β。Kim等 [41] 也证明SMC-MR有助于老年雄性小鼠的心血管僵硬和纤维化。

炎症和虚弱介导的性别与增龄导致心肌纤维化:随着年龄增长,人类的虚弱指数增大。但众所周知,人类的虚弱存在明显的性别差异,女性几乎在所有年龄段都较男性更虚弱,尽管死亡风险较低 [42]。这可能与炎症相关,如:Kane等 [43] 认为炎症与虚弱之间存在关联,且有性别差异。同时,一项研究指出,老年雄性小鼠的纤维化加重、心脏结构改变与炎症、虚弱相关,而在雌性小鼠中可能会抵抗这种不良反应 [20]。可见慢性炎症、虚弱与心肌纤维化相关,在老年男性中更明显。

6. 小结与展望

心肌纤维化损害心脏结构,阐述老年男性及女性各自心肌纤维化的特点及影响因素能有效预防增龄过程中出现的心肌纤维化,进而维持心脏正常结构及功能。在老年群体中,老年男性心肌纤维化程度更高,且会发生替代性纤维化,而老年女性较少发生替代性纤维化。此外,老年女性以反应性纤维化为主,而老年男性以哪种类型纤维化(替代性纤维化或反应性纤维化)为主尚不确定。这可能与性激素对心肌纤维化的影响有关,雌激素在心肌纤维化发生发展中起保护作用,而雄激素尚存在争议。因此,将来需要积极探索,在增龄过程中不同性别心肌纤维化的病理生理机制,为心肌纤维化的发生发展提供新思路,进而为抗纤维化提出更多的治疗靶点。

参考文献

[1] Dai, D.F., Chen, T., Johnson, S.C., Szeto, H. and Rabinovitch, P.S. (2012) Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants & Redox Signaling, 16, 1492-1526.
https://doi.org/10.1089/ars.2011.4179
[2] Sangaralingham, S.J., Wang, B.H., Huang, L., et al. (2016) Cardiorenal Fibrosis and Dysfunction in Aging: Imbalance in Mediators and Regulators of Collagen. Peptides, 76, 108-114.
https://doi.org/10.1016/j.peptides.2016.01.004
[3] Frangogiannis, N.G. (2019) The Extracellular Matrix in Is-chemic and Nonischemic Heart Failure. Circulation Research, 125, 117-146.
https://doi.org/10.1161/CIRCRESAHA.119.311148
[4] Maruyama, K. and Imanaka-Yoshida, K. (2022) The Pathogenesis of Cardiac Fibrosis: A Review of Recent Progress. International Journal of Molecular Sciences, 23, Article No. 2617.
https://doi.org/10.3390/ijms23052617
[5] de Boer, R.A., De Keulenaer, G., Bauersachs, J., et al. (2019) Towards Better Definition, Quantification and Treatment of Fibrosis in Heart Failure. A Scientific Roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. European Journal of Heart Failure, 21, 272-285.
https://doi.org/10.1002/ejhf.1406
[6] 高小燕, 邓春玉, 饶芳, 等. 衰老与心肌纤维化[J]. 医学综述, 2018, 24(24): 4785-4789.
[7] Tang, X., Li, P.H. and Chen, H.Z. (2020) Cardiomyocyte Senescence and Cellular Communi-cations within Myocardial Microenvironments. Frontiers in Endocrinology, 11, Article 280.
https://doi.org/10.3389/fendo.2020.00280
[8] Achkar, A., Saliba, Y. and Fares, N. (2020) Differential Gen-der-Dependent Patterns of Cardiac Fibrosis and Fibroblast Phenotypes in Aging Mice. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 8282157.
https://doi.org/10.1155/2020/8282157
[9] Liu, C.Y., Liu, Y.C., Wu, C., et al. (2013) Evaluation of Age-Related Interstitial Myocardial Fibrosis with Cardiac Magnetic Resonance Contrast-Enhanced T1 Mapping: MESA (Multi-Ethnic Study of Atherosclerosis). Journal of the American College of Cardiology, 62, 1280-1287.
https://doi.org/10.1016/j.jacc.2013.05.078
[10] Miyamoto, S. (2019) Autophagy and Cardiac Aging. Cell Death & Differentiation, 26, 653-664.
https://doi.org/10.1038/s41418-019-0286-9
[11] Shirakabe, A., Ikeda, Y., Sciarretta, S., Zablocki, D.K. and Sadoshima, J. (2016) Aging and Autophagy in the Heart. Circulation Research, 118, 1563-1576.
https://doi.org/10.1161/CIRCRESAHA.116.307474
[12] Tastet, L., Kwiecinski, J., Pibarot, P., et al. (2020) Sex-Related Differences in the Extent of Myocardial Fibrosis in Patients with Aortic Valve Stenosis. Cardiovascular Imaging, 13, 699-711.
https://doi.org/10.1016/j.jcmg.2019.06.014
[13] Kararigas, G., Dworatzek, E., Petrov, G., et al. (2012) Sex-Dependent Regulation of Fibrosis and Inflammation in Human Left Ventricular Remodelling under Pres-sure Overload. European Journal of Heart Failure, 16, 1160-1167.
https://doi.org/10.1002/ejhf.171
[14] Yusifov, A., Woulfe, K.C. and Bruns, D.R. (2022) Mechanisms and Implica-tions of Sex Differences in Cardiac Aging. The Journal of Cardiovascular Aging, 2, Article No. 20.
https://doi.org/10.20517/jca.2022.01
[15] Hung, C.L., Gonçalves, A., Shah, A.M., et al. (2017) Age- and Sex-Related Influences on Left Ventricular Mechanics in Elderly Individuals Free of Prevalent Heart Failure: The ARIC Study (Atherosclerosis Risk in Communities). Circulation: Cardiovascular Imaging, 10, e004510.
https://doi.org/10.1161/CIRCIMAGING.116.004510
[16] Olivetti, G., Giordano, G., Corradi, D., et al. (1995) Gender Differences and Aging: Effects on the Human Heart. Journal of the American College of Cardiology, 26, 1068-1079.
https://doi.org/10.1016/0735-1097(95)00282-8
[17] Leri, A., Kajstura, J., Li, B., et al. (2000) Cardio-myocyte Aging Is Gender-Dependent: The Local IGF-1-IGF-1R System. Heart Disease (Hagerstown, Md.), 2,108-115.
[18] Ivey, M.J., Kuwabara, J.T., Riggsbee, K.L. and Tallquist, M.D. (2019) Platelet-Derived Growth Factor Receptor-α Is Essential for Cardiac Fibroblast Survival. American Journal of Physiology-Heart and Circulatory Physi-ology, 317, H330-H344.
https://doi.org/10.1152/ajpheart.00054.2019
[19] Petrov, G., Regitz-Zagrosek, V., Lehmkuhl, E., et al. (2010) Regression of Myocardial Hypertrophy after Aortic Valve Replacement: Faster in Women? Circulation, 122, S23-S28.
https://doi.org/10.1161/CIRCULATIONAHA.109.927764
[20] Kane, A.E., Bisset, E.S., Heinze-Milne, S., et al. (2021) Maladaptive Changes Associated with Cardiac Aging Are Sex-Specific and Graded by Frailty and Inflammation in C57BL/6 Mice. The Journals of Gerontology: Series A, 76, 233-243.
https://doi.org/10.1093/gerona/glaa212
[21] Dworatzek, E., Mahmoodzadeh, S., Schriever, C., et al. (2019) Sex-Specific Regulation of Collagen I and III Expression by 17β-Estradiol in Cardiac Fibroblasts: Role of Estrogen Re-ceptors. Cardiovascular Research, 115, 315-327.
https://doi.org/10.1093/cvr/cvy185
[22] Iorga, A., Cunningham, C.M., Moazeni, S., et al. (2017) The Protective Role of Estrogen and Estrogen Receptors in Cardiovascular Disease and the Controversial Use of Estrogen Therapy. Bi-ology of Sex Differences, 8, Article No. 33.
https://doi.org/10.1186/s13293-017-0152-8
[23] Arcones, A.C., Martínez-Cignoni, M.R., Vila-Bedmar, R., et al. (2021) Cardiac GRK2 Protein Levels Show Sexual Dimorphism during Aging and Are Regulated by ovarian Hormones. Cells, 10, Article No. 673.
https://doi.org/10.3390/cells10030673
[24] Lieu, M., Traynham, C.J., de Lucia, C., et al. (2020) Loss of Dynamic Regulation of G Protein-Coupled Receptor Kinase 2 by Nitric Oxide Leads to Cardiovascular Dysfunction with Aging. American Journal of Physiology-Heart and Circulatory Physiology, 318, H1162-H1175.
https://doi.org/10.1152/ajpheart.00094.2020
[25] Arcones, A.C., Murga, C., Penela, P., Inserte, J. and Mayor Jr., F. (2021) G protein-Coupled Receptor Kinase 2 at Crossroads of Metabolic and Cardiovascular Diseases. Current Opinion in Endocrine and Metabolic Research, 16, 75-85.
https://doi.org/10.1016/j.coemr.2020.09.004
[26] Woodall, M.C., Woodall, B.P., Gao, E., Yuan, A. and Koch, W.J. (2016) Cardiac Fibroblast GRK2 Deletion Enhances Contractility and Remodeling Following Ischemia/Reperfusion In-jury. Circulation Research, 119, 1116-1127.
https://doi.org/10.1161/CIRCRESAHA.116.309538
[27] Lenhart, P.M., Broselid, S., Barrick, C.J., Leeb-Lundberg, L.M.F. and Caron, K.M. (2013) G-Protein Coupled Receptor 30 Interacts with Receptor Activity Modifying Protein 3 and Confers Sex-Dependent Cardioprotection. Journal of Molecular Endocrinology, 51, 191-202.
https://doi.org/10.1530/JME-13-0021
[28] Wang, X., Ma, J., Zhang, S., et al. (2021) G Protein-Coupled Estrogen Receptor 30 Reduces Transverse Aortic Constriction-Induced Myocardial Fibrosis in Aged Female Mice by Inhibiting the ERK1/2 -MMP-9 Signaling Pathway. Frontiers in Pharmacology, 12, Article 731609.
https://doi.org/10.3389/fphar.2021.731609
[29] Liu, D., Zhan, Y., Ono, K., et al. (2022) Pharmacological Activa-tion of Estrogenic Receptor G Protein-Coupled Receptor 30 Attenuates Angiotensin II-Induced Atrial Fibrosis in Ovari-ectomized Mice by Modulating TGF-β1/Smad Pathway. Molecular Biology Reports, 49, 6341-6355.
https://doi.org/10.1007/s11033-022-07444-8
[30] Sickinghe, A.A., Korporaal, S.J.A., Den Ruijter, H.M. and Kessler, E.L. (2019) Estrogen Contributions to Microvascular Dysfunction Evolving to Heart Failure with Preserved Ejection Fraction. Frontiers in Endocrinology, 10, Article 442.
https://doi.org/10.3389/fendo.2019.00442
[31] Montalvo, C., Villar, A.V., Merino, D., et al. (2012) Androgens Contribute to Sex Differences in Myocardial Remodeling under Pressure Overload by a Mechanism Involving TGF-β. PLOS ONE, 7, e35635.
https://doi.org/10.1371/journal.pone.0035635
[32] Froese, N., Wang, H., Zwadlo, C., et al. (2018) An-ti-Androgenic Therapy with Finasteride Improves Cardiac Function, Attenuates Remodeling and Reverts Pathologic Gene-Expression after Myocardial Infarction in Mice. Journal of Molecular and Cellular Cardiology, 122, 114-124.
https://doi.org/10.1016/j.yjmcc.2018.08.011
[33] Papamitsou, T., Barlagiannis, D., Papaliagkas, V., Kotanidou, E. and Dermentzopoulou-Theodoridou, M. (2011) Testosterone-Induced Hypertrophy, Fibrosis and Apoptosis of Cardiac Cells—An Ultrastructural and Immunohistochemical Study. Medical Science Monitor, 17, BR266-BR273.
https://doi.org/10.12659/MSM.881930
[34] Wadthaisong, M., Witayavanitkul, N., Bupha-Intr, T., Wattanaperm-pool, J. and de Tombe, P.P. (2019) Chronic High- Dose Testosterone Treatment: Impact on Rat Cardiac Contractile Bi-ology. Physiological Reports, 7, e14192.
https://doi.org/10.14814/phy2.14192
[35] Chung, C.C., Hsu, R.C., Kao, Y.H., et al. (2014) Androgen Attenuates Cardiac Fibroblasts Activations through Modulations of Transforming Growth Factor-β and Angiotensin II Signaling. International Journal of Cardiology, 176, 386-393.
https://doi.org/10.1016/j.ijcard.2014.07.077
[36] Chung, C.C., Lin, Y.K., Kao, Y.H., Lin, S.H. and Chen, Y.J. (2021) Physiological Testosterone Attenuates Profibrotic Activities of Rat Cardiac Fibroblasts through Modulation of Nitric Oxide and Calcium Homeostasis. Endocrine Journal, 68, 307-315.
https://doi.org/10.1507/endocrj.EJ20-0344
[37] Chung, C.C., Kao, Y.H., Chen, Y.J. and Chen, Y-.J. (2013) An-drogen Modulates Cardiac Fibrosis Contributing to Gender Differences on Heart Failure. The Aging Male, 16, 22-27.
https://doi.org/10.3109/13685538.2012.754008
[38] Ikeda, Y., Aihara, K., Sato, T., et al. (2005) Androgen Re-ceptor Gene Knockout Male Mice Exhibit Impaired Cardiac Growth and Exacerbation of Angiotensin II-Induced Cardiac Fibrosis. Journal of Biological Chemistry, 280, 29661- 29666.
https://doi.org/10.1074/jbc.M411694200
[39] Chen, F., Song, F., Chen, Y., et al. (2019) Exogenous Testosterone Alleviates Cardiac Fibrosis and Apoptosis via Gas6/Axl Pathway in the Senescent Mice. Experimental Gerontology, 119,128-137.
https://doi.org/10.1016/j.exger.2019.01.029
[40] DuPont, J.J., Kim, S.K., Kenney, R.M. and Jaffe, I.Z. (2021) Sex Differences in the Time Course and Mechanisms of Vascular and Cardiac Aging in Mice: Role of the Smooth Muscle Cell Mineralocorticoid Receptor. American Journal of Physiology-Heart and Circulatory Physiology, 320, H169-H180.
https://doi.org/10.1152/ajpheart.00262.2020
[41] Kim, S.K., McCurley, A.T., DuPont, J.J., et al. (2018) Smooth Muscle Cell—Mineralocorticoid Receptor as a Mediator of Cardiovascular Stiffness with Aging. Hypertension, 71, 609-621.
https://doi.org/10.1161/HYPERTENSIONAHA.117.10437
[42] Gordon, E.H., Peel, N.M., Samanta, M., et al. (2018) Sex Differences in Frailty: A Systematic Review and Meta- Analysis. Experimental Gerontology, 89, 30-40.
https://doi.org/10.1016/j.exger.2016.12.021
[43] Kane, A.E., Keller, K.M., Heinze-Milne, S., et al. (2019) A Mu-rine Frailty Index Based on Clinical and Laboratory Measurements: Links between Frailty and Pro-Inflammatory Cyto-kines Differ in a Sex-Specific Manner. The Journals of Gerontology: Series A, 74, 275-282.
https://doi.org/10.1093/gerona/gly117